IDEALS Home University of Illinois at Urbana-Champaign logo The Alma Mater The Main Quad

The first H II regions in the universe

Show full item record

Bookmark or cite this item: http://hdl.handle.net/2142/34854

Files in this item

File Description Format
PDF Whalen_Daniel.pdf (5MB) Restricted to U of Illinois Whalen_Daniel PDF
Title: The first H II regions in the universe;
The First H II Regions in the Universe
Author(s): Whalen, Daniel James
Department / Program: Physics
Discipline: Physics
Degree: Ph.D.
Genre: Dissertation
Subject(s): primordial; reionization; minihalos; wmap; power-law; hydrodynamical; i-fronts; cartesian; advection; zeus-mp
Abstract: State of the art simulations of primordial star formation suggest that the first stars in the universe were likely very massive, from 30 to 300 solar masses. These metal-free, Population III stars were prodigious sources of ionizing UV radiation that permeated the early intergalactic medium (IGM). As agents of early reionization, Pop III stars likely contributed to the cosmic free electrons recently observed at high redshifts by the WMAP satellite. However, until recently it was unknown what percentage of ionizing photons escaped the cosmological minihalos hosting these luminous objects, seriously hampering the power of large scale reionization calculations to predict the optical depths to electron scattering revealed by WMAP. UV escape from high-redshift minihalos crucially depends on the radiation hydrodynamics of ionization front transitions deep within the halos. I describe a multistep integration scheme for radiative transfer and reactive flow hydrodynamics developed for the accurate propagation of I-fronts and ionized flows from UV point sources or plane waves in cosmological simulations. The algorithm is a photon-conserving method which correctly tracks the position of I-fronts at much lower resolutions than non-conservative techniques. The method applies direct hierarchical updates to ionic species, bypassing the need for the costly matrix solutions required by implicit updates while retaining sufficient accuracy to capture the true evolution of the fronts. This radiation-matter coupling scheme is a significant advance beyond the radiative transfer performed in static media that is the current industry standard in cosmological reionization simulations. I review the major analytical and numerical studies of H II regions performed to date as well as the physics of ionization fronts in uniform and stratified media. My algorithm development greatly benefited from some recent analyses of I-front evolution in radially symmetric power-law envelopes. These studies provided benchmarks that became severe tests of my code’s accuracy. I present tests of I-front propagation in both static and hydrodynamical media, in both constant and radial density gradients. The code converges to the proper results with grid resolution and exhibits excellent agreement with theory in the density gradients most likely to be encountered in cosmological simulations. I next describe 1D radiation-hydrodynamical calculations of UV escape from minihalo density profiles taken from adaptive mesh refinement calculations of first star formation. These simulations demonstrate that in excess of 90% of the ionizing photons will exit the halo if the central star is greater than 80 solar masses, and that the final H II regions range from 2000 pc to 5000 pc in radius for 80 M < Mstar < 500 M . Of equal interest, they show the rise of shocked ionized flows capable of ejecting half of the baryons from the halo over the main sequence lifetime of the star, with important consequences to chemical enrichment of the early IGM and subsequent star formation. Finally, I detail the first three-dimensional massively parallel simulations of I-front instabilities ever performed. This suite is a survey of the morphological features we expect to arise in 3D minihalo evaporation studies currently in progress. Our numerical work has uncovered important evolutionary departures from earlier 2D work that may be due to the higher dimensionality of our 3D flows. I-front instabilities in high-redshift minihalos may have serious impact on the escape of metals into the early universe as well as foster the formation of the second generation of stars.
Issue Date: 2006
Genre: Dissertation / ThesisDrawing
Type: TextDataset / Spreadsheet
Language: English
URI: http://hdl.handle.net/2142/34854
Rights Information: Whalen 2006 ©
Date Available in IDEALS: 2012-11-01
 

This item appears in the following Collection(s)

Show full item record

Item Statistics

  • Total Downloads: 5
  • Downloads this Month: 0
  • Downloads Today: 0

Browse

My Account

Information

Access Key