IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

Tuning DNA binding and gene expression using zinc finger proteins and engineered promoters

Show full item record

Bookmark or cite this item: http://hdl.handle.net/2142/29615

Files in this item

File Description Format
PDF Trenshaw_Kathryn.pdf (825KB) (no description provided) PDF
Title: Tuning DNA binding and gene expression using zinc finger proteins and engineered promoters
Author(s): Trenshaw, Kathryn
Advisor(s): Schroeder, Charles M.
Department / Program: Chemical & Biomolecular Engr
Discipline: Chemical Engineering
Degree Granting Institution: University of Illinois at Urbana-Champaign
Degree: M.S.
Genre: Masters
Subject(s): zinc finger protein synthetic biology gene regulation gene expression engineered promoter transcription factor
Abstract: Synthetic biology provides an ideal approach to build functional biological devices by assembling biological parts. Using synthetic biology, efficient control of gene regulation may be achieved to a degree that is not possible using natural genetic structures.1 However, previous studies on promoter engineering have focused on natural transcription factors (TFs),2 including the lac repressor, which produces a switch-like “all-or-none” response.3 In this project, we worked to develop a new system for transcriptional control based on tunable synthetic TFs, which are designed to yield programmable linear responses in gene expression. To accomplish this, we used zinc finger proteins (ZFPs) as regulators of engineered promoters assayed by green fluorescent protein (GFP) as a fluorescent transcriptional reporter probe. In particular, we designed strong-binding three finger ZFPs as proof-of-principle regulatory elements, with the intention of moving to weaker binding two finger ZFPs and the addition of the accessory binding module PAR (part of the protein Adr1).4 To generate engineered promoters, we integrated ZFP binding sites into known promoters of varying strength. To analyze the engineered activity of each promoter, we cultured E. coli cells transformed with plasmids containing sequences for both ZFP production and our engineered promoters and measured the resulting fluorescence intensity. In this way, we constructed a novel method for tuning gene expression as well as testing the DNA binding affinity of synthetic TFs. We anticipate that this general approach could be used in the future for designing and characterizing synthetic TFs for gene therapy and gene regulation applications.
Issue Date: 2012-02-06
Genre: thesis
URI: http://hdl.handle.net/2142/29615
Rights Information: Copyright 2011 Kathryn Trenshaw
Date Available in IDEALS: 2012-02-06
Date Deposited: 2011-12
 

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 200
  • Downloads this Month: 2
  • Downloads Today: 0

Browse

My Account

Information

Access Key