Files in this item

FilesDescriptionFormat

application/pdf

application/pdf9021698.pdf (4MB)Restricted to U of Illinois
(no description provided)PDF

Description

Title:Optical properties of gallium arsenide and indium gallium arsenide quantum wells and their applications to optoelectronic devices
Author(s):Huang, Daming
Doctoral Committee Chair(s):Morkoc, Hadis
Department / Program:Electrical and Computer Engineering
Discipline:Electrical Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Degree:Ph.D.
Genre:Dissertation
Subject(s):Engineering, Electronics and Electrical
Physics, Condensed Matter
Physics, Optics
Abstract:In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS.
We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.
Issue Date:1990
Type:Text
Language:English
URI:http://hdl.handle.net/2142/22255
Rights Information:Copyright 1990 Huang, Daming
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9021698
OCLC Identifier:(UMI)AAI9021698


This item appears in the following Collection(s)

Item Statistics