Files in this item



application/pdf9210861.pdf (7MB)Restricted to U of Illinois
(no description provided)PDF


Title:A modulation-doped field-effect transistor-based optoelectronic integrated circuit receiver for optical interconnects
Author(s):Ketterson, Andrew Arthur
Doctoral Committee Chair(s):Adesida, Ilesanmi
Department / Program:Electrical and Computer Engineering
Discipline:Electrical and Computer Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Electronics and Electrical
Abstract:The success of optical interconnects for computer communications depends critically on the development of a viable monolithic optoelectronic integrated circuit (OEIC) technology. A key component of any lightwave communication system is the optical receiver/preamplifier which converts the low-level optical signals into amplified electrical signals. This thesis describes the design, fabrication, and characterization of an OEIC receiver based on submicron pseudomorphic modulation-doped field-effect transistors (MODFETs) and a metal-semiconductor-metal photodetector (MSM-PD). Extensive discrete electronic and photonic device results are presented and related to receiver design. The performance of the overall receiver and individual circuit elements is reported and compared with theory.
Pseudomorphic MODFETs based on the InGaAs/GaAs strained-layer material system are chosen due to their superior performance compared to the lattice-matched GaAs system. The design and fabrication of high-speed MODFETs for integrated circuits are presented. Thick, highly doped cap layers and selective gate recess etching are the keys to achieving uniform high-performance MODFETs. The microwave characteristics are studied using a delay time approach to separate out parasitic effects. A conventional GaAs MSM is investigated and is found to be dominated by surface effects which lead to large dark currents and low-frequency gain. Two different MSM designs are presented which eliminate or greatly reduce these anomalous effects. A submicron MSM-PD is shown to exhibit a bandwidth of 70 GHz using a novel integrated photoconductive sampling technique.
The design and characterization of a transimpedance preamplifier are described in detail, taking into account such factors as bandwidth, noise, and circuit complexity. An active feedback resistor consisting of a common-gate FET is utilized in the amplifier design. This FET, however, is found to contribute a large parasitic capacitance to the input of the amplifier which limits the bandwidth. Nevertheless, a 3-dB bandwidth of greater than 3 GHz and as high as 4.5 GHz is measured for the overall receiver.
Issue Date:1991
Rights Information:Copyright 1991 Ketterson, Andrew Arthur
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9210861
OCLC Identifier:(UMI)AAI9210861

This item appears in the following Collection(s)

Item Statistics