Files in this item



application/pdf9512307.pdf (7MB)Restricted to U of Illinois
(no description provided)PDF


Title:Growth of silicon(1-x) germanium(x) from disilane and digermane by gas-source molecular beam epitaxy
Author(s):Bramblett, Thomas Richard
Doctoral Committee Chair(s):Greene, J.E.
Department / Program:Engineering, Materials Science
Discipline:Engineering, Materials Science
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Materials Science
Abstract:The growth rate R of Si(001), Ge(001), and $\rm Si\sb{1-x}Ge\sb{x}(001)$ films deposited on Si(001)2 $\times$ 1 substrates from $\rm Si\sb2H\sb6$ and $\rm Ge\sb2H\sb6$ by gas-source molecular-beam epitaxy (GS-MBE) were determined as a function of temperature T$\sb{\rm s}$(300-950$\sp\circ$C) and impingement flux J (0.3-$7.7\times10\sp{16}$ cm$\sp{-2}$ s$\sp{-1}$). R(T$\sb{\rm s}$,J) curves for Si and Ge films were well described using a model, with no fitting parameters, based upon dissociative chemisorption followed by a series of surface decomposition reactions with the rate-limiting step being first-order hydrogen desorption from the surface monohydride. The hydrogen desorption activation energy for Si and Ge surfaces were found to be 2.04 eV and 1.56 eV, respectively. The zero-coverage reactive sticking probability in the impingement-flux-limited growth regime was found to be 0.036 and 0.052 for $\rm Si\sb2H\sb6$ and $\rm Ge\sb2H\sb6,$ respectively. The growth rate of SiGe alloys R$\sb{\rm SiGe}$ as a function of the bulk Ge content x was found to be a complex. In the surface-reaction-limited regime, R$\sb{\rm SiGe}$ increased with Ge surface coverage $\theta\sb{\rm Ge}$ due to the lower activation energy of H$\sb2$ desorption from Ge than from Si. However, in the impingement-flux-limited regime R$\sb{\rm SiGe}$ decreases with $\theta\sb{\rm Ge}$ due to the lower reactive sticking probability of $\rm Si\sb2H\sb6$ on Ge surface sites with respect to on Si sites. The Ge fraction, x1$\sb{\rm Ge}$, of SiGe alloys was determined as a function of growth temperature T$\sb{\rm s}$ and incident flux ratios $\rm J\sb{Ge2H6}/J\sb{Si2H6}.$ The results were explained by a kinetic model accounting for four simultaneous reaction pathways: reaction of $\rm Si\sb2H\sb6$ with Si surface sites, $\rm Si\sb2H\sb6$ with Ge sites, $\rm Ge\sb2H\sb6$ with Si sites, and $\rm Ge\sb2H\sb6$ with Ge sites. The cross-term reactive sticking probabilities, $\rm S\sbsp{Ge2H6}{Si}$ and $\rm S\sbsp{Si2H6}{Ge}$, were estimated to be 0.33 and $5.2\times10\sp{-3}$ respectively.
Issue Date:1994
Rights Information:Copyright 1994 Bramblett, Thomas Richard
Date Available in IDEALS:2011-05-07
Identifier in Online Catalog:AAI9512307
OCLC Identifier:(UMI)AAI9512307

This item appears in the following Collection(s)

Item Statistics