IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

Improving the stability of an oxime based electrochemical microsensor for organo-phosphate vapor detection

Show full item record

Bookmark or cite this item: http://hdl.handle.net/2142/16219

Files in this item

File Description Format
PDF 2_Londono_Nicolas.pdf (2MB) (no description provided) PDF
Title: Improving the stability of an oxime based electrochemical microsensor for organo-phosphate vapor detection
Author(s): Londono, Nicolas J.
Advisor(s): Masel, Richard I.
Department / Program: Chemical & Biomolecular Engr
Discipline: Chemical Engineering
Degree Granting Institution: University of Illinois at Urbana-Champaign
Degree: M.S.
Genre: Thesis
Subject(s): 1-Phenyl-1,2,3,-butanetrione 2-oxime microfluidic sensor detection stability solid phase micro-extraction degradation organophosphate cyanide micromixer electrochemical
Abstract: A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.
Issue Date: 2010-05-19
URI: http://hdl.handle.net/2142/16219
Rights Information: Copyright 2010 Nicolas J. Londono
Date Available in IDEALS: 2010-05-19
Date Deposited: May 2010
 

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 292
  • Downloads this Month: 6
  • Downloads Today: 0

Browse

My Account

Information

Access Key