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ABSTRACT

This thesis presents the design, modeling, and control of a quadcopter equipped

with a Delta-type parallel manipulator. Such systems present demanding

challenges in both control theory and task planning, which are addressed with

novel mechanical features, modern flight controllers, and optimal trajectory

generation. They are primarily designed for versatile indoor pick-and-place

tasks where the characteristics of the proposed solution introduce useful

kinematic properties. We explore these traits to address critical deficiencies

found in previous approaches.

First, we introduce and discuss the mechanical design of the coupled

system. Second, we derive the kinematics and dynamic relationships between

all bodies. Third, we develop the flight controller, where baseline, feedforward,

and adaptive components are combined and used in unison with an optimal

trajectory generation algorithm. Finally, we present simulation results which

reflect the feasibility of the concepts.
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CHAPTER 1

INTRODUCTION

Aerial manipulation has undoubtedly become a major robotics research area

in the past few years. The industry has driven this interest with investments

in areas such as inspection, mapping, agriculture, age in place, and urban

environments. The need for an autonomous aerial vehicle endowed with

a robotic arm arises when a simple gripper attached to the bottom of the

aircraft does not possess enough reach and/or DoFs to execute a given mission

with sufficient robustness. This thesis’ research arose from the age in place

problem, where there exists a fundamental need for technologies to assist

the ever-increasing elderly population [2, 3, 4]. The project “Automation

Supporting Prolonged Independent Residence for the Elderly” (ASPIRE) [5]

was funded by the NSF to investigate the use of indoor compact aerial and

terrestrial co-robots. Following this framework, a compact quadcopter and

robotic manipulator vehicle is designed for indoor pick-and-place tasks. Aerial

vehicles typically excel in such environments given their ability to traverse

common obstacles such as stairs and furniture and of reaching objects in a

higher altitude, where ground robots would be unable to do so. The problem

is, however, generalizable to a multitude of different frameworks.

Previous works tackled this problem in one of two ways. Either the

system has a large quadcopter to manipulator mass ratio, giving it high flight

actuation overhead, or it is developed for a constrained set of tasks, both of

which make the stabilization problem easier to tackle. The former, although

certainly feasible, is not representative of the current trend in quadcopter

downsizing [6], and is hardly scalable. The latter is efficient and scalable but

undermines the idea of a versatile platform reminiscent of having a flying

multirole robotic arm.

Currently, aerial manipulation systems tend to be endowed with a serial ma-

nipulator, most notably [7, 8] recently attained strong results. The reasoning

for this is understandable, seeing as serial manipulators are more accessible
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to model, control, design and implement. They also provide the aircraft with

the much-needed reach, an area in which these types of manipulators excel.

It does, however, come at a cost: the dynamics are strong, in the sense that

the force/torque wrench generated at the base of the manipulator (i.e. the

quadcopter) is high in magnitude.

In this thesis, the use of a parallel manipulator is explored. Due to its mass

properties and actuator topology, Delta-type manipulator introduces fewer

disturbances to the quadcopter as well as higher end-effector bandwidth at

the cost of a smaller work volume and a complicated model. By designing

the manipulator around the quadcopter these shortcomings are attenuated.

In addition, the usefulness of the base to end-effector parallelism as well as

the increased speed and precision are attained. In [9] the authors success-

fully implement a similar parallel manipulator in a quadcopter, achieving

satisfactory performance and task execution. The work utilizes most of the

components of this thesis approach. Their design mounts the manipulator in

such a way that most of the disturbances are transmitted to the (non-critical)

yaw axis and, although interesting, this topology severely constrains the set

of possible tasks. Ultimately, this makes the vehicle fall into the task-specific

category, as it is unable to grasp objects beneath the aircraft and, at the same

time, imposing a constant mass asymmetry. In [10] the authors implemented

a 6-DoF version of the Delta-type topology, however, their goals revolved

around stabilization of the end-effector, instead of pick-and-place tasks.

The design and control of an aerial manipulation system with a low quad-

copter to manipulator mass ratio and satisfactory reach and end-effector

bandwidth is developed in this work to provide critical contributions to aerial

manipulation research which are unattainable by previous approaches. We

build upon previous works [11], which will be contrasted against the design

presented here. The autonomous aircraft is designed to have little flight actu-

ation overhead as well as wide task execution versatility. The autonomous

aircraft displayed in Figure 1.1 is intended for small manipulation tasks such

as pick-and-place of small objects (medicine, papers, glasses, etc.). This

is achieved by the novel integration of a parallel 3-DoF manipulator with

a compact, high-performance quadcopter. The manipulator is designed to

attain a large workspace and fast servo motors are used to reach desired

performance indexes. A torque compensating feedforward controller is added

to the baseline autopilot to account for the fast dynamics of the manipulator.
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