Files in this item



application/pdf9512414.pdf (5MB)Restricted to U of Illinois
(no description provided)PDF


Title:Development of metalorganic molecular beam epitaxy for the growth of indium(0.53) gallium(0.47) arsenic/indium phosphide heterojunction bipolar transistors and quantum well optoelectronic devices
Author(s):Jackson, Steven Lee
Doctoral Committee Chair(s):Stillman, Gregory E.
Department / Program:Electrical and Computer Engineering
Discipline:Electrical Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Electronics and Electrical
Abstract:Metalorganic molecular beam epitaxy (MOMBE) offers several potential advantages over molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) for the development of high-speed/reliability C-doped In$\rm\sb{0.53}Ga\sb{0.47}$As/InP heterojunction bipolar transistors (HBTs). Improvements in reproducibility of alloy composition and layer thickness for $\rm In\sb xGa\sb{1-x}As$ and InP, which are afforded by MOMBE relative to MBE, offer clear advantages for manufacturing. The potential for reduction of the H passivation of C acceptors and substrate temperature sensitivity of the alloy composition, using CCl$\sb4$ as the C source, offers advantages relative to MOCVD. However, the lack of an efficient gaseous n-type dopant source limits the potential for scalability of MOMBE. This thesis describes recent work on the development of MOMBE for the growth of C-doped $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ HBTs. Issues relevant to obtaining abrupt heterointerfaces, the development of a new gaseous Si dopant source, SiBr$\sb4$, and the sources of H passivation of C acceptors in C-doped $\rm In\sb{0.53}Ga\sb{0.47}As$ have been investigated.
The use of a common Ta-baffled hydride cracker for the dissociation of AsH$\sb3$ and PH$\sb3$ at 950$\sp\circ$C was found to result in the generation of As$\sb2$, P$\sb2$, and H$\sb2$. However, severe group V memory effects were observed for P and As. Significantly faster switching was obtained, by using separate open Ta tube crackers. Single and multiple quantum well $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ heterostructures containing quantum wells as narrow as 10 A exhibit intense photoluminescence and ninth order satellite peaks in resolution x-ray diffraction rocking curves.
SiBr$\sb4$ has been demonstrated as an extremely efficient gaseous Si doping source which is compatible with MOMBE. Net electron concentrations of n = $\rm2.3\times10\sp{20}\ cm\sp{-3}$ have been obtained in InP grown at 450$\sp\circ$C without morphology degradation. Specific contact resistances of $\rm\rho\sb c=6\times10\sp{-8}\ \Omega$-cm$\sp{2}$ have been obtained by using nonalloyed Ti/Pt/Au contacts directly to these heavily-doped InP layers. $\rm In\sb{0.53}Ga\sb{0.47}As/InP$ HBTs using InP contact layers with comparably low specific contact resistances have been demonstrated. A blue shift in the photoluminescence peak energy of approximately 265 meV is observed for InP layers doped to n = $\rm7\times10\sp{19}\ cm\sp{-3}.$
Carbon doping of $\rm In\sb{0.53}Ga\sb{0.47}As$ in gas source molecular beam epitaxy and MOMBE using CCl$\sb4$ has been investigated. Net hole concentrations of p = $\rm1.8\times10\sp{20}\ cm\sp{-3}$ have been obtained with negligible H passivation for hole concentrations as high as p = $\rm8\times10\sp{19}\ cm\sp{-3}$. The degree of H passivation was found to be highly dependent on the AsH$\sb3$ cracking temperature with an enhanced effect at substrate temperatures ${<5}00\sp\circ$C and for reduced H$\sb2$ pumping speed.
Issue Date:1994
Rights Information:Copyright 1994 Jackson, Steven Lee
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9512414
OCLC Identifier:(UMI)AAI9512414

This item appears in the following Collection(s)

Item Statistics