Files in this item
Files | Description | Format |
---|---|---|
application/vnd.openxmlformats-officedocument.presentationml.presentation ![]() | Presentation | Microsoft PowerPoint 2007 |
application/pdf ![]() | Abstract | |
text/plain ![]() | Abstract | Text file |
Description
Title: | A Computational Tddft Study On Intramolecular Charge Transfer In Di-tert-butylaminobenzonitriles And 2,4,6-tricyanoanilines. |
Author(s): | Fujiwara, Takashige |
Contributor(s): | Zgierski, Marek Z. |
Subject(s): | Theory and Computation |
Abstract: | We have carried out TDDFT computational studies on the low-lying excited states of di-{\it tert}-butylaminobenzonitrile and 2,4,6-tricyanoaniline compounds that exhibit unusual photophysical behaviors associated with the intramolecular charge transfer (ICT). For both 3- and 4-di-{\it tert}-butylamino)benzonitriles ({\it m}-DTBABN and {\it p}-DTBABN, respectively) show the ICT formation, and {\it p}-DTBABN appears to be the only {\it meta}-substituted aminobenzonitrile that exhibits the ICT formation. The TDDFT calculations indicate evidence that the ultrafast ICT formation in {\it p}-DTBABN and {\it m}-DTBABN is due to the sequential state switches: $\pi\pi^{*}(L_{\rm a})\rightarrow \pi\sigma^{*}\rightarrow$ ICT in the presence of conical intersections among the three closely-lying excited-states. On the other hand, 2,4,6-tricyanoaniline does not show clear evidence for the LE (locally excited) state $\rightarrow$ ICT state formation from steady-state fluorescence studies, despite the greater electron acceptor strength of tricycanobenzene as compared to monocyanobenzene, which is part of a 4-(dimethylamino)benzonitrile ({\it p}-DMABN) compound. However, it is predicted that 2,4,6-tricyano-{\it N,N}-dimethylaniline (TCDMA), but not 2,4,6-tricyanoaniline (TCA), possesses two ICT states, which show the ICT-characterized quinoidal structures and lie below the initially photo-excited $S_{1}(\pi\pi^{*})$ state. The CC2 calculations further predict two conformers as labeled with quinoidal (ICT--Q) and anti-quinoidal (ICT--AQ) structures are rapidly interconnecting with each other. The lower energy ICT--Q structure tends to be populated from the unstable ICT--AQ structure, which is responsible for the observed time-resolved fluorescence as well as the excited-state absorption from the mixed $S_{1}(\pi\pi^{*})$/ICT state of TCDMA. In both cases for TCDMA and TCA, the $\pi\sigma^{*}$ state locates significantly higher in energy than the $S_{1}(\pi\pi^{*})$ state (and the ICT state for TCA), thus precluding the $\pi\sigma^{*}\rightarrow$ ICT formation, which is believed to occur in a {\it p}-DMABN in polar environments. |
Issue Date: | 2014-06-20 |
Publisher: | International Symposium on Molecular Spectroscopy |
Citation Info: | Fujiwara, T.; Zgierski, M.Z. A COMPUTATIONAL TDDFT STUDY ON INTRAMOLECULAR CHARGE TRANSFER IN DI-TERT-BUTYLAMINOBENZONITRILES AND 2,4,6-TRICYANOANILINES.. Proceedings of the International Symposium on Molecular Spectroscopy, Urbana, IL, June 16-21, 2014. DOI: 10.15278/isms.2014.FC10 |
Genre: | Conference Paper / Presentation |
Type: | Text |
Language: | English |
URI: | http://hdl.handle.net/2142/51126 |
DOI: | https://doi.org/10.15278/isms.2014.FC10 |
Rights Information: | Copyright 2014 by the authors. Licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ |
Date Available in IDEALS: | 2014-09-17 2015-04-14 |