Files in this item

FilesDescriptionFormat

application/pdf

application/pdfTR253.pdf (5MB)
ACRC Technical Report 253PDF

Description

Title:Experimental and Modeling Investigation of Two Evaporator Automotive Air Conditioning Systems
Author(s):Peuker, S.; Hrnjak, P.S.
Subject(s):evaporator systems
Abstract:This document presents results of experimental and model investigations of two evaporator automotive air conditioning systems using R134a and R744 as refrigerants. The R134a system investigated originated from the vehicle air conditioning system used in the U.S. Army HMMWV (High Mobility Multi-purpose Wheeled vehicle). The results from the HMMWV R134a breadboard system investigation are used as a baseline to compare the experimental results from the investigation of the U.S. Army HMMWV R744 two evaporator prototype system. The subject of different hardware setups (e. g. choice of expansion devices) for the HMMWV R744 two evaporator system and their implications on performance is addressed. For the case of two controllable expansion devices, the iterative process which was used to derive an ambient temperature dependent high side pressure correlation for the HMMWV R744 two evaporator system is presented. The optimized HMMWV R744 system shows higher cooling capacity (up to 57%) and higher coefficient of performance (up to 18%) compared to the HMMWV R134a system. In addition, further general issues related to R744 two evaporator systems are investigated. Different system configurations are explored to investigate where to split and reunite the two refrigerant streams and how this affects the system stability. Several expansion device combinations are investigated with the focus on fixed area versus controlled area expansion devices. The role of an accumulator in an R744 two evaporator system is explained. A control strategy for an R744 two evaporator system using two controlled area expansion devices is introduced and validated against transient experimental data. Dymola and the AirConditioning Library are used to simulate an R744 two evaporator automotive air conditioning system. The model results are validated against experimental data in steady state and transient conditions. The predicted performance at steady state is within 10% of the experimental results. For the investigated transient scenario the model prediction shows some discrepancy but the overall trends are well predicted.
Issue Date:2006-12
Publisher:Air Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign.
Series/Report:Air Conditioning and Refrigeration Center TR-253
Genre:Technical Report
Type:Text
Language:English
URI:http://hdl.handle.net/2142/12913
Sponsor:Air Conditioning and Refrigeration Project 176
Date Available in IDEALS:2009-06-24


This item appears in the following Collection(s)

Item Statistics