Files in this item



application/pdfTR-077.pdf (3MB)
(no description provided)PDF


Title:Slurry Phase Catalysts for Bio-Oil Upgradation
Author(s):Sharma, Brajendra K.; Kohli, Kirtika
alternative fuel
alternative liquid fuel
Abstract:The catalytic hydrodeoxygenation (HDO) of food waste-derived biocrude oil was investigated to produce renewable hydrocarbons using slurry phase sulfide and carbide catalysts. Experiments were performed to evaluate the effectiveness of the slurry phase catalysts for the hydrotreatment of biocrude oils. The results were compared with the conventional hydrotreating sulfide catalysts supported on alumina. The dispersed catalysts showed very high hydrocracking and HDO activities for the hydrotreatment of biocrude oils. The results revealed that coke formation was reduced drastically, and the properties of the products were significantly improved with a lower oxygen content and higher heating values. The catalyst activities were compared with the commercially used bimetallic CoMo/Al2O3 catalyst at the same reaction temperature and pressure. The slurry phase catalysts were found to be effective, even at a very low concentration, i.e., wppm levels. The experimental results showed that a 2.5 wt% CoMo slurry catalyst led to a decrease in both the oxygen content and coke amount compared to 20 wt% for the conventional CoMo catalyst. Further, Mo- and Ni-based carbide dispersed catalysts were tested for the hydrotreatment (HDT) of biocrude oil, and the MoC catalyst displayed higher activity. However, the activity was less compared to the conventional CoMo/Al2O3 catalyst. A series of different Mo-based sulfide catalysts (i.e., dispersed solid powder, oil-soluble, and water-soluble) were prepared, and the activities of the catalysts were evaluated at high-temperature / high-pressure reaction conditions for the HDT of a hydrothermal liquefaction (HTL) biocrude oil. Among these, the oil-soluble MoS2 slurry catalyst showed the highest activity. The oil-soluble slurry catalyst was evaluated further using a different catalyst concentration, finding that this catalyst is more effective in the range of 1100 to 1700 metal wppm. Slurry catalysts are highly dispersed in the feedstock, which leads to the higher selectivity and conversions. A significant decrease in the oxygen content and an increase in liquid product demonstrated the potential use of slurry catalysts for the hydrotreatment of biocrude oils.
Issue Date:2020-07-16
Publisher:Champaign, IL : Illinois Sustainable Technology Center
Series/Report:TR Series (Illinois Sustainable Technology Center) ; TR-077
Genre:Technical Report
Sponsor:Hazardous Waste Research Fund ; HWR18-251
Date Available in IDEALS:2020-07-16

This item appears in the following Collection(s)

Item Statistics