Files in this item



application/pdfGarcesOrtega_Monica.pdf (849kB)
(no description provided)PDF


Title:Effect of proteolytic enzyme and fiber of papaya fruit on human digestive health
Author(s):Garces Ortega, Monica
Advisor(s):Engeseth, Nicki J.
Department / Program:Food Science & Human Nutrition
Discipline:Food Science & Human Nutrition
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Proteolytic activity
in vitro digestion
Abstract:The World Health Organization (WHO, 2005) recommends consumption of fruits and vegetables as part of a healthy diet with daily recommendation of 5 servings or at least 400 g per day. Fruits and vegetables are good sources of vitamins, minerals, antioxidants, and fiber. Papaya fruit is known for his high nutrient and fiber content, and with few exceptions, it is generally consumed ripe due to its characteristic flavor and aroma. Digestion improvement has been attributed to consumption of papaya; this we speculate is attributed to the fiber content and proteolytic enzymes associated with this highly nutritious fruit. However, research is lacking that evaluates the impact of papaya fruit on human digestion. Papain is a proteolytic enzyme generally extracted from the latex of unripe papaya. Previous research has focused on evaluating papain activity from the latex of different parts of the plant; however there are no reports about papain activity in papaya pulp through fruit maturation. The activity of papain through different stages of ripeness of papaya and its capacity of dislodging meat bolus in an in vitro model was addressed. The objective of this study was to investigate whether papain activity and fiber content are responsible for the digestive properties attributed to papaya and to find a processing method that preserves papaya health properties with minimal impact on flavor. Our results indicated that papain was active at all maturation stages of the fruit. Ripe papaya pulp displayed the highest enzyme activity and also presented the largest meat bolus displacement. The in vitro digestion study indicated that ripe papaya displayed the highest protein digestibility; this is associated with proteolytic enzymes still active at the acidity of the stomach. Results from the in vitro fermentation study indicated that ripe papaya produced the highest amount of Short Chain Fatty Acids SCFA of the three papaya substrates (unripe, ripe, and processed). SCFA are the most important product of fermentation and are used as indicators of the amount of substrate fermented by microorganisms in the colon. The combination of proteolytic enzymes and fiber content found in papaya make of this fruit not only a potential digestive aid, but also a good source of SCFA and their associated potential health benefits. Irradiation processing had minimal impact on flavor compounds of papaya nectar. However, processed papaya experienced the lowest protein digestibility and SCFA production among the papaya substrates. Future research needs to explore new processing methods for papaya that minimize the detrimental impact on enzyme activity and SCFA production.
Issue Date:2012-02-01
Genre:Dissertation / Thesis
Rights Information:Copyright 2011 Monica Garces Ortega
Date Available in IDEALS:2014-02-01
Date Deposited:2011-12

This item appears in the following Collection(s)

Item Statistics