Example CTSC Engagements

Kay Avila, Jim Basney, and John Zage

This material is based upon work supported by the National Science Foundation under grant number 1547272. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
CTSC Engagements

- Goal: Work collaboratively with NSF projects to address cybersecurity challenges

- Topics:
 - development of new cybersecurity programs
 - assessing existing cybersecurity programs
 - software assurance
 - identity management
 - recommendations on new software features
 - code review
 - staff training
 - implementing a specific process or control
CTSC Engagements

NSF Locations in the US

- Array of Things
- Gemini Observatory
- HUBzero
- Open Science Grid/HTCondor
- MI_OSIRIS
- UNH Research Computing Center
- SciGap
- TransPAC
- Wildbook/BBEIS
- perfSONAR
- IceCube
- Pegasus
- LIGO
- LIGO (2)
- CC-NIE (PRh)
- CC-NIE (Cincy)
- CC-NIE (Oklahoma)
- CC-NIE (Penn State)
- CC-NIE (Utah)
- DKIST
- CyberGUS
- United States Antarctic Program
- OOI
- LTER
- DataONE
- LSST, IceCube, US Antarctic Program

NSF Locations outside the US

- Gemini Observatory (2)
- LSST
- LSST, IceCube, US Antarctic Program
HTCondor/OSG

- HTCondor-CE is a next-generation gateway software for the OSG
 - Allows local providers to accept jobs submitted from OSG users
- Open Science Grid (OSG) is a national distributed partnership for data-intensive science
- Goal: analyze a lesser-known component of HTCondor-CE, called blahp, for security vulnerabilities using a first principles vulnerability analysis (FPVA) approach
HTCondor/OSG

- FPVA: Starts with Architecture Diagram
HTCondor/OSG

- FPVA: Then moves onto the Resource Diagram
HTCondor/OSG

● FPVA: After these two steps:
 ○ Analyze possible attack surface
 ○ Write up possible scenario
 ○ Test scenario
 ○ Record our conclusions, then repeat with next scenario
Daniel K. Inouye Solar Telescope (DKIST)

- Project of NSO, under AURA, funded by NSF
- Currently under construction in Maui, Hawaii
- Will become the largest and most precise solar telescope upon completion in 2019
- Expected to produce 9 TB/day of data on average, peaking up to 64 TB/day
- Approximately 50 year lifetime
- Date being stored at a data center in Boulder, Colorado
DKIST Data Center CTSC Engagement

● Objectives
 ○ Primary - develop a security program for the DKIST Data Center in Colorado
 ○ Secondary - teach DKIST Data Center staff how to perform a risk assessment using an information asset inventory

● Steps
 ○ Understand the current state of the data center buildout
 ○ Review existing policy requirements from the University of Colorado, National Solar Observatory (NSO) and Association of Universities for Research in Astronomy (AURA)
 ○ Begin with CTSC’s Guide and Master Information Security Policy & Procedures
 ○ On-site visit to cover risk assessments
OSiRIS - www.osris.org

- 5yr $5m NSF sponsored project
 - Campus Cyberinfrastructure Data, Networking, and Innovation (CC*DNI)
 - Data Infrastructure Building Blocks (DIBBs)
- Providing a distributed, multi-institutional storage infrastructure to allow researchers to read, write, manage and share their data directly from their computing facility locations
- Using ceph.com distributed storage system
- Challenge: access control to data across campuses
CTSC and OSiRIS collaborated on a review of their data authorization design which uses JSON Web Tokens (JWTs)

Using the OAuth 2.0 Threat Model and Security Considerations (RFC 6819) as a framework for the review

- user authentication process
- JWT issuance process
- exposure of JWTs after issuance
- malicious client software
- browser-based attacks
- malicious resource providers
- denial of service attacks

Final report: http://hdl.handle.net/2022/21307
More info at https://trustedcici.org/