Files in this item

FilesDescriptionFormat

application/pdf

application/pdf1372213.pdf (5MB)
PresentationPDF

application/pdf

application/pdf3739.pdf (25kB)
AbstractPDF

Description

Title:A 180 GHZ PULSED TRANSMITTER AND HETERODYNE RECEIVER 28 NM CMOS CHIPSET FOR MOLECULAR SENSING
Author(s):Nemchick, Deacon J
Contributor(s):Chang, M.-C. Frank; Kim, Yanghyo ; Alonso, Maria ; Tang, Adrian ; Drouin, Brian
Subject(s):Instrument/Technique Demonstration
Abstract:The size, weight, and power requirements of emerging millimeter-wave transmitter and receiver integrated circuit elements make them ideally suited for use in high-resolution \textit{in situ} gas sensors. Previous work at the Jet Propulsion Laboratory has demonstrated a tunable 90-105 GHz transmitter fabricated in 65 nm complementary metal-oxide semiconductor (CMOS) process having phase noise and output power characteristics suitable for making sub-doppler measurements when deployed as the source in a traditional frequency modulated absorption spectrometer.\footnote{D. J. Nemchick \textit{et al.}, ``Sub-Doppler spectroscopy with a CMOS transmitter," \textit{IEEE Trans. THz Sci. Technol.}, vol. 8, no. 1, pp. 121-126, 2018.} When paired with a heterodyne receiver of complementary bandwidth and cavity end mirror outfitted with embedded coplanar waveguides a miniaturized cavity enhanced pulsed Fourier transform spectrometer can be realized where all source and detection electronics are housed on a single 100 cm$^{2}$ printed circuit board. \footnote{D. J. Nemchick \textit{et al.}, A 90-102 GHz CMOS based pulsed Fourier transform spectrometer: New approaches for \textit{in situ} chemical detection and millimeter-wave cavity-based molecular spectroscopy \textit{Rev. Sci. Inst.}, vol. 89, pp. 073109:1-12, 2018} This talk will highlight ongoing work to expand our current capabilities in order to target more strategic molecular transitions, such as the $3_{1,3} \leftarrow 2_{2,0} $ ($J^{\prime\prime}_{K^{\prime\prime}_{a},K^{\prime\prime}_{c}} \leftarrow J^{\prime}_{K^{\prime}_{a},K^{\prime}_{c}} $) H$_{2}$O line at 183.310 GHz, with a new Tx/Rx chipset. Unlike the previous generation these integrated circuit elements, now fabricated with 28 nm CMOS techniques, deploy a 90 GHz phase-lock loop the output of which is either frequency doubled, pulse modulated, then amplified (as in Tx) or frequency doubled for use in pumping a down-conversion mixer (as in Rx). Preliminary results will be presented along with a discussion on how the higher frequency radiation generated from these devices can be coupled into (and out of) an optical cavity to allow for exploitation of sensitive pulsed emission schemes.
Issue Date:2019-06-19
Publisher:International Symposium on Molecular Spectroscopy
Genre:Conference Paper / Presentation
Type:Text
Language:English
URI:http://hdl.handle.net/2142/104584
DOI:10.15278/isms.2019.WC07
Rights Information:Copyright 2019 Deacon J Nemchick
Date Available in IDEALS:2019-07-15
2020-01-25


This item appears in the following Collection(s)

Item Statistics