Files in this item



application/pdf8302838.pdf (4MB)Restricted to U of Illinois
(no description provided)PDF


Title:Liquid Phase Epitaxial Indium-Gallium-Arsenide - Phosphide Avalanche Photodiodes for Near-Infrared Detection
Author(s):Cook, Louis Walter
Department / Program:Electrical Engineering
Discipline:Electrical Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Electronics and Electrical
Abstract:The fabrication and characterization of InGaAsP/InP avalanche photodiodes for near-infrared detection is described in detail. Particular material requirements which must be satisfied for these devices are considered and the special techniques involved in the use of liquid phase epitaxy which have been developed for preparing such material will be discussed. The impact ionization coefficients in InP which are important for the design of low noise avalanche photodiodes have been experimentally determined. A special device structure consisting of an InP p-n junction for multiplication and an InGaAsP or InGaAs layer for absorption is presented which results in a substantial decrease in dark current over what is typically observed in simple InGaAsP p-n junctions.
As a result of this work, methods have been developed for the growth of compositionally uniform, high purity liquid phase epitaxal layers. It has been shown that growth must take place at a constant temperature to avoid compositionally graded layers. Baking techniques have been developed for purifying the growth solutions and the net doping levels of the n-type layers have been reduced to 1 x 10('15) cm('-3) in InP and decreases throughout the lattice matched InGaAsP alloy range to about 2 x 10('14) cm('-3) in InGaAs.
A new device structure has been devised which allows routine photocurrent measurements for illumination from either side of a p-n junction and has been used to obtain the most reliable InP ionization coefficient data yet reported. These parameters have been determined over a wider range of electric fields than has ever been reported before. It was found that the ionization rate for holes is greater than electrons by a factor of 4 at low fields (2.5 x 10('5) V/cm) and decreases to about 1.3 at high fields (7.0 x 10('5) V/cm).
The dark currents in InGaAsP avalanche photodiodes have been reduced to less than 10 nA by placing the p-n junction in the larger bandgap InP. Substantial avalanche gains, fast response times, and high quantum efficiencies have been observed in these devices. This structure appears to be very suitable for high data rate, fiber optic communications applications.
Issue Date:1982
Description:122 p.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1982.
Other Identifier(s):(UMI)AAI8302838
Date Available in IDEALS:2014-12-15
Date Deposited:1982

This item appears in the following Collection(s)

Item Statistics