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Abstract

A large class o f security attacks exploit software implementation vulnerabilities such as unchecked buffers. This 

paper proposes Transparent Runtime Randomization (TRR), a generalized approach fo r protecting against a wide 

range o f security attacks. TRR dynamically and randomly relocates a program’s stack, heap, shared libraries, 

and parts o f  its runtime control data structures inside the application memory address space. Making a program’s 

memory layout different each time it runs foils the attacker’s assumptions about the memory layout o f the vulnera

ble program and makes the determination o f critical address values difficult i f  not impossible. TRR is implemented 

by changing the Linux dynamic program loader, hence it is transparent to applications. We demonstrate that TRR 

is effective in defeating real security attacks, including malloc-based heap overflow, integer overflow, and double- 

free attacks, for which effective prevention mechanisms are yet to emerge. Furthermore, TRR incurs less than 9% 

program startup overhead and no runtime overhead.

1 Introduction

This paper addresses security vulnerabilities that can lead to Unauthorized Control /nformatioil Tampering 

(UCIT) in a target program. For convenience, we call these UCIT vulnerabilities. UCIT vulnerabilities include 

many commonly seen security problems such as buffer overflow, format string, integer overflow, and double- 

freeing of heap buffer. Attacks exploiting UCIT vulnerabilities share a common pattern: the attacker exploits the 

vulnerability to change critical control information in the target system so that it points to the attacker’s malicious

'Control information includes function pointers, return address and indirect jump targets in the data, heap, or stack o f a program.
2The intent is not to propose a new taxonomy.
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code. These attacks do not depend on a legal user to perform any action, however innocently or unknowingly. In 

contrast, attacks such as the Trojan horse and worm present the malicious code to the user in a disguised or hidden 

manner and entice the user to execute the code, albeit innocently. Denial of service attacks exploit vulnerabilities 

in network protocols and communication infrastructures to prevent network servers from providing useful service. 

A quick survey of the 109 CERT3 security advisories4 issued over the past four years shows the significance of 

UCIT vulnerabilities (see Table 1). The first four categories in the table are UCIT vulnerabilities, accounting for 

nearly 60% of all the CERT advisories: buffer overflow attacks exploit unchecked buffer; format string attacks 

exploit unchecked format commands in p r i n t  f-like functions; double free attacks exploit bugs or design flaws 

to release unallocated or already freed heap buffers; integer overflow attacks exploit signed integer overflow bugs 

to overwrite memory contents. The other categories include vulnerabilities such as back-door, denial of service, 

worms, viruses, weak authentication, or insecure default settings.

Vulnerability Number Percentage
buffer overflow 49 44.95%
format string 9 8.26%
double free 2 1.83%
integer overflow 3 2.75%
backdoor/Trojan horse 8 7.34%
denial of service 5 4.59%
others 33 30.28%
Total 109 100.00%

Table 1. CERT Advisories Classification (1999-2002)

An analysis of published security attacks that exploit UCIT vulnerabilities shows that a key element in all 

such attacks is the attacker’s ability to determine the runtime addresses of critical memory data elements used by 

the target applications. Common targets include server applications such as ftp, web, and secure shell servers. 

Examples of critical memory data elements include buffers, function pointers, and function return addresses, 

which are usually 32- or a 64-bit addresses. In theory, correctly guessing the value of a 32- or even 64-bit number 

representing, for example, a function pointer on the program stack, is difficult. In practice however, an attacker 

using the following approach can reliably determine these address values. The attacker usually starts by scanning 

hosts on the network to identify vulnerable applications or operating systems. The attacker can then configure a

3The CERT Coordination Center ( h t t p : / /w w w . c e r t . o r g / )  was established after the Morris Internet worm incident in 1988 and 
funded by DARPA to coordinate communication among experts during security emergencies and to help prevent future incidents.

4An advisory is a security vulnerability that is especially serious and could have major impact.
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pilot system and experimentally formulate an attack, e.g., determine the address values for use in a real attack. The 

approach works because major operating systems have well-known default memory layout schemes that are used 

in production environments. Typically, the attacker needs only to understand details of a few major applications 

and operating systems, because there are only a few popular operating systems (e.g., Linux, Solaris, Windows), 

hardware platforms (e.g., x86, SPARC), and major applications in mass use. For example, almost all Unix/Linux 

systems use sendmail (developed by the Sendmail Consortium [22]) as the electronic mail clients; also NetCraft 

reports [17] that the web server market is dominated by Apache and Microsoft IIS, (with 65% and 25% market 

shares, respectively).

A number of specialized solutions protect a system from attacks that exploit specific types of UCIT vulnerabili

ties. For example, techniques such as StackGuard and LibSafe [10,6] defeat stack-smashing based buffer overflow 

attacks, and techniques such as FormatGuard [9] protect against format string attacks. While these approaches are 

effective in protecting a system against the specific attack they focus on, incorporating many individual tech

niques to defend against a wide range of attacks is nontrivial and often requires resolving conflicting requirements 

imposed by the different techniques.

This paper proposes, Transparent Runtime Randomization (TRR), a generalized approach to protect systems 

against a wide range of security attacks that exploit UCIT vulnerabilities. The TRR technique dynamically and 

randomly relocates a program’s stack, heap, shared libraries, and parts of its runtime control data structures inside 

the application memory address space. Making a program’s memory layout different each time it runs foils the 

attacker’s assumptions about the memory layout of the vulnerable program and makes the determination of critical 

address values difficult if not impossible. An incorrect address value for a critical memory element causes the target 

application to crash. Although a crash may not be desirable from reliability and availability perspectives, in the 

security domain a crash is an acceptable option to the program being hijacked. TRR is implemented by modifying 

the dynamic program loader, therefore, it is transparent to the application programs, i.e., existing applications run 

without any modification or recompilation.

Currently, TRR has been implemented on Linux/IA-32 platforms. It is shown, using published attacks, to be 

effective, not only against well-studied attacks such as stack buffer overflow and format string, but also against 

attacks such as malloc-based heap overflow, integer overflow, and double-free, for which effective solutions are 

yet to emerge. While the effectiveness of TRR is demonstrated using the first four types of vulnerabilities in Table 

1, its protection is not limited to these four. In fact, the proposed technique can defeat all attacks that need to
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correctly determine the runtime address of memory elements in target programs. Performance overhead of TRR is 

negligible, as TRR-related activities are only run at process initialization time. Process startup overhead measured 

for a wide range of applications ranges between 2-9%. TRR does not introduce any additional overhead once the 

application process begins execution. The TRR technique is portable across most Unix-based operating systems 

including Linux, FreeBSD, and Solaris. The key to this portability is the use of ELF [23] as the standard binary 

executable format, which is common to all.

2 Related Research

Techniques proposed to protect systems from attacks that exploit software implementation vulnerabilities can 

be broadly divided into two types: static analysis and runtime detection. Static techniques [12,14, 16,25] analyze 

program source code at compile time to find possible vulnerabilities. Runtime techniques [6, 10, 9, 18, 24] either 

insert special checking code at compile time or instrument the runtime environment to dynamically detect possible 

security attacks. Most of these techniques aim at providing protection against specific types of attacks, e.g., 

StackGuard [10] against stack buffer overflow attacks, FormatGuard [9] against format string attacks.

Use of diversity has been advocated by many for achieving reliability and security. Deswarte [11] gives a 

thorough review of how diversity at different levels of software and hardware systems (user and operator level, 

human-computer interface, application software level, execution level, and hardware or operating system level) 

have made those systems more reliable and secure. Existing approaches can be broadly divided into two categories: 

those that aim at tolerating design/implementation bugs to achieve high system reliability and those that aim 

at achieving system security. The N-version programming approach [4] aims at improving software reliability 

by providing tolerance to software design and implementation bugs. The goal of N-version programming is to 

maximize the independence of version development and to employ design diversity to minimize the probability that 

two or more versions will produce similar erroneous results that coincide in time [4]. The N-version programming 

approach can also prevent security vulnerabilities due to software implementation errors [8], It is well recognized 

that this approach is expensive to develop and operate, except for ultra-high dependability environments.

Introducing randomness to prevent unauthorized access is the principle of all cryptosystems. It has also been 

successfully used in areas such as cyber-watermarking and copyright protection. In [13], Forrest et al. advocate 

a broad philosophy for secure systems using diversity. The authors argue that all the advantages of uniformity 

can a become potential weakness because any bug or vulnerability in an application is replicated throughout many 

machines; by deliberately introducing diversity, a system may become more robust and secure. The paper suggests
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several possibilities for introducing diversity, mainly through randomized compilation. A specific extension to the 

GNU C Compiler, gcc, that pads each stack frame by a random amount, is implemented to defeat stack-based 

buffer overflow attacks. Several other transformations although not implemented, are also proposed: changes to 

the kernel, libraries, system calls, and file names.

Pu et al. [21] proposed specialization techniques [20] to increase the diversity in operating system code. They 

advocate using program invariants or quasi-invariants to statically or dynamically plug in different versions of 

code blocks to defeat possible security attacks. However, subsequent research from the same group does not 

appear to follow the path laid out in [21]. While the idea is intriguing, it is not clear how it can be implemented 

in practice. A survey report by Bain et al. [5], shows that using heterogeneous hardware platforms, operating 

systems, and application software can improve system security and survivability. Since many widespread attacks 

only target specific applications and operating systems, diversity would, at the least, prevent all systems in a 

heterogeneous environment from being subverted.

The Address Space Layout Randomization (ASLR) proposed by PaX [19] implements a similar idea to TRR, 

i.e., both randomize the memory layout of an application. There are, however, several important differences 

between the two: (1) TRR is implemented entirely in the user-space dynamic program loader while ASLR requires 

changes to the Linux kernel. User-space implementation does not require re-installation or even reboot of the 

operating system and hence is easier to use and deploy. (2) TRR randomizes the location of the global offset 

table (GOT), a frequent target of many attacks, while ASLR does not. The challenge in randomizing GOT is that 

it is location dependent and references to GOT must be preserved. TRR handles this complication through the 

instruction rewriting technique implemented in the user space program loader. (3) TRR and ASLR randomize the 

locations of heap and shared library differently. TRR randomizes the location of the heap by randomly growing 

the base of the heap, and the location of the shared libraries by inserting a random-sized memory region before the 

libraries are loaded. In ASLR, both heap and shared libraries are randomized by changing the d a  mmap system 

call. Whenever the heap is expanded, a new shared library is loaded or a memory region is mapped, a random 

offset is applied. This approach may result in more virtual memory fragmentations, since different memory regions 

are mapped non-contiguously with random gaps between them. (4) While our study shows that TRR has a small 

overhead only at process initialization time, the performance impact of ASLR is yet to be evaluated.
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3 Common Characteristic of Attacks Exploiting UCIT Vulnerabilities

Recall from Table 1 that attacks exploiting UCIT vulnerabilities account for nearly 60% of known attacks. 

The modus operandi in all these attacks is: an intruder launches an attack by sending malicious messages/data to 

the system running the vulnerable application(s). Messages or data here broadly mean various forms of external 

inputs that an application can receive, e.g., network message, console input, command line options, or environment 

variables. Using the malicious messages/data, the attacker attempts to satisfy two conditions: (1) inject malicious 

code and (2) change existing control information (e.g., return addresses and function pointers) to point to the 

malicious code. Let m  be the address at which the malicious code is to be placed, and let p  be the address of the 

target application’s control information. The goal of the attacker is to overwrite the value at p  so that the control 

information now points to the memory address m, where the malicious code is located. Observe that, a common 

characteristic of these attacks are: in order to achieve the above goal, an intruder must correctly determine the 

runtime values o fm  or p  or both. This is usually achieved through the following steps: (i) identify the versions of 

the application and operating system; (ii) configure a pilot system to mimic the target system; and (iii) craft and 

test the attack using the pilot system. A successful test-run allows the attacker to obtain the values of p  and/or m. 

Table 2 shows a list of representative attacks, the vulnerabilities they exploit, the location (m) where the malicious 

code is to be placed, the control information at address p  that needs to be changed, and the values that need to be 

determined for a successful attack. Observe that in a stack-smashing attack, the intruder only needs to determine 

one address, either m  or p, while in others such as malloc-based heap attack or integer overflow attack, the attacker 

needs to determine both m  and p.

We propose a generic, randomization-based solution against attacks that exploit this common feature regardless 

of how the feature is exploited. The proposed technique is shown to provide a robust solution not only for the 

well-known stack buffer overflow and format string attacks, but also for the others such as malloc-based heap 

overflow, integer overflow, and double-free attacks, for which effective solutions are yet to emerge. We first 

explain three representative attacks which exploit stack buffer overflow, malloc-based heap overflow, and integer 

overflow vulnerabilities.
6The distance between the start o f the buffer (m) and the location o f return address (p) is fixed and can be statically determined. 

Knowing either m  or p  suffices.
6Here the attacker needs to change p  to point to a function in a program’s shared library and force that function to use the malicious 

data at m; therefore, the attacker needs to determine both m  and the address o f the library function.
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Attack Vulnerability m V Value to be determined
stack smashing stack buffer overflow stack buffer RA m  or p
ret-to-library stack buffer overflow stack buffer RA m
malloc-heap heap buffer overflow heap buffer FP or RA m  & p
format string format string validation format string FP or RA m & p
integer overflow signed integer overflow env. variables FP or RA m  & p
double free free unallocated/released memory heap buffer FP or RA m  & p
m  - location where the malicious code/data is to be placed; 
p - location of control information to overwrite;
FP - Function pointer; RA - Return address

Table 2. Different Types of Attacks

3.1 Example of A Stack Buffer Overflow Attack

Buffer overflow is the most common attack on the Internet. The data in Table 1 show that it alone accounts 

for almost half the security advisories reported by CERT over the past four years. Buffer overflow attacks exploit 

unchecked buffers in application programs by sending more data to the application than the allocated buffer space 

can hold. By writing past the buffer boundary, control information following the buffer can be maliciously altered. 

Many variations of buffer overflow attacks exist: some examples are stack smashing [2], retum-to-library [26], 

and malloc-based heap exploits [3,15].

void copy_msg(char* netjnsg)
{

msg[ 128];

strcpy(msg, net_msg); 

return;
}

Figure 1. Example of Stack Smashing

Figure 1 shows an example of a stack-smashing attack. The source code is on the left and the stack layout is 

on the right. Stack smashing [2] exploits unchecked buffers on the program stack and aims at overwriting the 

function return address for copy.m s g ( ) at address p following the unchecked buffer ms g [12 8] at address m 

(Figure la). The attacker sends a malicious message, consisting of two parts: the malicious shell code in the first
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part, and the new value (in this case m) to overwrite the return address in the second part. Because the program 

blindly copies n e t.m sg  to msg [128] using the vulnerable function s t r c p y  without boundary checking, the 

shell code is placed at m  and the return address at p is changed to point to m  (Figure lb). When c o p y  msg () 

returns, it transfers control to the malicious code at m, and the attacker takes over. Observe that the attacker needs 

to determine the runtime value of m  (the location of the buffer msg where the malicious code is to be placed) or 

p (location of return address for function copy.m sg ()). Clearly, an erroneous choice of either m  or p will cause 

the function to return to an unknown location, and the program will crash.

3.2 Example of Malloc-based Heap Buffer Overflow Attack

This section presents an example of malloc-based heap overflow attack, an important new variation of buffer 

overflow attack. A program’s heap is usually managed by the C library functions m a l lo c  and f r e e .  The heap 

is divided into groups of free blocks of similar size, and blocks in each group are organized using a doubly linked 

list. For efficiency reasons, the forward pointer, f  d, and backward pointer, bd, that maintain the doubly linked 

lists are stored at the beginning of each free block. An attacker can exploit unchecked heap buffer vulnerabilities 

to change these pointers and thereby seize control of the program. We illustrate this attacking method using the 

example shown in Figure 2.

X
 co 

II 
»

u
 

< < __
A->fd = X 
A->bk = C •—

(free block A) (free block A)

U U+B

(block in use) (merged block)

B->fd = A 
B->bk = C

(free block B)

• C->fd = B 
C->bk = Y

C->fd = A 
C->bk = Y

(free block C) (free block C)

(a) initial state (b) after U freed (c) after overflow (d) after overflow and U freed

Figure 2. Example of Malloc-based Heap Overflow Attack

Figure 2a shows three free blocks A, B and C in a doubly linked list, and the used block U (not part of any 

free list). When block U is freed, it is consolidated with the neighboring free block B, and B is taken out of its 

current free block list by the following two operations: (B- >f d ) - >bk=B- >bk (equivalent to A - >bk=C, since 

B - >f d  is A and B - >bk is C) and (B - >bk) - >f d= B - >f d  (equivalent to C- >f d=A). Figure 2b shows the heap
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after those operations: U and B are merged into one larger free block7, and A and C are directly linked in the list. 

Going back to the initial state in Figure 2a, the attacker can send malicious message to overflow buffer U, thus 

overwriting B - >f d  to point to p  (the address of a function pointer) and overwriting B - > bk to point to m (the 

location where the malicious code will be placed) (see Figure 2c). In this case, when U is freed, B is taken out of 

the doubly linked lists through two pointer operations: ( B - >f d) - > b k = B ->bk and (B - > bk) - > f d = B - > fd. 

The first operation is equivalent to p -  >bk=m, hence, the function pointer at p -  > bk is changed to m , where the 

malicious code is placed (see Figure 2d). The next time the function pointer at p -  >bk is used, the malicious code 

will be executed. Observe that the attacker needs to determine the address values m  and p in order to change the 

function pointer and seize control of the program.

3.3 Example of a Signed Integer Overflow Attack

Signed integer overflow occurs when a program derives an integer from an external input, directly or indirectly, 

without adequate validation. Consider the case in which a program requests an integer from standard input, 

converts the input to a number, and then uses the obtained number to index an array. If the number is unchecked, 

it could go beyond the boundary of the array and cause an unauthorized memory read/write to occur. This case is 

illustrated in the following example: an integer overflow attack against the Unix mail transport agent sendmail.

u .char tTdvectf 100]; /* trace vector */

void tT flag (ch ar*  category _flag, char* level .f lag )
{

signed int category, lev e l;

category = convert_ to_ in t(category  -flag);
level = co n v ert_ to _ in t(lev e l_ flag );

if  ( category > =  100 ) category = 99;

tTdvect[ category ] = lev e l;

}

Figure 3. The Signed Integer Overflow Vulnerability in sendmail

Sendmail uses the command line option -D c a te g o ry  l e v e l  to change the default verbosity level for any of 

7The merged free block should be part o f  a doubly linked list o f larger block size, which is not shown in the figure.
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100 different categories of debugging information (refer to the pseudo-code in Figure 3). The levels are stored in 

the array tT d v e c t  [100] in the data region. The program declares c a te g o r y  as a signed integer and checks 

the number converted from the command line option ( c a te g o ry )  to make sure it is less than 100. A malicious 

user can send a very large number as c a te g o r y ,  so large that it is interpreted by the program as a negative binary 

number that passes the less-than-100 check in Figure 3. When the program executes tT d v e c t  [ c a te g o r y  

] = l e v e l ,  c a t e g o r y  is negative and l e v e l  is written to memory location tT v e c t  - c a te g o r y .  By 

reverse engineering the program, an attacker can figure out the runtime address of tT d v e c t .  The attack is 

accomplished by overwriting a function pointer at location p (of the attacker’s choosing) in the program’s global 

offset table, and then embedding malicious code in the program’s environment variable at address m  on the stack. 

The intruder can then use the command line option - D (p - t  Tdve c t ) m to invoke the program8. The program 

essentially executes tT d v e c t  [ p - tT d v e c t  ] = m, i.e., *p = m, thus changing the function pointer at 

p  to point to m. The next time when the function pointer at p is used, the program is hijacked. Thus, once again, 

the attacker needs to correctly determine the runtime values of p (the address of the function pointer to overwrite) 

and m  (the location of the environment variable where the malicious code is to be placed).

4 Transparent Runtime Randomization

Some custom protection mechanisms have been proposed for sub-classes of UCIT vulnerabilities such as pro

tection against stack buffer overflow and format string vulnerabiliites. Each of these solutions is a specific tech

nique to guard a specific type of vulnerability, and in several cases, the solutions themselves have certain vul

nerabilities. Some of the vulnerabilities shown in Table 2 such as heap buffer overflow, integer overflow and 

double-free as yet do not have a solution. Given that there are so many types of vulnerability, a generic mecha

nism is clearly preferred. We propose a general defense algorithm in this section, and we show that the alogirthm 

provides an effective solution to the newer heap buffer overflow, integer overflow and double-free vulnerabilities 

in addition to the well-studied stack buffer overflow and format string attacks.

Recall from Table 2 that a successful attacker must correctly determine the runtime locations of memory ele

ments, e.g., function pointers, return addresses, environment variables, command line options, library functions, 

and stack or heap buffers. The idea behind Transparent Runtime Randomization (TRR) is to randomize the run

time locations of these critical data elements in an application so that it is difficult (or virtually impossible) for an 

attacker to correctly determine their runtime locations via experimentation. In the stack smashing-attack described

8Since t T d v e c t  is an array of type u -c h a r , the actual attack requires four -D command line options.
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in Section 3, the value of m, i.e., the address (of the malicious code) that the attacker needs to determine, points to 

the stack buffer msg [ 12 8 ]. After TRR randomizes the runtime location of the stack, the location of m sg [ 12 8 ] , 

i.e., the value of m, can no longer be statically determined. Hence, an attack that relies on the correct calculation 

of m  is easily foiled.

4.1 What Can Be Randomized Transparently?

The locations of critical program elements that an attacker needs to determine for launching a successful attack 

(see Table 2) usually reside in well defined memory regions in the process address space. We distinguish two types 

of memory regions: position independent and position dependent. A memory region is position independent if 

it can be freely placed in virtual memory at application startup time without breaking the application, i.e., there 

are no inherent complex relationships with other parts of a program with respect to positioning. A memory region 

is position dependent if relocating it at application startup time could cause a chain of broken references from 

either the program code or data. A process’s stack, heap, and shared libraries are position independent, while the 

global offset table is position dependent. The following explains the position dependency nature of these basic 

data regions.

• User stack: Before an application process begins to execute, the operating system kernel sets up the user 

stack and stores information such as environmental variables and command line arguments on the stack. 

The kernel then sets up the stack pointer (on Linux/IA-32, it is the esp register). The application program 

accesses data on the user stack through the stack pointer plus an offset. The program works correctly as 

long as the stack pointer is correctly initialized, hence the stack is position independent.

• Shared libraries: Shared libraries, also known as dynamically linked libraries, are compiled as Position 

Independent Code (PIC). The library functions are invoked by the program using base register plus offset 

and can be loaded anywhere in a program’s address space as long as the base register is set up correctly.

• User heap: Heap is managed by dynamic memory management functions such as m a l lo c  () and f r e e  ( ) . 

At runtime, m a l lo c  () determines the beginning of the heap via the b rk  () system call. A program ac

cesses the heap using pointers to memory regions allocated by m a llo c  ( ) , hence the program does not 

make any assumptions on the runtime location of the heap.

9Breaking a program means to either cause it crash or to output incorrect results.

11



• Global offset table (GOT): Once a program is compiled, the GOT is fixed at a location inside the program’s 

static data segment. Any uncoordinated relocation of GOT will break the program, since part of the program 

code (the procedural linkage table or PLT) directly references GOT. As a result, GOT is position dependent, 

and relocation of it requires corresponding changes in the referencing code in the PLT as well.

TRR randomly relocates both position independent and position dependent regions by modifying the dynamic 

program loader. While relocation of position independent regions is relative simple, relocation of position depen

dent regions poses a challenge to TRR. The rest of this section explains how both are implemented.

4.2 Operations of TRR

Figure 4 shows the typical sequence of steps required to launch an application, using netscape as an example 

(shadowed box in the figure represents operations inside the operating system kernel). In this example, user types 

'n e t s c a p e '  in the shell prompt, and the shell creates a child process using the f o r k  system call. The new 

child process, uses the e x e c v e  system call to load and initialize n e ts c a p e .  Inside the e x e c v e  system call, 

the operating system kernel maps the executable into memory, sets up its code and static data segments, sets up its 

stack, heap, and dynamic program loader, and then transfers control to the program loader. The dynamic program 

loader maps the required shared libraries by n e t s c a p e  into memory. Finally, the program loader hands over 

control to the entry point of n e ts c a p e ,  and n e t s c a p e  begins to execute. The TRR operations are shown in 

bold italics in Figure 4 (in the shaded box). The following two sections explain the modifications the dynamic 

program loader.

Figure 4. Operations of TRR as Part of Process Launching
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4.2.1 Random Relocation of Position Independent Memory Regions

In modem Unix-based operating systems (Linux, FreeBSD and Solaris), the memory layout of an application pro

cess is determined by the compile-time link editor, the operating system kernel, and the runtime dynamic program 

loader. The compile-time link editor determines the memory addresses of the program code, static initialized data, 

and static uninitialized data (BSS). Once a program is compiled, the memory location of the code and data seg

ments are fixed. The operating system kernel determines the starting address for the the program heap, stack, and 

dynamic program loader. The dynamic program loader determines the memory location for shared libraries.

stack

OxFFFFFFFF

OxCOOOOQOO (3GB) 
OxBFFFFFFF (3G B-I)

heap hcap_start = bss_cnd
bss.cnd

0x08048000

Figure 5. Memory Layout for Linux Application Process

Figure 5 shows the memory layout for a typical application process on Linux/IA-32. Note that the address of 

the code segment by default begins at 0x08048000. The static data immediately follows the text segment, and 

the BSS segment (uninitialized data) immediately follows the static data segment. The kernel specifies the end of 

data segment as the start of the heap and specifies 0x4 0 0 0 0 0 0 0 as the starting address for the dynamic program 

loader and shared libraries. The lower 3 gigabytes (GB) of memory address space form the user space, and the 

higher 1 GB is reserved for the operating system kernel. The kernel always sets up the user space stack to start 

at the top of the user memory address space at Oxbfff f f f f  (3GB - 1), and the stack grows downward. The 

starting addresses of heap, stack, and shared libraries are set by the execve () system call.

One way to randomly relocate the stack, heap, and shared libraries is to modify the e x e c v e  () system call: 

when the kernel calculates and sets the base addresses for these position independent regions, a random off

set is added/subtracted to the base value. This approach, however, requires modification, recompilation and re-
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installation of the operating system. TRR chooses to implement the relocation algorithm in the dynamic program 

loader. When the operating system kernel hands over control to the dynamic program loader, the base addresses 

for the stack, heap and the loader has been set up. However, the loader can change these basic execution environ

ment setup before any other code is executed, as long as the changes conforms to the Application Binary Interface 

(ABI) standard defined for the underlying processor architecture.

The ABI for IA-32 architecture [1] specifies that the operating system kernel should place basic information 

on the execution environment on top of the user stack before control flow is transfered to the program loader. 

The information includes environment variable strings, an auxiliary information vector, the command line option 

strings, a vector of pointers to environment variable strings, a vector of pointers to the command line option strings, 

and the number of command line arguments. To randomly relocate the user stack in the program loader, TRR must 

preserve this information and the integrity of the pointers. This relocation is achieved through the following steps: 

(1) creates a new stack segment at a random location below the current stack using the mmap system call. (2) 

copies the content of the old stack to the newly allocated stack, adjusting the pointers in the auxiliary, environment 

and command line pointer vectors. (3) sets the stack pointer register to the top of new stack. (4) frees the old stack 

by using the munmap system call. After these steps, the original stack allocated by the operating system kernel no 

longer exists, the application program will instead use the new stack randomly relocated by TRR.

TRR randomly relocates the user heap by growing the initial heap with a random amount of space using the 

b rk  () system call. To randomize the location of shared libraries, TRR creates a random-sized memory mapping 

immediately following the dynamic program loader. When the loader maps shared libraries used by the program 

into the virtual memory, the mapping forces the the libraries to be loaded at a location following the random-sized 

region. Although random relocations for both heap and shared libraries require extra virtual memory address 

space, no extra physical memory space is needed. Operating systems usually allocate physical page frame only 

when the virtual memory page is accessed. Since the program is not aware of the added heap space and the 

memory mapping, no access should be made to these memory regions and hence no physical page frame should 

be needed.

4.2.2 Random Relocation of Position Dependent Memory Regions

This section discusses random relocation of the position dependent element, the global offset table (GOT). The 

challenge in relocating a position dependent element is that an uncoordinated approach can invalidate the refer

encing code from the PLT and lead to a cascading broken-references. We propose an automatic code-rewriting
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technique to randomly relocate the GOT while avoiding the broken reference scenario.

The GOT is a table of function pointers used for dynamic library function calls. It is located in the writable data 

segment of a program and has been the target of many security attacks. Once a program is compiled, the location 

of GOT inside the data segment of a program is fixed (see Figure 6(a)). A potential attacker, by getting access 

to the GOT, can change one of the function pointers in the table to point to the malicious code he/she intends to 

execute. To the best of our knowledge, there is as yet no good published solution to protect this table from being 

maliciously tampered with, other than redesigning it. Since GOT is, as defined in Section 4.1, position dependent, 

uncoordinated relocation can break references to it from the procedural linkage table (PLT) in the code segment. 

To avoid broken references, the referencing instructions in the PLT are automatically rewritten and redirected to 

the new GOT. Before describing the relocation change, we first briefly explain how GOT and PLT interact in 

supporting dynamic library function calls.

GOT-PLT interaction overview. In a dynamically linked program, runtime libraries are not physically em

bedded; instead, only the names and version numbers of libraries are recorded in the executable. Calls to library 

functions are resolved at runtime. When a program executable is linked at compile time, any calls to shared li

braries are directed to Procedure Linkage Table entries in the read-only code segment. PLT is essentially proxy 

code for shared library calls; it uses GOT in the data segment to store the addresses of shared library functions. 

Before the program is executed, the entries in GOT are resolved to the corresponding library function^0. The 

interaction between GOT and PLT is illustrated using a simple example in Figure 6(a). When the compiler gen

erates code to call the library function p r i n t f  ( ) , it generates a call to the PLT entry for it {pitprintf in Figure 

6(a)). The code in PLT at plt.printf makes an indirect jump to the real library function using the address in GOT 

at got.printf that is resolved to the library function p r i n t f  () at initialization time.

To randomly relocate GOT, we also change the dynamic program loader, to allocate space for a new copy of 

GOT at a random memory location, and to copy the original GOT to the new location. Since the code in PLT refers 

to the entries in the original GOT, each entry in the PLT is rewritten to point to the corresponding entry in the new 

GOT. The following steps detail the procedure: (1) set the writable flag for the code segment; (2) go through 

each entry in the PLT and change the indirect jump instructions j  mp *got_ e n t r y  to j  mp *got_ e n t r y ' ; (3) 

clear the writable flag for the code segment. The PLT entry pltprin tf now has an indirect jump instruction to the 

new GOT entry gotprintf' (Figure 6(b)). After the random relocation, the original GOT is no longer being used;

10The GOT entry could also be resolved lazily the first time a function is called. Our algorithm for relocation applies regardless. For 
presentation simplicity, we assume that it is resolved at program startup time
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Figure 6. GOT Random Relocation

instead, a new GOT at a dynamically determined random location is in effect, and the address of a GOT entry can 

no longer be statically determined. Note that since PLT is part of the read-only code segment, an attacker cannot 

write to it before seizing control of the program.

5 Effectiveness and Performance Evaluation

In this section, we evaluate the effectiveness of TRR in protecting against real-world attacks. We also present 

the performance overhead measurements over a set of representative applications.

5.1 Effectiveness Evaluation

The effectiveness of TRR was tested using publicly available vulnerable programs and attacks against them 

(from the online security bulletin board w w w .s e c u r i ty fo c u s .c o m ). The selected applications are widely 

used in open systems such as Linux. The vulnerabilities and the attacks we used are presented below.

• traceroute is a network diagnostic tool used for finding the path on a network between two hosts. A double- 

free vulnerability exists in this program that causes it to release a memory region using f r e e  () while 

the region is not allocated through the corresponding function m a l l o c  (). To exploit the vulnerability, an 

attack uses malicious command line options to cheat f r e e  () into overwriting a function pointer in the 

program’s GOT to create a local shell.
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•  sendmail is the Unix email transport agent that sends messages to remote hosts. An integer overflow vulner

ability exists in sendmail’s debugging functionality when it uses user-supplied signed integer to address an 

array. As discussed in Section 3.3, the attack uses a large number to overwrite a function pointer in GOT to 

create a local shell.

•  ghttpd  is a fast and efficient web server capable of handling thousands of simultaneous connections. A stack  

overflow vulnerability exists in its lo g  () function when a GET request of excessive length is sent. The 

attack overwrites the function return address on the stack and creates a remote shell.

•  rpc.statd  is a server that implements the Network Status and Monitor protocol as part of the Network File 

System (NFS). A form at string vulnerability exists in its call to the s y s lo g  () function (a p r i n t  f-like 

function). The attack uses a format string that injects malicious code into the process address space and 

overwrites function pointers to create a remote shell.

•  null httpd  is a lightweight, multi-threaded web server for Linux and Windows. A remotely exploitable heap 

overflow vulnerability exists in its handling of the POST request. The attack passes a negative content length 

using the POST request to trigger a heap overflow, overwrite a function pointer in GOT, and create a remote 

shell.

Tabic 3 shows the vulnerable programs and attacks used for our experiments. Without TRR, the attacks succeed 

in obtaining a remote or local shell. With TRR in place, the attacks cause the target vulnerable program to crash and 

therefore the intruder is stopped from causing further damage to the target system. The results also demonstrate 

the general applicability of TRR in defeating different types of attacks, including double free, integer overflow and 

malloc-based heap overflow, for which no good solutions exist to date.

Program Attack Type No TRR TRR
traceroute double free local shell crash
sendmail integer overflow local shell crash
ghttpd stack smashing remote shell crash
rpc.statd format string remote shell crash
null httpd malloc-heap overflow remote shell crash

Table 3. Evaluation Results Against Real Security Attacks
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5.2 Performance and Memory Overhead

The performance overhead of TRR is measured using a large set of applications, divided into two groups. The 

first group contains network server applications such as web, ftp, and secure shell (ssh) servers. The second group 

contains stand-alone applications such as compilers, editors, and web browsers. Since TRR is implemented at 

process initialization, we measure the time between the application program’s entry to the e x e c v e  () system call 

and the runtime system’s handing over of control to the program’s entry point. We measure the number of clock 

cycles elapsed for this period of time, and convert them to microseconds using the processor clock frequency. Table 

4 shows the application startup overhead averaged over 200 runs of each program. The measurement is taken on 

a PC with Redhat Linux 7.1 (kernel 2.4.2), Pentium IV 1.4GHz processor, and 256MB memory. The numbers in 

the No TRR column are obtained using the original Linux loader I d  - l i n u x . so  2.2.3. The numbers in the TRR 

column are obtained using same versions of the loader with TRR support enabled. The overhead numbers show 

that TRR only introduces minor program startup overhead (2-9%). The memory overhead of TRR is essentially 

the size of the global offset table for a program. The Memory Cost column in Table 4 shows that the additional 

memory space required is quite small, ranging from less than 200 bytes for small applications (e.g. traceroute) to 

around 3.5 KB for very large applications (e.g., the Netscape web browser).

Program Description
Startup Time (psec) Memory 

Cost (bytes)No TRR TRR Overhead
apache web server 1.94 2.01 3.82% 816
ghttpd web server 0.96 1.02 6.96% 248
wu-ftpd FTP server 1.71 1.84 7.87% 724
lpd printer server 1.72 1.79 4.31% 736
nullhttpd web server 1.23 1.30 5.49% 296
opensshd secure shell server 2.72 2.87 5.34% 1088
rpc.statd NFS stat server 0.96 1.04 8.71% 304
XFree86 X window server 1.93 2.07 6.97% 928
ccl GNU C compiler 0.96 1.02 6.06% 324
gvim text editor 16.57 17.28 4.26% 2988
netscape web browser 8.39 8.93 6.44% 3668
pine email client 6.69 7.13 6.58% 992
traceroute network diagnosis tool 0.96 1.02 5.83% 196
xemacs-21.1.14 text editor 22.73 23.31 2.54% 2088

Table 4. Application Start-up Overhead and Additional Memory Cost
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6 Discussion

6.1 Possible Attacks Against TRR

Proposing a new mechanism to defend against a wide range of attacks posts an important question: Is the 

proposed approach itself vulnerable to attacks. If so, what is the likelihood that such attacks will succeed? Below, 

we discuss two attacks, brute-force and information disclosure, that can potentially defeat TRR. The brute-force 

attack assumes a correct guess of the random offset used by TRR, and the information disclosure attack relies on 

possible information-leaking vulnerabilities in a program.

6.1.1 Brute-Force Attack

An attacker can try to guess the random offset used by TRR. The probability that an attacker guesses correctly 

is a function of the range of possible random offsets used by TRR. The larger the range, the lower the chance 

that it can be guessed correctly. The range of possible random offsets that can be used by TRR is limited by the 

following two factors: (1) the range must be small enough such that the stack, shared libraries, and the heap do 

not overlap (see Figure 5); (2) the range must be small enough that the above three segments have enough space 

to grow. The current TRR implementation uses the range between 0 and 9216 (9K). The problem is alleviated by 

system monitoring mechanisms such as a system administrator or an intrusion detection system: when a critical 

application such as a web server or mail server keeps crashing, an alarm is raised by the monitoring/detection 

mechanisms.

Let us now consider the probability of a successful brute-force attack. Let r  be the number of values the random 

offset can take. Assuming uniform distribution of r, the probability that an attacker can guess correctly in a single 

attempt is thus Therefore, without any detection mechanism, the attacker needs n =  § tries, on average, to 

break into a system. With an intrusion detection system in place, what is the probability of an attacker can guess 

correctly before it is detected? Let d be the number of crashes the detection mechanism can tolerate before it raises 

an alarm. The probability p, that the attacker can guess right before being detected is then

d 1 1 1 d i

p=e  -f1- L (l- r
i=l ¿=1

Therefore, the expected number of sites (n), the attacker needs to attack before breaking into one of them can be 

expressed as:

n  =  1/p =
ES.i(i -  i )

l \ i - l
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Figure 7 plots the probability of break-in when varying the intrusion tolerance level is d and the number of possible 

random offset values r. The figures show that with TRR protection in place, the probability of break-in is remote.

(a) varying d  (no. o f tolerated failures) for r  =  (b) varying r  (no. o f  random values) for d =  3
1024

Figure 7. Probability of Brute-force Attack with intrusion Detection

6.1.2 Information Disclosure Attack

Additional vulnerabilities can cause a program to leak runtime memory layout information. For example, infor

mation on a program’s stack such as return addresses and frame pointers can be used to derive the initial starting 

address of the stack that has been randomized by TRR. Information disclosure like this can be used by an attacker 

to defeat the TRR mechanism. When a program that requires multiple rounds of interaction between the client and 

the server has such a \rulnerability, the attacker can initiate many rounds of conversations with the server program 

and form a reliable evaluation of the memory layout before launching the attack. The FTP SITE EXEC bug [7] is 

such a vulnerability for the specific version of wu-ftp 2.6.0. In this case, the remote FTP client can send malicious 

input string to force the vulnerable FTP server to output contents of its runtime stack and therefore leak memory 

layout information. In practice, however, this kind of case is rare. In more than one hundred advisories issued 

by CERT over the past four years, this is the only case we found that can lead to information disclosure. In most 

cases, a program does not leak information and the attacker has just one try at the target program to seize control. 

While the threat exists, it is not too serious for most programs.
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6.2 Runtime Re-randomization

The TRR mechanism is applied to applications at process loading time. For long-running programs, for example 

server applications, once the process is started, the random memory layout will remain fixed until the program 

terminates and gets reloaded. From a security perspective, a large window of static behavior can lead to potential 

vulnerability. In this section, we discuss how TRR can be dynamically applied to applications to re-randomize 

memory layout. The difficulty in rearranging the memory layout of a running process is that an application 

process’s internal state may be dependent on its memory layout, for example, it may hold pointer references to 

its heap, stack, or shared libraries. Hence, the online memory re-randomization algorithm must be application 

specific. We propose two possible solutions for a class of server applications that are considered to be stateless. 

We illustrate the idea in the context of the Apache web server.

The Apache web server version 1.3.x has a parent process, p, that monitors a pool of servicing processes 

s i . . .  sn that fulfill HTTP requests. One way to re-randomize online is to use Apache’s built-in shutdown facility to 

gracefully stop the current invocation and reload the entire set of Apache processes. A re-randomization manager, 

m, can periodically shutdown and restart Apache. The advantage of this approach is that no change is required to 

Apache itself. The disadvantage is that graceful shutdown takes time, since p  needs to wait for all pending HTTP 

requests to be fulfilled before s i , . . . ,  sn can be stopped, which might incur undesirable downtime. A second 

approach, which minimizes the downtime due to reloading, requires minor changes to the Apache source code. In 

this approach, we can change the implementation of p  as follows: periodically, p  stops accepting connections and 

creates a new monitor process pi. The new process, p', reloads itself, creates a new pool of servicing processes, 

s [ . . .  s'n, and starts accepting connections immediately. Meanwhile, the old process p  waits until . . . ,  sn 

complete their pending requests before shutting down. The second approach minimizes disruption to service, 

since the new server can service requests before the old one shuts down.

6.3 Portability

On modem Unix-like platforms, program executables use the standard ELF (Executable and Linkable Format) 

format. The ELF file format determines the runtime memory layout for the application. Memory layout on 

different Unix-based platforms all look like the image shown in Figure 5, although the default values for different 

sections might vary. Furthermore, the mechanism used for dynamic library function calls are also specified by 

the ELF file format. Since TRR is implemented by changing the ELF-related components, it can be ported to
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other Unix-like systems. On the Windows platform, executables use PE (portable executable) file format, which 

is different from ELF format. We are currently investigating how TRR can be applied on Windows.

7 Conclusions

This paper proposes Transparent Runtime Randomization (TRR), a generalized approach to protect system 

against a wide range of security attacks that exploit vulnerabilities leading to to unauthorized control information 

tampering (UCIT). The undelying principle of TRR is to randomize the application memory layout so that it is 

virtually impossible to determine locations of critical program data such as buffers, return addresses and function 

pointers. The randomization algorithm is fully transparent to application programs because it is implemented by 

modifying the dynamic program loader. By virtue of the fact that TRR is applied dynamically at runtime rather 

than statically at compile time, each invocation of a program has a different memory layout. The effectiveness 

of TRR has been tested using real-world security attacks. Results show that TRR can defeat a wide range of 

attacks including malloc-based heap overflow, integer overflow, and double free, for which effective protection 

mechanisms are yet to emerge. Performance measurements show that TRR incurs only a small overhead (2-9%) 

when launching applications and no overhead is incurred once the application begins execution. TRR is also 

portable  to other Unix-like platforms.
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