Nonradiative Decay Route of Cinnamate Derivatives Studied by Frequency and Time Domain Laser Spectroscopy in the Gas Phase, Matrix Isolation FTIR Spectroscopy and Quantum Chemical Calculations

TAKAYUKI EBATA, Department of Chemistry, Graduate School of Science, Hiroshima University, Higashihiroshima City, Japan.

The nonradiative decay route involving trans → cis photo-isomerization from the $S_1 (\pi\pi^*)$ state has been investigated for several trans-cinnamate derivatives, which are known as sunscreen reagents. We examined two types of substitution effects.

One is structural isomer such as ortho-, meta-, and para-hydroxy-methylcinnamate (o-, m-, p-HMC). The S_1 lifetime of p-HMC is less than 8 ps at zero-point level, and it undergoes rapid $S_1 \rightarrow {^1n\pi^*} \rightarrow T_1$ decay via multiple conical intersections. Finally, the trans → cis isomerization proceeds in the T_1 state. On the other hand, both o- and m-HMC show very slow decay. Their S_1 lifetimes are in the order of 100 ps even at the excess energy of 2000-3000 cm$^{-1}$.

The other is the effect of the complexity of ester group in para-substituted species, such as para-methoxy-methyl, -ethyl and -2ethylhexyl cinnamate (p-MMC, p-MEC, p-M2EHC). p-MMC and p-MEC show sharp $S_0 \rightarrow S_1 (\pi\pi^*)$ vibronic bands, while p-M2EHC shows only broad structureless feature even under the jet-cooled condition. In addition, we found that the $S_0 \rightarrow {^1n\pi^*}$ absorption appears at 1000 cm$^{-1}$ below the $S_0 \rightarrow S_1 (\pi\pi^*)$ transition in p-MEC and p-M2EHC, but not in p-MMC. Thus, the complexity of the ester group is very important for the appearance of the $^1n\pi^*$ state.