Files in this item



application/pdf8017982.pdf (3MB)Restricted to U of Illinois
(no description provided)PDF


Title:Reactor Static Optimization With Integral System Equations
Author(s):Sheen, Yu-Min
Department / Program:Nuclear Engineering
Discipline:Nuclear Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Nuclear
Abstract:An algorithm is developed for the optimality analysis of thermal reactor assemblies with a mathematical programming method. The neutron balances of the systems under consideration are transformed into integral equations by using Green's functions. Two-group, two-dimensional Green's functions for the neutron diffusion equations have been derived.
A nodal method has been used to transform integral system equations into equivalent matrix eigenvalue problems. A benchmark problem solved with both the nodal method and a finite difference code "CITATION" establishes the validity of the integral system equations. Possible ways of improving computed results are discussed. Only 50 mesh points are required in nodal method to obtain one percent error in the eigenvalue in the benchmark calculation. The same accuracy requires 2500 mesh points in the "CITATION" code.
With the nodal method described above, a two-dimensional maximum power problem for a thermal reactor is solved by treating the fissile material concentration as the controller. Two numerical examples are given.
Issue Date:1980
Description:141 p.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1980.
Other Identifier(s):(UMI)AAI8017982
Date Available in IDEALS:2014-12-14
Date Deposited:1980

This item appears in the following Collection(s)

Item Statistics