Files in this item



application/pdf1979_jayaprakash.pdf (4MB)Restricted to U of Illinois


Title:Application of renormalization-group techniques to random magnetic systems
Author(s):Jayaprakash, Ciriyam
Doctoral Committee Chair(s):Wortis, M.
Department / Program:Physics
Subject(s):renormalization-group techniques
random magnetic systems
quenched random magnetic systems
second-order phase transitions
momentum-space methods
position-space techniques
Abstract:Renorma1ization-group methods have been applied in the study of quenched random magnetic systems in recent years. We begin with a brief review of second-order phase transitions in pure, homogeneous systems and also of the .. renorma1ization group framework. Then we provide an introduction to quenched random magnetic systems. Next, momentum-space methods and position-space techniques as applied to quenched random magnets are outlined and compared. Grinstein and Luther applied the Wilson-Fisher E-expansion to random n-vector models; Khme1'nitsky discovered that the random Ising model (n = 1) possessed a "random" fixed point of 0(squareroot(e)). This fixed point was found to have one marginal and one irrelevant operator. We have investigated the stability of this fixed point using Ca11an-Symanzik equations and renorma1ized perturbation theory. We find the fixed point stable in the next order; we have also obtained critical exponents to one higher order. Next, position-space techniques are used to study some simple model systems. In addition to critical exponents, global thermodynamic properties are determined. These calculations are based on the Migda1-Kadanoff approximate recursion relations suitably generalized to the inhomogeneous case. Firstly we study the randomly bond-dilute two-dimensional nearest- neighbor Ising model on a square lattice. Calculations give both thermal and magnetic exponents associated with the percolative fixed point. Differential recursion relations yield a phase diagram which is in quantitative agreement with all known results. Curves for the specific heat, percolation probability, and magnetization are displayed. The critical region of the specific heat becomes unobservably narrow well above the percolation threshold Pc. This provides a possible explanation for the apparent specific-heat rounding in certain experiments. We then study the Edwards-Anderson model of a spin glass. The current theoretical situation, which is far from satisfactory at present, is briefly reviewed. We treat the spin-l/2 Ising model with independently random nearestneighbor interactions in dimensionalities d = 2, 3, and 4. The phase diagram, which is in qualitative agreement with mean-field results, exhibits paramagnetic, ferromagnetic, antiferromagnetic, and spin-glass phases. The spinglass and paramagnetic phases meet along an extended second-order phase boundary, which terminates in two tricritical points. Critical and tricritical exponents are calculated. The spin-glass specific-heat exponent turns out to be large and negative, compatibly with recent experiments which show a rounded specific heat anomaly. Global specific-heat curves are also displayed for d = 2.
Issue Date:1979
Genre:Dissertation / Thesis
Rights Information:1979 Ciriyam Jayaprakash
Date Available in IDEALS:2011-06-29
Identifier in Online Catalog:361040

This item appears in the following Collection(s)

Item Statistics