Files in this item



application/pdfBAO-THESIS-2015.pdf (27MB)
(no description provided)PDF


Title:Characterizing construction equipment activities in long video sequences of earthmoving operations via kinematic features
Author(s):Bao, Ruxiao
Advisor(s):Golparvar Fard, Mani
Department / Program:Civil & Environmental Engineering
Discipline:Civil Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Kinematic Features
Activity Recognition
Convolutional Neural Network
Construction Equipment
Abstract:This thesis presents a fast and scalable method for activity analysis of construction equipment involved in earthmoving operations from highly varying long-sequence videos obtained from fixed cameras. A common approach to characterize equipment activities consists of detecting and tracking the equipment within the video volume, recognizing interest points and describing them locally, followed by a bag-of-words representation for classifying activities. While successful results have been achieved in each aspect of detection, tracking, and activity recognition, the highly varying degree of intra-class variability in resources, occlusions and scene clutter, the difficulties in defining visually-distinct activities, together with long computational time have challenged scalability of current solutions. In this thesis, we present a new end-to-end automated method to recognize the equipment activities by simultaneously detecting and tracking features, and characterizing the spatial kinematics of features via a decision tree. The method is tested on an unprecedented dataset of 5hr-long real-world videos of interacting pairs of excavators and trucks. The Experimental results show that the method is capable of activity recognition with accuracy of 88.91% with a computational time less than 1- to-1 ratio for each video length. The benefits of the proposed method for root-cause assessment of performance deviations are discussed.
Issue Date:2015-12-08
Rights Information:Copyright 2015 Ruxiao Bao
Date Available in IDEALS:2016-03-02
Date Deposited:2015-12

This item appears in the following Collection(s)

Item Statistics