Files in this item
Files | Description | Format |
---|---|---|
application/pdf ![]() ![]() | (no description provided) |
Description
Title: | Design of Sintered, Tough, Oxide Laminate and Fibrous Monolithic Composites |
Author(s): | Kim, Dong-Kyu |
Doctoral Committee Chair(s): | Kriven, Waltraud M. |
Department / Program: | Materials Science and Engineering |
Discipline: | Materials Science and Engineering |
Degree Granting Institution: | University of Illinois at Urbana-Champaign |
Degree: | Ph.D. |
Genre: | Dissertation |
Subject(s): | Engineering, Materials Science |
Abstract: | Tough, oxide, laminated and fibrous monolithic composites were fabricated by using tape casting and co-extrusion technique, respectively. Mullite (3Al 2O3·2SiO2), alumina (Al2O 3), 50 vol% alumina · 50 vol% YAG (yttrium aluminum garnet, Y 3Al5O12) in situ composite, 50 vol% alumina · 50 vol% mullite in situ composite, zirconia (ZrO 2), and nickel aluminate (NiAl2O4) were used as matrix materials. Aluminum phosphate (AlPO4), alumina platelets, and 50 vol% alumina · 50 vol% leucite (KAlSi2O6) were chosen as high temperature applicable interphase materials. ICP (Inductively coupled plasma) data indicated no extensive decomposition of AlPO4 heat treated at 1600 and 1800°C. The AlPO4 worked as a stable, porous, weak, crack deflecting interphase material with three point bending strength of 1.5 MPa and 61% of theoretical density after heat treatment at 1600°C for 10h. The 50 vol% alumina · 50 vol% YAG in situ composite had a bending strength of 361 MPa after sintering at the condition of 1700°C/5h. A : B (C) : D (E) bimodal designs were proposed to increase the toughness of the laminated composites. 1 : 5 (6) : 12 (1) bimodal laminated composite had a bending strength and a work of fracture of 142 MPa and 0.51 KJ/m2, respectively. Fibrous monolithic composites with different interphase thickness and interphase composition were fabricated. 2-, 3- and mixed-layer fibrous monolithic composites were made. |
Issue Date: | 2002 |
Type: | Text |
Language: | English |
Description: | 200 p. Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2002. |
URI: | http://hdl.handle.net/2142/82712 |
Other Identifier(s): | (MiAaPQ)AAI3044136 |
Date Available in IDEALS: | 2015-09-25 |
Date Deposited: | 2002 |
This item appears in the following Collection(s)
-
Dissertations and Theses - Materials Science and Engineering
-
Graduate Dissertations and Theses at Illinois
Graduate Theses and Dissertations at Illinois