Files in this item



application/pdf8422802.pdf (2MB)Restricted to U of Illinois
(no description provided)PDF


Title:Zeta-Functions of Two-Sided Ideals in Arithmetic Orders
Author(s):Raggi-Cardenas, Alberto Gerardo
Department / Program:Mathematics
Degree Granting Institution:University of Illinois at Urbana-Champaign
Abstract:The thesis deals with the theory of two-sided ideals in arithmetic orders. The theory and techniques developed by Bushnell and Reiner are used.
The work begins with an introduction to the theory of Z - and L-series. The basic plan is to compare these series with a Z-integral whose analytic properties are more accessible, and then use these properties to obtain some analogous ones of Z- and L-series. Next the theory of two-sided ideals is studied. First we translate the general theory just developed to our context; then we obtain explicit formulas for the zeta functions for some particular classes of orders, and we give some examples. We also study, in the simple case, the behavior of the zeta-functions at their largest pole. The thesis ends with discussion of some possible generalizations of the prime ideal theorem to two-sided ideals of arithmetic orders in simple algebras.
Issue Date:1984
Description:78 p.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1984.
Other Identifier(s):(UMI)AAI8422802
Date Available in IDEALS:2014-12-16
Date Deposited:1984

This item appears in the following Collection(s)

Item Statistics