Files in this item

FilesDescriptionFormat

application/pdf

application/pdf9136757.pdf (6MB)Restricted to U of Illinois
(no description provided)PDF

Description

Title:A system for microarchitecture and logic optimization
Author(s):Vander Zanden, Nels Blake
Doctoral Committee Chair(s):Faiman, Michael
Department / Program:Computer Science
Discipline:Computer Science
Degree Granting Institution:University of Illinois at Urbana-Champaign
Degree:Ph.D.
Genre:Dissertation
Subject(s):Computer Science
Abstract:In recent years the drive to produce more complex integrated circuits while spending less design time has driven the demand for design automation tools. The search for design automation methods has resulted in the design of numerous behavioral synthesis and logic synthesis tools. This thesis spans two levels of the design process by examining optimization at both the register-transfer level and at the logic level. More specifically, this thesis addresses the following two problems: (1) performing logic synthesis for custom layout rather than the traditional approach that focuses on synthesis for standard cells, and (2) performing optimization for custom layout from register-transfer level netlists. Thus optimization is performed on the microarchitecture design and at a lower level for individual microarchitecture components.
First, techniques are introduced for generating gate-level netlists that take advantage of custom layout capabilities. Such techniques include limiting serial/parallel transistor chains, transistor sizes, and capacitive loads in forming complex gates. These considerations have not been incorporated in previous logic synthesis systems.
Second, techniques are introduced for improving the microarchitecture structure and using estimates from lower-level optimization tools to guide microarchitecture design optimizations that attempt to meet user specified area and time constraints. These techniques include the capability for mixing layout styles such as custom layout for random-logic components and bit-slicing for regularly structured components. In this manner the entire design, control logic and datapath, can be optimized at the same time. Further, this paper presents a new methodology for microarchitecture-level optimization that greatly reduces the amount of technology-specific knowledge necessary to perform the optimizations.
Issue Date:1991
Type:Text
Language:English
URI:http://hdl.handle.net/2142/20427
Rights Information:Copyright 1991 Vander Zanden, Nels Blake
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9136757
OCLC Identifier:(UMI)AAI9136757


This item appears in the following Collection(s)

Item Statistics