Files in this item
Files  Description  Format 

application/pdf RAICHELDISSERTATION2015.pdf (2MB)  (no description provided) 
Description
Title:  In pursuit of linear complexity in discrete and computational geometry 
Author(s):  Raichel, Benjamin A. 
Director of Research:  HarPeled, Sariel 
Doctoral Committee Chair(s):  HarPeled, Sariel 
Doctoral Committee Member(s):  Chekuri, Chandra; Clarkson, Kenneth; Erickson, Jeff 
Department / Program:  Computer Science 
Discipline:  Computer Science 
Degree Granting Institution:  University of Illinois at UrbanaChampaign 
Degree:  Ph.D. 
Genre:  Dissertation 
Subject(s):  Computational Geometry
Discrete Geometry Computational Topology Geometric Optimization Contour Trees Voronoi Diagrams 
Abstract:  Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing contour trees over simplicial meshes, and (iii) bounding the expected complexity of weighted Voronoi diagrams. While these topics are broad, here the focus is on identifying structure which implies linear (or near linear) algorithmic and descriptive complexity. The first topic we consider is in geometric optimization. More specifically, we define a large class of distance problems, for which we provide linear time exact or approximate solutions. Roughly speaking, the class of problems facilitate either clustering together close points (i.e. netting) or throwing out outliers (i.e pruning), allowing for successively smaller summaries of the relevant information in the input. A surprising number of classical geometric optimization problems are unified under this framework, including finding the optimal kcenter clustering, the kth ranked distance, the kth heaviest edge of the MST, the minimum radius ball enclosing k points, and many others. In several cases we get the first known linear time approximation algorithm for a given problem, where our approximation ratio matches that of previous work. The second topic we investigate is contour trees, a fundamental structure in computational topology. Contour trees give a compact summary of the evolution of level sets on a mesh, and are typically used on massive data sets. Previous algorithms for computing contour trees took Θ(n log n) time and were worstcase optimal. Here we provide an algorithm whose running time lies between Θ(nα(n)) and Θ(n log n), and varies depending on the shape of the tree, where α(n) is the inverse Ackermann function. In particular, this is the first algorithm with O(nα(n)) running time on instances with balanced contour trees. Our algorithmic results are complemented by lower bounds indicating that, up to a factor of α(n), on all instance types our algorithm performs optimally. For the final topic, we consider the descriptive complexity of weighted Voronoi diagrams. Such diagrams have quadratic (or higher) worstcase complexity, however, as was the case for contour trees, here we push beyond worstcase analysis. A new diagram, called the candidate diagram, is introduced, which allows us to bound the complexity of weighted Voronoi diagrams arising from a particular probabilistic input model. Specifically, we assume weights are randomly permuted among fixed Voronoi sites, an assumption which is weaker than the more typical sampled locations assumption. Under this assumption, the expected complexity is shown to be near linear. 
Issue Date:  20150715 
Type:  Thesis 
URI:  http://hdl.handle.net/2142/88048 
Rights Information:  Copyright 2015 Benjamin Adam Raichel 
Date Available in IDEALS:  20150929 
Date Deposited:  August 201 
This item appears in the following Collection(s)

Dissertations and Theses  Computer Science
Dissertations and Theses from the Dept. of Computer Science 
Graduate Dissertations and Theses at Illinois
Graduate Theses and Dissertations at Illinois