Files in this item



application/pdf9210821.pdf (1Mb)Restricted to U of Illinois
(no description provided)PDF


Title:Generalized Kummer congruences and Iwasawa invariants
Author(s):Gunaratne, Haputantirige Sunil
Doctoral Committee Chair(s):Ullom, Stephen V.
Department / Program:Mathematics
Degree Granting Institution:University of Illinois at Urbana-Champaign
Abstract:We obtain the following generalization of the Kummer congruence: $$G\sb{c}(j,\chi,n) = -\left\lbrack{p\sp{-1}\Delta\sb{\rm c}\atop j}\right\rbrack {1\over n}(1 - \chi\omega\sp{-n}(p)\ p\sp{n-1}) B\sb{n,\chi\omega\sp{-n}}\in\doubz\sb{p}\lbrack\chi\rbrack ,$$where $B\sb{n,\chi}$ is the generalized Bernoulli number associated to the Dirichlet character $\chi,\ \Delta\sb{\rm c}$ is the difference operator$$\Delta\sb{\rm c} x\sb{n} = x\sb{n+c} - x\sb{n}\ {\rm and}\ \left\lbrack {p\sp{-1}\Delta\sb{\rm c}\atop j}\right\rbrack$$is a binomial coefficient operator.
The classical generalization of the Kummer congruence is$$K\sb{c}(j,\chi,n) = -p\sp{-j}\Delta\sbsp{\rm c}{j}{1\over n}(1 - \chi\omega\sp{-n}(p)\ p\sp{n-1})\ B\sb{n,\chi\omega\sp{-n}}\in\doubz\sb{p}\lbrack \chi\rbrack .$$We show that this is periodic (mod p) in the sense that$$K\sb{c}(j,\omega\sp{m},n)\equiv K\sb{c} (j\sp\prime,\omega\sp{m},n\sp\prime) (mod\ p\doubz\sb{p})$$if $j\equiv j\sp\prime$ $(mod\ p-1),\ j,\ j\sp\prime > 0,$ and $n\equiv n\sp\prime$ $(mod\ p-1).$
As a special case of a more general result on the $\mu$ and $\lambda$ invariants of a p-adic measure, we characterize the Iwasawa invariants $\mu(\chi)$ and $\lambda(\chi)$ as $\mu(\chi)$ = $min\{ord\sb\pi(G\sb{c}(j,\chi,n))\mid j\geq0\}$ and $\lambda(\chi) = min\{j\mid ord\sb\pi(G\sb{c}(j,\chi,n)) = \mu(\chi)\}$ provided that $(c,p) = 1,$ where $\pi$ is a local parameter of $\doubq\sb{\rm p}\lbrack\chi\rbrack.$
The Iwasawa characterization of $\mu$ = 0 and a theorem of Kida on p-adic measures are obtained as by products of the method used.
Issue Date:1991
Rights Information:Copyright 1991 Gunaratne, Haputantirige Sunil
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9210821
OCLC Identifier:(UMI)AAI9210821

This item appears in the following Collection(s)

Item Statistics

  • Total Downloads: 0
  • Downloads this Month: 0
  • Downloads Today: 0