Files in this item



application/pdf9305725.pdf (3MB)Restricted to U of Illinois
(no description provided)PDF


Title:Topics in decentralized detection
Author(s):Veeravalli, Venugopal V.
Doctoral Committee Chair(s):Basar, Tamer
Department / Program:Electrical and Computer Engineering
Discipline:Electrical Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Electronics and Electrical
Abstract:In this thesis we obtain several new results in the areas of decentralized sequential detection and robust decentralized detection.
In the area of decentralized sequential detection, we first consider the case in which each sensor performs a sequential test on its observations and arrives at a local decision about the true hypothesis; subsequently, the local decisions of all of the sensors are used for a common purpose. Here we assume that decision errors at the sensors are penalized through a common cost function and that each time step taken by the detectors as a team is assigned a positive cost. We show that optimal sensor decision functions can be found in the class of generalized sequential probability ratio tests with monotonically convergent thresholds. We present a technique for obtaining optimal thresholds.
We also consider the case in which each sensor sends a sequence of summary messages to a fusion center in which a sequential test is carried out to determine the true hypothesis. Here we assume that decision errors at the fusion center are penalized through a cost function and that each time step taken to arrive at the final decision costs a positive amount. We show that the problem is tractable when the information structure in the system is quasiclassical. In particular, we show that an optimal fusion center policy has a simple structure resembling a sequential probability ratio test and that a stationary set of monotone likelihood ratio tests is optimal at the sensors. Finally, we compute the optimal decision functions for some representative examples.
In the area of robust decentralized detection, we consider the case in which the sensor distributions are assumed to belong to known uncertainty classes. We show for a broad class of such decentralized detection problems that a set of least favorable distributions exists for minimax robust testing between the hypotheses. We thus establish that minimax robust tests are obtained as solutions to simple decentralized detection problems in which the sensor distributions are specified to be the least favorable distributions.
Issue Date:1992
Rights Information:Copyright 1992 Veeravalli, Venugopal
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9305725
OCLC Identifier:(UMI)AAI9305725

This item appears in the following Collection(s)

Item Statistics