IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

Mapping viability and oxygen concentration in spheroids: A noninvasive approach with EPR imaging

Show full item record

Bookmark or cite this item: http://hdl.handle.net/2142/20340

Files in this item

File Description Format
PDF 9211041.pdf (11MB) Restricted to U of Illinois (no description provided) PDF
Title: Mapping viability and oxygen concentration in spheroids: A noninvasive approach with EPR imaging
Author(s): Woods, Ronald Kent
Doctoral Committee Chair(s): Swartz, Harold M.
Department / Program: Biophysics
Discipline: Biophysics
Degree Granting Institution: University of Illinois at Urbana-Champaign
Degree: Ph.D.
Genre: Dissertation
Subject(s): Health Sciences, Radiology Biophysics, Medical
Abstract: The multicellular spheroid embodies many of the physiological and anatomical characteristics of in vivo tumors and provides an appropriate context for investigating the phenomenon of reoxygenation and the interplay of local (O$\sb2$) and cellular viability in the response of tumors to various therapeutic regimens. There are, however, certain limitations of the methodology currently used to measure local (O$\sb2$) and viability in spheroids. The goal of this thesis was to overcome these limitations by developing a single noninvasive technique, based on Electron Paramagnetic Resonance Imaging (EPRI), which would provide simultaneous measurements of the distribution of (O$\sb2$) and viability. The approach is based on (1) the homogeneous distribution throughout the spheroid of an aqueous nitroxide with a lineshape (linewidth) responsive to local (O$\sb2$); and (2) the selective exclusion from cells with intact plasma membranes (viable cells) of a contrast agent which broadens the lineshape of the nitroxide. Therefore, it is necessary to recover from the net EPR signal the narrow lineshape (or relevant spectral parameters) for each respective region in the spheroid. Two independent approaches were developed to accomplish the spectral localization--4D spectral-spatial imaging and projection based modeling (PBM). Based on the results of feasibility tests, it was decided to pursue to completion only PBM. This technique employs a highly constrained downhill simplex method to minimize $\chi\sp2$ for two parameter spaces, characterizing, respectively, the viability and (O$\sb2$). One-dimensional projections, collected at 2$\sp\circ$C and 37$\sp\circ$C, are required experimental output functions for step (space) 1 and step 2 minimizations, respectively. Experimental results for step 1 confirm the capability to quantitate morphology and viability. Step 2, however, was unsuccessful due most likely to toxicity of the nitroxide and (or) contrast agent at higher temperatures.As a preface to the more specific theoretical and experimental work in Chapters 3-6, Chapters 1 and 2 provide instructional discussion on projection reconstruction in conjunction with a complete software package for 2-4D image reconstruction documented in the Appendices.
Issue Date: 1991
Type: Text
Language: English
URI: http://hdl.handle.net/2142/20340
Rights Information: Copyright 1991 Woods, Ronald Kent
Date Available in IDEALS: 2011-05-07
Identifier in Online Catalog: AAI9211041
OCLC Identifier: (UMI)AAI9211041
 

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 0
  • Downloads this Month: 0
  • Downloads Today: 0

Browse

My Account

Information

Access Key