Files in this item
Files  Description  Format 

application/pdf 8600281.pdf (3MB)  (no description provided) 
Description
Title:  Simplicial Complexes and a Partial Classification of Almost Completely Decomposable Torsion Free Abelian Groups 
Author(s):  PerezSegui, Maria Luisa 
Department / Program:  Mathematics 
Discipline:  Mathematics 
Degree Granting Institution:  University of Illinois at UrbanaChampaign 
Degree:  Ph.D. 
Genre:  Dissertation 
Subject(s):  Mathematics 
Abstract:  The thesis treats the problem of how different two quasiisomorphic groups can be. We first attack the problem in a topological way. We construct a functor (kappa) from the category of pairs (G,U), where G is a topological group and U is an open symmetric neighborhood of O in G, into the category of simplicial complexes. We give all torsion free groups the discrete topology and denote by Tf the category thus obtained. The image under (kappa) of the Pontryagin dual of an inclusion in Tf is a regular simplicial covering map of connected complexes. The lifting criterion available in the theory of covering spaces is then used to get the following theorem: If L = N (CRPLUS) P, and for every y (ELEM) P (FDIAG) O and x (ELEM) N there is f: P (>) N such that f(y) = x, then M decomposes. Secondly we treat the problem algebraically in a constructive way. We restrict ourselves to the class of almost completely decomposable groups. We fix L = L(,1) (CRPLUS) . . . (CRPLUS) L(,n) with rank L(,i) = 1 for all i, inside a vector space V of dimension n. We examine all subgroups M of V containing L such that (VBAR)M/L(VBAR) < (INFIN) and each L(,i )is pure in M. In the case when M/L is cyclic we define a normalized expression of a basis of V. This expression is then used to classify up to isomorphism all M's as above in the case when M/L is cyclic and L has a totally disconnected type graph. The classification involves congruence relations of the coefficients of the normalized expression, and the primes dividing the L(,i)'s. As a corollary we obtain a complete classification of almost completely decomposable groups of rank 2. 
Issue Date:  1985 
Type:  Text 
Description:  114 p. Thesis (Ph.D.)University of Illinois at UrbanaChampaign, 1985. 
URI:  http://hdl.handle.net/2142/71238 
Other Identifier(s):  (UMI)AAI8600281 
Date Available in IDEALS:  20141216 
Date Deposited:  1985 
This item appears in the following Collection(s)

Dissertations and Theses  Mathematics

Graduate Dissertations and Theses at Illinois
Graduate Theses and Dissertations at Illinois