Files in this item



application/pdfDIEBOLD-DISSERTATION-2017.pdf (6MB)
(no description provided)PDF


Title:The effects of turbulence on the measurements of five-hole probes
Author(s):Diebold, Jeffrey Michael
Director of Research:Bragg, Michael B
Doctoral Committee Chair(s):Bragg, Michael B
Doctoral Committee Member(s):Elliott, Gregory S; Selig, Michael S; Chamorro, Leonardo P
Department / Program:Aerospace Engineering
Discipline:Aerospace Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Multihole probes Five hole probes Turbulence Experimental fluid dynamics
Abstract:The primary goals of this research were to quantify the effects of turbulence on the measurements of five-hole pressure probes (5HP) and to develop a model capable of predicting the response of a 5HP to turbulence. The five-hole pressure probe is a commonly used device in experimental fluid dynamics and aerodynamics. By measuring the pressure at the five pressure ports located on the tip of the probe it is possible to determine the total pressure, static pressure and the three components of velocity at a point in the flow. Previous research has demonstrated that the measurements of simple pressure probes such as Pitot probes are significantly influenced by the presence of turbulence. Turbulent velocity fluctuations contaminate the measurement of pressure due to the nonlinear relationship between pressure and velocity as well as the angular response characteristics of the probe. Despite our understanding of the effects of turbulence on Pitot and static pressure probes, relatively little is known about the influence of turbulence on five-hole probes. This study attempts to fill this gap in our knowledge by using advanced experimental techniques to quantify these turbulence-induced errors and by developing a novel method of predicting the response of a five-hole probe to turbulence. A few studies have attempted to quantify turbulence-induced errors in five-hole probe measurements but they were limited by their inability to accurately measure the total and static pressure in the turbulent flow. The current research utilizes a fast-response five-hole probe (FR5HP) in order to accurately quantify the effects of turbulence on different standard five-hole probes (Std5HP). The FR5HP is capable of measuring the instantaneous flowfield and unlike the Std5HP the FR5HP measurements are not contaminated by the turbulent velocity fluctuations. Measurements with the FR5HP and two different Std5HPs were acquired in the highly turbulent iii wakes of 2D and 3D cylinders in order to quantify the turbulence-induced errors in Std5HP measurements. The primary contribution of this work is the development and validation of a simulation method to predict the measurements of a Std5HP in an arbitrary turbulent flow. This simulation utilizes a statistical approach to estimating the pressure at each port on the tip of the probe. The angular response of the probe is modeled using experimental calibration data for each five-hole probe. The simulation method is validated against the experimental measurements of the Std5HPs, and then used to study the how the characteristics of the turbulent flowfield influence the measurements of the Std5HPs. It is shown that total pressure measured by a Std5HP is increased by axial velocity fluctuations but decreased by the transverse fluctuations. The static pressure was shown to be very sensitive to the transverse fluctuations while the axial fluctuations had a negligible effect. As with Pitot probes, the turbulence-induced errors in the Std5HPs measurements were dependent on both the properties of the turbulent flow and the geometry of the probe tip. It is then demonstrated that this simulation method can be used to correct the measurements of a Std5HP in a turbulent flow if the characteristics of the turbulence are known. Finally, it is demonstrated that turbulence-induced errors in Std5HP measurements can have a substantial effect on the determination of the profile and vortex-induced drag from measurements in the wake of a 3D body. The results showed that while the calculation of both drag components was influenced by turbulence-induced errors the largest effect was on the determination of vortex-induced drag.
Issue Date:2016-12-14
Rights Information:2016 by Jeffrey Michael Diebold. All rights reserved.
Date Available in IDEALS:2017-08-10
Date Deposited:2017-05

This item appears in the following Collection(s)

Item Statistics