Files in this item



application/pdf9411733.pdf (4MB)Restricted to U of Illinois
(no description provided)PDF


Title:The Performance of Direct-Sequence Spread-Spectrum Communications With Selective Fading Channels and Rake Reception
Author(s):Noneaker, Daniel Lee
Doctoral Committee Chair(s):Pursley, Michael B.
Department / Program:Electrical Engineering
Discipline:Electrical Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Engineering, Electronics and Electrical
Abstract:The performance of a direct-sequence spread-spectrum communication system is evaluated for selective fading channels and rake reception. Several issues are examined that influence the probability of error of the system, and closed-form expressions are obtained for the probability of error. The development of these expressions and the use of a general class of channel models permit the removal of some restrictions and approximations that have been employed previously in the analysis of rake receiver performance.
It is demonstrated that the choice of the spreading sequence that is used for the direct-sequence waveform can have a significant effect on the probability of error. A good choice of the sequence produces a low probability of error over a range of channel delay spreads and Doppler spreads, and it is a good choice regardless of the number of taps of the rake receiver. The same sequence also provides superior performance for both coherent-combining and noncoherent-combining rake receivers.
The effect of the chip rate on the probability of error for a direct-sequence spread-spectrum system is also considered. It is shown that, for both a correlation receiver and a multiple-tap rake receiver, a system employing a high chip rate provides better performance than a system employing a low chip rate for most typical land-mobile communication channels. The high-chip-rate system is also much less susceptible than the low-chip-rate system to degradation of performance due to the Doppler spreading of the channel. In addition, a rake receiver is shown to be necessary for the adequate performance of a low-chip-rate system, but it is of limited value for a high-chip-rate system.
Issue Date:1993
Description:125 p.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1993.
Other Identifier(s):(UMI)AAI9411733
Date Available in IDEALS:2014-12-16
Date Deposited:1993

This item appears in the following Collection(s)

Item Statistics