IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

Some sharp inequalities for conditionally symmetric martingales

Show full item record

Bookmark or cite this item:

Files in this item

File Description Format
PDF 8924965.pdf (2MB) Restricted to U of Illinois (no description provided) PDF
Title: Some sharp inequalities for conditionally symmetric martingales
Author(s): Wang, Gang
Department / Program: Mathematics
Discipline: Mathematics
Degree Granting Institution: University of Illinois at Urbana-Champaign
Degree: Ph.D.
Genre: Dissertation
Subject(s): Mathematics
Abstract: Let f be a conditionally symmetric martingale taking values in a Hilbert space $\rm I\!H$ and let S(f) be its square function. If $\nu\sb{\rm p}$ is the smallest positive zero of the confluent hypergeometric function and $\mu\sb{\rm p}$ is the largest positive zero of the parabolic cylinder function of parameter p, then(UNFORMATTED TABLE OR EQUATION FOLLOWS)$$\eqalign{\rm\Vert f\Vert\sb{p} \leq \nu\sb{p}\Vert S(f)\Vert\sb{p}\quad&\rm if\quad 0 < p \le 2,\cr\rm\Vert f\Vert\sb{p} \leq \mu\sb{p}\Vert S(f)\Vert\sb{p}\quad&\rm if\quad p \ge 3,\cr\rm\nu\sb{p}\Vert S(f)\Vert\sb{p} \leq \Vert f\Vert\sb{p}\quad&\rm if\quad p \geq 2,\cr}$$(TABLE/EQUATION ENDS)and the above inequalities are sharp.
Issue Date: 1989
Type: Text
Language: English
Rights Information: Copyright 1989 Wang, Gang
Date Available in IDEALS: 2011-05-07
Identifier in Online Catalog: AAI8924965
OCLC Identifier: (UMI)AAI8924965

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 0
  • Downloads this Month: 0
  • Downloads Today: 0


My Account


Access Key