Files in this item

FilesDescriptionFormat

application/pdf

application/pdfjournal.pbio.3000583.pdf (3MB)
(no description provided)PDF

Description

Title:Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform
Author(s):Blatti, Charles, III; Emad, Amin; Berry, Matthew J.; Gatzke, Lisa; Epstein, Milt; Lanier, Daniel; Rizal, Pramod; Ge, Jing; Liao, Xiaoxia; Sobh, Omar; Lambert, Mike; Post, Corey S.; Xiao, Jinfeng; Groves, Peter; Epstein, Aidan T.; Chen, Xi; Srinivasan, Subhashini; Lehnert, Erik; Kalari, Krishna R.; Wang, Liewei; Weinshilboum, Richard M.; Song, Jun S.; Jongeneel, C. Victor; Han, Jiawei; Ravaioli, Umberto; Sobh, Nahil; Bushell, Colleen B.; Sinha, Saurabh
Subject(s):Genome analysis
Squamous cell carcinomas
Genetic networks
Somatic mutation
Gene expression
Cancer genomics
Computational pipelines
Transcriptome analysis
Abstract:We present Knowledge Engine for Genomics (KnowEnG), a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis, and expression signature analysis. The system specializes in “knowledge-guided” data mining and machine learning algorithms, in which user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge bases and encoded in a massive “Knowledge Network.” KnowEnG adheres to “FAIR” principles (findable, accessible, interoperable, and reuseable): its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution, and are interoperable with other computing platforms. The analysis tools are made available through multiple access modes, including a web portal with specialized visualization modules. We demonstrate the KnowEnG system’s potential value in democratization of advanced tools for the modern genomics era through several case studies that use its tools to recreate and expand upon the published analysis of cancer data sets.
Issue Date:2020-01-23
Publisher:Public Library of Science (PLoS)
Citation Info:Blatti C III, Emad A, Berry MJ, Gatzke L, Epstein M, Lanier D, et al. (2020) Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform. PLoS Biol 18(1): e3000583. https://doi.org/10.1371/journal.pbio.3000583
Series/Report:PLos Biology; vol. 18, no. 1, 2020
Genre:Article
Type:Text
Language:English
URI:http://hdl.handle.net/2142/106073
DOI:https://doi.org/10.1371/journal.pbio.3000583
Rights Information:Copyright 2020 Charles Blatti III, Amin Emad, Matthew J. Berry, Lisa Gatzke, Milt Epstein, Daniel Lanier, Pramod Rizal, Jing Ge, Xiaoxia Liao, Omar Sobh, Mike Lambert, Corey S. Post, Jinfeng Xiao, Peter Groves, Aidan T. Epstein, Xi Chen, Subhashini Srinivasan, Erik Lehnert, Krishna R. Kalari, Liewei Wang, Richard M. Weinshilboum, Jun S. Song, C. Victor Jongeneel, Jiawei Han, Umberto Ravaioli, Nahil Sobh, Colleen B. Bushell, and Saurabh Sinha
Date Available in IDEALS:2020-01-30


This item appears in the following Collection(s)

Item Statistics