Files in this item



application/pdfKAUSHIK-THESIS-2017.pdf (527kB)
(no description provided)PDF


Title:GPU accelerated Hungarian algorithm for traveling salesman problem
Author(s):Kaushik, Varsha Ravi Prakash
Advisor(s):Nagi, Rakesh
Department / Program:Industrial&Enterprise Sys Eng
Discipline:Industrial Engineering
Degree Granting Institution:University of Illinois at Urbana-Champaign
Subject(s):Compute Unified Device Architecture (CUDA)
Linear assignment problem
Traveling salesman problem
Reformulation Linearization Technique (RLT)
Abstract:In this thesis, we present a model of the Traveling Salesman Problem (TSP) cast in a quadratic assignment problem framework with linearized objective function and constraints. This is referred to as Reformulation Linearization Technique at Level 2 (or RLT2). We apply dual ascent procedure for obtaining lower bounds that employs Linear Assignment Problem (LAP) solver recently developed by Date(2016). The solver is a parallelized Hungarian Algorithm that uses Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPU) as the parallel programming architecture. The aim of this thesis is to make use of a modified version of the Dual Ascent-LAP solver to solve the TSP. Though this procedure is computational expensive, the bounds obtained are tight and our experimental results confirm that the gap is within 2% for most problems. However, due to limitations in computational resources, we could only test problem sizes N < 30. Further work can be directed at theoretical and computational analysis to test the efficiency of our approach for larger problem instances.
Issue Date:2017-04-28
Rights Information:Copyright 2017 Varsha Ravi Prakash Kaushik
Date Available in IDEALS:2017-08-10
Date Deposited:2017-05

This item appears in the following Collection(s)

Item Statistics