IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

Understanding Overlay Characteristics of a Large-scale Peer-to-Peer IPTV System

Show full item record

Bookmark or cite this item: http://hdl.handle.net/2142/10964

Files in this item

File Description Format
PDF UIUCDCS-R-2008-2997.pdf (437KB) (no description provided) PDF
Title: Understanding Overlay Characteristics of a Large-scale Peer-to-Peer IPTV System
Author(s): Vu, Long; Gupta, Indranil; Nahrstedt, Klara; Liang, Jin
Subject(s): Computer Science
Abstract: This paper presents results from our measurement and modeling efforts on the large-scale peer- to-peer (p2p) overlay graphs spanned by the PPLive system, the most popular and largest p2p IPTV (Internet Protocol Television) system today. Unlike other previous studies on PPLive, which focused on either network-centric or user-centric measurements of the system, our study is unique in (a) focusing on PPLive overlay-specific characteristics, and (b) being the first to derive mathematical models for its distributions of node degree, session length, and peer participation in simultaneous overlays. Our studies reveal characteristics of multimedia streaming p2p overlays that are markedly different from existing file-sharing p2p overlays. Specifically, we find that: (1) PPLive overlays are similar to random graphs in structure and thus more robust and resilient to the massive failure of nodes, (2) Average degree of a peer in the overlay is independent of the channel population size, (3) The availability correlation between PPLive peer pairs is bimodal, i.e., some pairs have highly correlated availability, while others have no correlation, (4) Unlike p2p file-sharing users, PPLive peers are impatient, (5) Session lengths (discretized, per channel) are typically geometrically distributed, (6) Channel population size is time-sensitive, self-repeated, event-dependent, and varies more than in p2p file-sharing networks, (7) Peering relationships are slightly locality-aware, (8) Peer participation in simultaneous overlays follows the Zipf distribution. We believe that our findings can be used to understand current large-scale p2p streaming systems for future planning of resource usage, and to provide useful and practical hints for future design of large-scale p2p streaming systems.
Issue Date: 2008-09
Type: Text
URI: http://hdl.handle.net/2142/10964
Date Available in IDEALS: 2009-04-17
 

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 132
  • Downloads this Month: 2
  • Downloads Today: 1

Browse

My Account

Information

Access Key