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Abstract

Many areas of psychology and education place a high premium on measurement, using psycho-

metric theory to measure constructs, such as cognitive ability, personality, and attitudes. Some of

the more well-known measurement theories used are classical test theory (CTT), structural equa-

tion modeling (SEM), and item response theory (IRT). For the practical test construction needs of

psychology and education, IRT is the most heavily used, and has been ever since Lord and Novick

(1968) published their book, Statistical Theories of Mental Test Scores.

One of the biggest advances in IRT has been the advent of computerized adaptive testing (CAT).

First introduced as tailored tests by Lord (1980), CATs have increasingly gained in popularity as

the cost of computation has gone down. As suggested by the term “tailored tests,” every person

who takes an adaptive test takes a test form unique to the person. The test is constructed item-by-

item by matching items’ difficulty levels to the ability level of that particular person. The promise

of CAT is that by constructing a test in this way items that do not contribute much to the overall

effectiveness of the measurement are left out, which can shorten the test substantially while still

maintaining a high level of measurement accuracy.

The efficiency of CAT has not gone unnoticed. The Armed Services Vocational Aptitude Test

Battery (ASVAB), which is used for measuring vocationally relevant abilities was originally intro-

duced as a paper-and-pencil test in 1968, and became operational as a CAT in 1996; the ASVAB

was the first large-scale, high-stakes operational CAT. Numerous adaptive tests have gone into

operational use for use in selection including the Graduate Management Admission Test (GMAT),

the Adjustable Competence Evaluation (ACE), the Business Language Testing Service (BULATS)

Computer Test, the IBM Selection Tests, among others. Additionally, many licensure exams cur-

rently in use—including the Uniform CPA Examination (for certified personal accountants), and

the National Council Licensure Examinations (for nurses)—are adaptive. Furthermore, the re-
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cently signed Every Student Succeeds Act has recommended a greater use of adaptive testing in

the American educational system, allowing states to develop and administer CATs.

Computer-based tests, such as CATs, allow for easy collection of response times. With the

abundance of essentially-free data, methods and applications for using response time data have

become en vogue, though they are still in their infant stage. As such, no large-scale assessments

are currently using response times as an active part of the test. Because the data is essentially-free,

it is reasonable to believe that their use is simply the next step in the evolution of computer-

based tests. Indeed, it only seems natural that CATs be modified to take advantage of response

time information, especially since it is well-known that response accuracy and response time are

related (Sternberg, 1999). Some applications include cheating detection (van der Linden, 2009a),

shortening the time needed to take a test (Choe & Kern, 2014; Fan, Wang, Chang, & Douglas,

2012), and item selection (van der Linden, 2008).

The goal of this dissertation is to introduce CAT and some of the current issues surrounding

its use, to introduce response times in measurement, and several new methods for using response

times in adaptive testing. In the first chapter, a quick review of IRT will be given, including its

historical roots, its assumptions, and some examples of commonly used IRT models. Following

this will be a brief overview of the basic components of CAT, including item selection, ability

(or trait) estimation, and item constraints. I will then discuss response times in measurement

and their current role in CAT. In the second chapter, I will describe an already-completed study

on estimating person ability and speededness jointly. In Chapter 3, I investigate the efficacy of

using the MAP estimator developed in Chapter 2 when selecting items using a generalized time-

weighted maximum information criterion (GMICT). In Chapter 4, I introduce a new item selection

technique based on the ideas of Bayesian item selection that incorporates the response time model

directly. A modified version of this criterion using the ideas from the GMICT is also investigated.

In Chapter 5, I introduce a time-weighted Kullback-Leibler information technique and investigate

its effectiveness. Finally, I conclude in Chapter 6 with some remarks about how these techniques

fit in in the current literature on response times, scoring, and adaptive testing.
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Chapter 1

Introduction

1.1 Item Response Theory (IRT)

1.1.1 History

Any good discussion of IRT starts with how it came to be. For most of the 20th century, the

predominant theory of measurement in psychology was what is now termed classical test theory

(CTT). CTT was a merger of three “simple” ideas that had been developed early in the 1900s:

measurements exist in the presence of error, error can be described as a random variable, and the

relations (or correlations) among variables can be quantified. These ideas came together when

Charles Spearman (1904) published a paper wherein he found that psychological measurements

contain error from one trial to the next; he called this error “accidental.” Spearman developed a

method for estimating the reliability of a measurement, and, in accounting for this accidental error,

how to use this reliability coefficient to correct a correlation coefficient attenuation. This has been

argued to be the beginning of what came to be CTT (Traub, 1997). For the next 60 years, and

culminating in the treatment given by Lord and Novick’s (1968) book, CTT would develop into

the dominant theory of measurement, with much of the topics within measurement dominated by

the topics of reliability and validity along with a focus on sum-scores.

As important as the Lord and Novick (1968) book was for its treatment of CTT, it may have

been equally as important or more important to the history of measurement overall as the starting

point for IRT. In it were four chapters on IRT that were written by Allan Birnbaum. The basis

for these chapters was given in the decade prior with a paper by Lord (1953) and three U.S. Air

Force technical reports written by Birnbaum (1957, 1958a, 1958b). The very fact that the classical

treatment of CTT and the beginnings of IRT appear in the same place is an interesting continuity.
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However, even though it’s not discussed at length in Lord and Novick (1968), IRT is often seen as

a response to many of the shortcomings of CTT.

The most important of these is that the examinees and tests are fundamentally intertwined

in that the interpretation of examinees’ scores cannot be done without the context of the test

characteristics, and vice versa (Hambleton, Swaminathan, & Rogers, 1991). A desirable property

would be that an individual’s score on an underlying, or latent, trait to be the same regardless of the

assessment, but that’s not the case in CTT, because of the reliance on sum-scores. As an example

of this, consider a high-ability and a medium-ability examinee; one would expect the high-ability

examinee to have a higher overall score on a trait than the medium-ability examinee. However, if

the assessment given to the examinees was extremely easy, both would have a high probability of

answering the items correctly and receive high scores. Similarly, if the high-ability examinee took

a very hard assessment while the medium-ability examinee took a very easy assessment, then the

sum-score for the high-ability examinee would actually be worse than the medium-ability examinee,

which is, of course, troublesome. Thus, if this was a hiring or admissions situation, it would be

possible to choose a lower-ability applicant simply by virtue of the assessment. Thus, we can see

that the scores on a test in CTT are test-dependent. Conversely, classical item indices are difficulty

and discrimination, where difficulty is the proportion of examinees that got an item correct and

discrimination is the point-biserial correlation (the correlation between the scores on an item and

the overall score on the test). These indices are group-dependent. IRT, on the other hand, is

invariant to the group and the assessment, so as long as the scaling of the items is done correctly,

latent trait scores will be comparable (no dependence on group or test). This property is extremely

important for CAT.

One other oft-cited shortcoming of CTT is the conceptualization of reliability and the standard

error of measurement (Bock, 1997; Hambleton et al., 1991). Reliability, as it is normally defined, is

the squared correlation between test scores and true scores. Unfortunately, true scores are unknown,

and so while this definition is conceptually pleasing, it is not computationally useful. CTT shows

us that the reliability coefficient is also equal to the correlation of test scores on parallel tests.

The property of tests being parallel (see Lord, 1980) is very difficult to satisfy, so while this is

more useful than the definition, it is still not computationally useful. The way this has been
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handled in CTT is to compute lower bounds to reliability (Cronbach, 1951; ten Berge & Zegers,

1978), which can be quite unpleasing to some (using an estimate of a lower bound of reliability

as an estimate to reliability, particularly when distributional properties are not known well, is an

unsettling prospect). This becomes a much larger problem when it is noted that the precision of a

measurement, the standard error of measurement, is a function of reliability; without a reasonable

estimate to reliability, the precision for a measurement is difficult to know well. Furthermore, the

standard error of measurement is also a function of the variance of the test scores, which is assumed

constant in a group. However, the scores on an assessment are not equally precise across the entire

spectrum of scores. With these problems taken together, clearly the concept of reliability in CTT

is somewhat less than satisfying. IRT handles these issues with its concept of information. Every

item contains information which is a function of the value of the latent trait. The sum of item

information is test information, which is, by definition, also a function of the value of the latent

trait. Taken together, it is possible to engineer an assessment that estimates particular areas of

the scale well. This property of information is also very important for CAT.

1.1.2 Standard Assumptions of IRT

IRT can be seen as a set of very general assumptions from which important mathematical pro-

perties can be derived, or as a set of models with common properties, not just simply a set of

disparate models (Lord, 1980). Essentially, if a model meets these assumptions, then the mathe-

matical properties derived in IRT can be assumed to also apply. Extensions in IRT are often simply

ways of either dealing with violations of assumptions or allowing for alternatives to the assump-

tions altogether. Two common assumptions made are unidimensionality and local independence

(Hambleton et al., 1991).

Unidimensionality generally refers to the assessment only measuring one latent trait. While this

is not, in general, met exactly by any set of items, the hope is that a single trait would have a

greater presence than any others. While many of the standard IRT models make an assumption of

unidimensionality, it is not always the case. A model that assumes that multiple latent traits are

needed for an assessment is called multidimensional.

Local independence, on the other hand, refers to the examinee responses. Specifically, it means
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that given a value for the latent trait, an examinee’s responses to items are statistically independent

of each other. One attractive interpretation is that the relationships among the items are entirely

explained by the latent trait. This is an important property for estimation, because independent

responses make maximum likelihood estimation mathematically tractable. An interesting point

is that if the assumption of unidimensionality is met, then the assumption of local independence

is also met, but not vice versa (Lord & Novick, 1968). The majority of IRT models make the

local independence assumption, but usually when they don’t, some form of “lower-order” local

independence is generally assumed. For instance, items that are presented to an examinee following

a reading passage are not assumed to be locally independent from each other. However, the response

pattern of those items jointly are considered independent of the responses on all other items.

1.1.3 Examples of IRT Models

In general, IRT models are considered to be models of categorical data with a continuous latent

variable. While the data could be considered dichotomous (having only two response categories,

0 or 1), or polytomous (having k response categories, 0, 1, 2, . . . , k − 1) with the possibility of

polytomous data being ordinal, this section will only focus on dichotomous item response models.

For an introduction to polytomous IRT models, see van der Linden and Hambleton (1997). Here, I

will discuss the standard unidimensional logistic models, their multidimensional counterparts, and

an unfolding model.

Logistic models

The most commonly used models in IRT are the so-called logistic models. The are the 1PL

(one-parameter logistic, or Rasch model), 2PL (two-parameter logistic), and 3PL (three-parameter

logistic), named for the number of item parameters in the model. These are unidimensional IRT

models that model dichotomous responses.

Suppose that xij is the jth examinee’s response to item i. Then, since xij is dichotomous, it

can take on the values 1, if correct, or 0, if incorrect. In the case of a subjective response where the

latent trait is psychological rather than ability, then an assignment of 1 and 0 would be arbitrary,

but often would correspond agree and disagree, respectively. Then, according to the 3PL model,
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the probability of answering correctly (or responding with agreement) to the ith item given the

level of the latent trait θ of the jth examinee is

p(xij = 1|θj) = Pi(θj) = ci + (1− ci)
1

1 + e−ai(θj−bi)
, (1.1)

where ai, bi, and ci are the discrimination, difficulty, and pseudo-guessing parameters for the ith

item, respectively.

The item parameters have nice interpretations. The difficulty parameter bi is a location para-

meter; it is the point on the trait scale where the probability of responding positively is 1+ci
2 . For

a fixed value of θ, as the value of b increases, the probability of a positive response decreases, and

vice versa, hence the difficulty interpretation. For a subjective response, a difficulty interpretation

is less intuitive, and so the parameter is simply the location of the item. The discrimination pa-

rameter ai is proportional to the slope of the curve Pi(θj) at bi on the trait scale. Essentially, a

larger value of ai means that the item distinguishes between levels of the trait near bi more easily;

that is, a small increase in θ yields a larger increase in the probability of responding positively

as ai increases. The pseudo-guessing parameter ci is simply the lower bound to the probability

of a positive response, i.e., as the trait level θ decreases, the probability of responding positively

approaches ci. Two other interpretations of the discrimination parameter can also be given. First,

consider the interpretation that Pi is a mixture model of a “guessing” group (with probability ci),

and a “non-guessing” group (with probability 1 − ci). If an examinee is in the “non-guessing”

group, then exp(ai) is the increase in the odds ratio of answering correctly (or giving a positive

response) for a one-unit increase in the value of θ. Another interpretation is that ai is the slope on

the logit scale (of the examinees in the “non-guessing” group).

The 1PL and 2PL models can both be considered as special cases of the 3PL model in (1.1).

The 2PL model is the 3PL model where all values of ci are equal to zero. The 1PL (Rasch) model

is the 2PL model where all values of ai are equal to each other. Without loss of generality, the

discrimination parameters are usually all set to one. More details on the logistic models can be

found in any introduction to IRT (Drasgow & Hulin, 1990; Embretson & Reise, 2000; Hambleton

et al., 1991; Lord, 1980; Lord & Novick, 1968).
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Multidimensional models

Multidimensional IRT (MIRT) models allow for the case where an assessment measures multiple

latent traits simultaneously. As such, they do not have an assumption of unidimensionality, though

they do assume that the number of dimensions in the model is correct for the assessment at hand.

A personality assessment is a classic example of a multidimensional assessment. MIRT models

come in two forms: compensatory and partially compensatory. Essentially, a compensatory model

is compensatory in the sense that a lower value on one latent trait can be offset by a higher

value on another latent trait, so that the probability of responding positively stays the same; this

compensation property is a linear relationship. A partially compensatory model is a model where

the latent trait compensation property is more complex than in a conpensatory model. Because

of space constraints and the limited usefulness of the partially compensatory models, only the

compensatory model will be discussed. For more information on partially compensatory models, as

well as MIRT in general, see Reckase (2009). Further information can also be found in the related

literature of item factor analysis (Bock, Gibbons, & Muraki, 1988; Gibbons & Hedeker, 1992; Knol

& Berger, 1991).

The unidimensional logistic IRT models can be generalized very easily to the multidimensional

case. In (1.1), the part in the exponent a(θ − b) can be expanded as aθ − ab = aθ + d, where

d = −ab. Then, the exponent can be expressed in a simple slope-intercept form. To expand

multidimensionally, the exponent can simply be expanded by including more latent traits and

corresponding weights as follows:

a1θ1 + a2θ2 + · · ·+ amθm + d =

(
m∑
k=1

akθk

)
+ d = a′θ + d, (1.2)

where a is an m× 1 vector of the a-parameters, θ is an m× 1 vector of the latent trait values, and

d is a constant intercept term. Finally, by replacing the exponent in (1.1) with (1.2), we have the

multidimensional version of the 3PL model:

p(xij = 1|θj) = Pi(θj) = ci + (1− ci)
1

1 + exp(−(a′iθj + di))
. (1.3)

Here, the a-parameter is called the discrimination parameter, in much the same way that is was for
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the unidimensional logistic models. For the kth dimension of the person-space, ak is proportional

to the slope of the curve Pi(θj) on the line 0 = a′iθj + di in the direction of the kth dimension.

Equation 1.2 can be reformulated as(
m∑
k=1

aikθjk

)
+ di = ai1(θj1 + di/ai1) + ai2(θj2 + di/ai2) + · · ·+ aim(θim + di/aim)

=

m∑
k=1

aik(θjk + di/aim)

=

m∑
k=1

aik(θjk − bik),

where bik = −di/aik. As we see here, this is the same form as the exponent part in (1.1), and so

−di/aik can be interpreted as the relative difficulty of item i with respect to dimension k. The

parameter ci is exactly the same for the multidimensional 3PL model as with the unidimensional

3PL model, and is used for modeling guessing in an cognitive assessment.

Multidimensional counterparts of the 1PL and 2PL models are special cases of the multidimen-

sional 3PL model. To obtain multidimensional 2PL, the parameter ci in (1.3) is set to zero for all

items. The multidimensional 1PL is obtained by further constraining the a-parameters to be the

same across all items; the a-parameters can be set to 1 for all items, without loss of generality.

Unfolding model

An underlying assumption of the logistic IRT models is that as the level of the latent trait

increases, the probability of responding positively on an item goes up. Mathematically, this is the

same as assuming that the item response function Pi(θj) is monotonic increasing. As Drasgow,

Chernyshenko, and Stark (2010) pointed out, this is tantamount to what Coombs (1964) described

as the dominance process. Essentially, an individual can be said to “dominate” an item if the

individual’s latent trait score is higher than the difficulty of the item on the latent trait scale.

While the dominance process is intuitive for cognitive assessments where answers are right or

wrong, it may not be appropriate for attitudinal questions. In this case, the ideal-point process

described by Coombs (1964) may be more fitting. The ideal-point process envisions a person and

an item on the same scale (the latent trait scale). A person’s location on the scale is his “ideal
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point” where he endorses an item with maximum probability. As the distance of the item from

the person increases, the probability of that person endorsing that item decreases. The novel idea

here is that there is no difference, probabilistically, between a person’s location being to the left

or to the right of the item on the scale, so long as the distance remains the same. As such, the

form of the item response function Pi(θj) is not monotonic, but increases to a maximum and then

decreases after that point. Furthermore, the item response function is symmetric.

The development of these so-called unfolding models is still in its infancy, and so there is no

one dominant model. Examples of binary unfolding models are given by Andrich (1988), Hoijtinck

(1990), and Andrich and Luo’s (1993) hyperbolic cosine model. The following polytomous unfolding

models are generalizations of the hyperbolic cosine model: the generalized hyperbolic cosine model

(Andrich, 1996), the generalized unfolding model (GUM; Roberts, 1995), and the generalized graded

unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 1998). Finally, a few multidimensional

unfolding models have been proposed. One, the normal PDF model, was given by Maydeu-Olivares,

Hernández, and McDonald (2006). Finally, the Tailored Adaptive Personality Assessment System

(TAPAS) uses the GGUM along with the multidimensional pairwise preference model (MDPP;

Stark, 2002) for use in Army selection and classification (Drasgow, Stark, Chernyshenko, Nye, &

Hulin, 2012). While there is much work to be done on unfolding models, its potential utility for

attitude measurement is great.

1.2 Computerized Adaptive Testing (CAT)

Computerized adaptive testing (CAT) was first introduced by Lord (1980) as tailored testing.

The idea is that by capitalizing on the additivity of item information, the non-uniformity of the

standard error of measurement (and item information) across the scale of the latent trait, and the

invariance properties of the assessment to the group (and of the group to the assessment) the IRT

provides, tests can be individually constructed to be highly efficient for any given examinee. This

is in direct contrast to the standard linear test in which all examinees take the same form of the

test, or a parallel form of the test. To accomplish this goal, two components are necessary: an

ability estimation procedure, and an item selection mechanism. Furthermore, many assessments

have requirements not intrinsic to the measurement itself (e.g., item types, content constraints,
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item key sequence, etc.). These are called item constraints.

1.2.1 Ability Estimation

Ability estimation is simply the process of obtaining an estimate for the value of the latent trait

θ. Other names for ability estimation are latent trait estimation and scoring. The standard ability

estimates are the maximum likelihood estimate (MLE), and the Bayesian estimates, expected a

posteriori (EAP) and maximum a posteriori (MAP). Maximum likelihood estimation relies heavily

on the assumption of local independence. Its use is well-established in the statistical literature.

First, the joint distribution of all the items given a value of the latent trait is determined. With

local independence assumed, this is just

f(x|θ) = f(x1|θ)f(x2|θ) · · · f(xn|θ) =

n∏
i=1

f(xi|θ),

where x is an n× 1 vector containing the item responses. Now, the function f is considered from

the perspective of the data being fixed, rather than the latent trait value being fixed. That is,

L(θ|x) = f(x|θ) =

n∏
i=1

f(xi|θ).

In this perspective, the function L is to be maximized with respect to θ. As a simplification, the

natural logarithm of the function L is usually taken:

logL(θ|x) = log

n∏
i=1

f(xi|θ) =

n∑
i=1

log f(xi|θ).

For an item response function, this amounts to finding the maximum of

logL(θ|x) = log

n∏
i=1

Pi(θ)
xiQi(θ)

1−xi

=

n∑
i=1

[xi logPi(θ) + (1− xi) logQi(θ)] ,

(1.4)

where Qi(θ) ≡ 1 − Pi(θ). That maximum is the MLE θ̂. Equivalently, the MLE θ̂ solves the
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maximum likelihood estimating equation

Un(θ) =
∂

∂θ
logLn(θ|x) =

n∑
i=1

{
∂

∂θ
log

Pi(θ)

Qi(θ)

}
[xi − Pi(θ)] = 0.

The gold standard in test scoring has tended to be using the maximum likelihood estimate

(MLE). This can be attributed to two properties of the MLE. First, MLE is an unbiased estimator

of ability for long tests (Lord, 1983). In testing, this is generally seen as a desirable property, because

we would like the estimated scores to be as indicative of the true scores as possible, especially in

cases when the scores are used to determine pass-fail, such as in licensure testing. Second, we know

the asymptotic properties of the MLE; that is, it is distributed normally, with a mean θ (the true

ability) and variance as the inverse of the Fisher information of θ. Thus, with long tests, we know

the behavior of estimator quite well. However, there are some downsides to the MLE as well. The

most well-known is that in some cases, the likelihood may only have a maximum at a boundary. In

this case, the MLE for θ does not exist. One well-known example of when this happens is when an

examinee answers all items correctly or all items incorrectly, which is not an uncommon occurrence.

One answer for this is to assume a known distribution g(θ) for the latent trait a priori; this

distribution is known as the prior distribution. The prior distribution, along with the likelihood

f(x|θ) are used in the well-known Bayes’ Theorem to obtain the posterior distribution as follows:

f(θ|x) =
f(x|θ)g(θ)∫∞

−∞ f(x|θ)g(θ) dθ
. (1.5)

An estimate for θ can then be obtained in one of two common ways from the posterior distribution

f(θ|x). If one takes the expectation (i.e., the mean) of the posterior distribution as the estimate

of θ, then the estimate is known as the EAP. If on the other hand the maximum (i.e., the mode)

of the posterior distribution is taken as the θ-estimate, then the estimate is called the MAP. One

argument for using the EAP over the MAP is that the MAP requires a proper continuous density

function for the prior, whereas the EAP can use a discrete prior (Bock & Aitkin, 1981; Bock &

Mislevy, 1982). Also, the EAP does not require the calculation of derivatives and is non-iterative

in nature. The MAP estimator, on the other hand, has several properties that are important. First

and foremost, the MLE can be considered a special case of the MAP when the prior distribution
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is uniform. As such, with a non-uniform prior, it can be considered to be a “regularized” form of

MLE, and is thus able to avoid the likelihood issues present in MLE. In some sense, the prior acts as

an extra observation which will tend to make the likelihood behave. Secondly, the MAP is a convex

combination of the MLE and the prior. Essentially, the MAP “shrinks” the estimate towards the

prior; this can help the estimate to avoid overfitting to the data, which can be especially helpful

for shorter tests. In comparison to the EAP, the MAP is very similar, but is simpler to compute,

especially in multiple dimensions.

These are not the only ability estimation techniques, but these are the most standard. More

information on ability estimation can be found in Baker and Kim (2004), Fox (2010), and Thissen

and Wainer (2001).

1.2.2 Item Selection

Item selection in CAT refers to the mechanism used to select the next item to administer to the

examinee in real time. The general flow of CAT is the the examinee receives an item, he responds

to that item, the level of his latent trait is estimated, and based on the current estimate of his

latent trait score, the next item is selected for administration. This process is continued until

some stopping criterion is hit, usually either a specified number of items (a fixed-length test) or

a prescribed level of the test information/measurement precision (a variable-length test). Clearly,

the item selection procedure is very important to this process.

The two standard item selection procedures are the maximum information criterion and the

maximum Kullback-Leibler (K-L) information criterion. Central to both of these is the concept of

item information. Item information is defined as the Fisher information of the item; that is,

Ii(θj) ≡ −E

[
∂2

∂θ2j
ln(Pi(θj))

∣∣∣∣∣θj
]

=
P ′i (θj)

2

Pi(θj)(1− Pi(θj))
. (1.6)

Equation 1.6 is very general, and applies to all IRT models. One specific example is the item

information function for the 3PL, which is given as

Ii(θj) =
a2i (1− ci)

[ci + exp(ai(θj − bi))] [1 + exp(−ai(θj − bi))]2
. (1.7)
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The sum of the information for n individual items is the test information, I(n)(θj); that is,

I(n)(θj) =

n∑
i=1

Ii(θj). (1.8)

It can be shown that an ability estimate θ̂ is, under regularity conditions, asymptotically normally

distributed with mean θ0 (the true ability value) and variance I(n)(θ0)
−1 in both linear paper-and-

pencil tests (Lord, 1980) and in CAT (Chang & Ying, 2009). Thus, as information increases, the

variability in the estimate decreases, i.e., the precision of the estimate increases. It should be clear

that to have as “good” an estimate as possible, information needs to be high. As θ0 cannot be

known in reality, the value of I(n)(θ̂)−1 is used as an estimate of the variance of the estimate θ̂.

The maximum information criterion says that the next item to administer should be chosen

such that (1.8) is maximized for the current estimate of θ. Since test information is additive, this

simply amounts to finding the item where item information is highest. As argued by Chang and

Ying (1996), the value of the item information function at θ can be considered as local information.

Thus, the maximum information criterion makes most sense when the current estimate of the latent

trait θ̂ is close to the actual value of θ. But when it is not, the chosen item is not optimal for the

examinee, and so the search for the correct value of θ is weakened. This is particularly true for the

early stages of CAT when few items have been administered.

To remedy this situation, a “global” criterion was proposed by Chang and Ying (1996) using the

K-L information criterion. They argue that the log-likelihood ratio is a best quantity that can be

used for this purpose; correspondingly, the K-L information function is a “distance” function (more

appropriately, a “divergence” function, because of its non-symmetricity) between the log-likelihoods

of two values, θ and θ0. It is defined as follows:

Ki(θ‖θ0) = E

[
log

(
Li(θ0|Xi)

Li(θ|Xi)

)]
= Pi(θ0) log

(
Pi(θ0)

Pi(θ)

)
+Qi(θ0) log

(
Qi(θ0)

Qi(θ)

)
, (1.9)

where θ0 is the true parameter, θ is an estimate of θ0, and Li(θ|Xi) is the likelihood function for

the ith item. Interestingly, we find that the second derivative of the K-L information function at

θ0 is the item information function, and so, geometrically, item information is the curvature of K-L

information at the point θ0. In practice, we do not know the actual value of a person’s latent trait,
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so to use this, we need an index. A simple index can be the average of the area under the curve K

of an appropriate interval about the estimate θ̂

Ki(θ̂) =

∫ θ̂+δ

θ̂−δ
Ki(θ‖θ̂) dθ (1.10)

where δ is a control to determine the interval size about θ̂. The maximum K-L information criterion,

then, is to simply choose the next item such that (1.10) is maximized. The downside to the K-L

index is that it is more computationally intensive than item information. To deal with this in

practice, K-L information is only used at early stages of the test when its use is most crucial,

switching to item information in the later stages when the estimate of θ is closer to the true value.

A third strategy for choosing items is used when estimating θ in a Bayesian manner; that is, to

use the prior in selecting items. This idea was first proposed by Owen (1969, 1975) where he used

an approximate empirical Bayes procedure, estimating θ with the EAP with a normal prior. The

next item is chosen to satisfy the criterion

|bik − E(θ|x)| < δ, (1.11)

where ik is the index of the item in the administered as the kth item in the test, and δ > 0. Note that

E(θ|x) is the EAP. It was proposed to stop this procedure when the posterior variance is smaller

than some threshold. Owen also proposed minimizing the preposterior risk under a quadratic loss

to select items. This is equivalent to choosing items that minimize the expected posterior variance.

At the time, this was an infeasible method for item selection, due to computational constraints at

the time.

Later, van der Linden (1998) proposed a series of Bayesian item selection criteria, reasoning that

the computational constraints present during Owen’s time were no longer a concern. He found that

the minimum expected posterior variance (MEPV) criterion performed the best, outperforming (or

having similar performance as) the other criteria he suggested (viz., maximum posterior-weighted

information, maximum expected information, and maximum expected posterior-weighted informa-

tion) and the standard maximum information criterion. The minimum expected posterior variance
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criterion chooses the kth item as the one that minimizes the expected posterior variance. That,

ik ≡ min
j

{
1∑

m=0

pj(Xj = m|x1, . . . , xk−1)Var(θ|x1, . . . , xk−1, Xj = m) : j ∈ Rk

}
(1.12)

where pj(Xj = m|x1, . . . , xk−1) is the posterior predictive distribution

pj(Xj = m|x1, . . . , xk−1) =

∫
pj(Xj = m|θ)g(θ|x1, . . . , xk−1) dθ, (1.13)

and Rk is the set indices of the items remaining in the item pool. It turns out that the MEPV

criterion is especially effective for short tests. As the test length increases, the choice of the item

selection criterion has little effect on test efficiency. This is to be expected, as the asymptotic

variance of the Bayesian estimate is just the inverse of the test information (Chang, 1996; Chang &

Stout, 1993). Of course, most adaptive tests are designed to be shorter than when an asymptotic

result may reasonably be expected to hold.

1.2.3 Item Constraints

Item constraints affect the construction of the test by altering the selection of items that would

otherwise be selected. The general issue comes from a need to satisfy the constraints by the

completion of the assessment while maintaining a level of optimality in terms of measurement

efficiency for the individual. While item constraints are fairly straightforward to incorporate in a

linear test, because all items are selected simultaneously, its implementation in CAT requires some

care. Two methods to handle item constraints will be discussed here.

The first method is called the shadow test method (van der Linden & Glas, 2010; van der

Linden & Reese, 1998). The idea is quite straight-forward. For each item, an entire assessment

is constructed such that all of the constraints are met while maximizing efficiency for the current

latent trait estimate θ̂; this test is called a shadow test. The item in the shadow test with maximum

information at θ̂ is administered. After the examinee responds to the item, the estimate of the

latent is updated. A new shadow test with the administered item included is assembled; with every

iteration, all previously administered items are included in the shadow test. This process is iterated

until the required number of items have been administered. Underlying the construction of the

14



shadow tests is a linear integer programming algorithm. Integer programming allows for an exact

solution to the problem if it exists, though an exact solution is not guaranteed; when no solution

exists, the shadow test method will produce an error. Furthermore, integer programming can be

computationally intensive and difficult to implement in real time.

Another method is the maximum priority index (MPI) method (Cheng & Chang, 2009). In

essence, it achieves item constraints by modifying the item information index with a multiplier

that incorporates item constraints to create a new “attractiveness” measure, the priority index.

Suppose there are K constraints to be considered in the assessment and I items in the item pool.

Clearly not all constraints are relevant to every item. An I ×K matrix C can be constructed that

contains the information of which constraints are relevant to which items by setting cik = 1 if the

the kth constraint is relevant to the ith item, and cik = 0 otherwise. This constraint relevancy

matrix can be constructed a priori by the appropriate content experts. For each constraint, there is

an associated weight wk which denotes the relative importance of that particular constraint to the

assessment. Finally, the proportion of items still needed to satisfy to the kth content constraints

of the assessment is constructed as

fk =
Xk − xk
Xk

,

where Xk is the number of items required to satisfy constraint k and xk is the number of items that

have been administered to satisfy constraint k; fk is reconstructed following each adminstration.

Then, the priority index is

PIi = Ii(θ̂)

K∏
k=1

(wkfk)
cik , (1.14)

where Ii(θ̂) is the item information for item i at the current latent trait estimate θ̂. The MPI

method then states that the next item chosen for administration is the item that maximizes PIi.

This method is able to handle a large number of constraints simultaneously with little extra com-

putational load. Furthermore, unlike the shadow test method it does not, in general, offer exact

solutions. However, it will always offer a solution. Also, since it does not require the use of a

sophisticated integer programming software, it is more easily implementable in current operational
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CATs than the shadow test method.

1.3 Issues and Extensions in CAT

CAT has come a long way over the past 30 years. Many of the advancements in CAT have

come as advancements in IRT have been developed. Here, some issues and extensions in CAT

will be discussed briefly. First, the issue of bias in measurement, also known as differential item

functioning (DIF) and as measurement invariance, will be examined. This issue arises as an item

has different properties for different groups. Two extensions of CAT will also be examined, building

on the discussion of multidimensional and unfolding IRT models.

1.3.1 Differential Item Functioning (DIF)

DIF refers to the situation in which the probabilities of two different groups answering the same

way are different when their latent trait values are the same. That is, there is a value θj such that

P1i(θj) 6= P2i(θj),

where the numbered subscript refers to the group assignment. In other words, the item para-

meters for item i are not the same across the groups. The detection of DIF is a well-studied

topic, with several tests having been proposed. For dichotomous data, tests include the stan-

dardization method (Dorans & Kulick, 1986), Mantel-Haenszel (Holland & Thayer, 1988), and

SIBTEST (Shealy & Stout, 1993). For polytomous data, generalizations of the standardization

method, Mantel-Haenszel, and SIBTEST exist: the standardized mean difference method (Dorans

& Schmitt, 1993), the Mantel procedure (Zwick, Donoghue, & Grima, 1993), and Poly-SIBTEST

(Chang, Mazzeo, & Roussos, 1996), respectively. A detailed discussion of their similarities and

differences can be found in Roussos and Stout (1996) and Chang et al. (1996).

While DIF has been studied extensively in the context of linear tests, little work has been done

on DIF in the context of CAT, even though, as argued by Makransky and Glas (2013), DIF is

even more important when examinees receive different items on a test, like in CAT. This is because

when items display DIF, the act of giving the items to different examinees creates bias within and
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between groups, rather than just between groups in a linear test. Also, items that display DIF

could affect the item selection procedure and, thus, be administered to examinees incorrectly and

ruining the optimality of the CAT. Furthermore, the items selected are partially dependent upon

the previous items (Mislevy & Chang, 2000), and so an item adminstered incorrectly due to DIF

could potentially have disastrous effects. Additionally, the very fact that fewer items are given in

CAT, any single item is more important to examinee scores than in linear tests, and, thus, any given

item exhibiting DIF will have a more negative effect in CAT than in linear tests (Zwick, 2010).

If items are not shown to be without DIF, then a CAT used for selection purposes would clearly

not be legally defensible, and, thus, could leave any organization using the test open to lawsuits.

This is, of course, also the case for linear tests, but is simply magnified in the CAT scenario. After

investigating DIF, and DIF items have been identified, those items do not necessarily have to be

thrown out of the item pool, but can simply have differing sets of item parameters for each group,

essentially creating multiple “pseudo-items” out of a single item. It has been shown that this

approach is not detrimental to the overall assessment (Makransky & Glas, 2013). Some methods

for assessing DIF in CATs include the method by Zwick, Thayer, and Wingersky (ZTW; 1994), and

by Zwick, Thayer, and Lewis (ZTL; 1999, 2000); the ZTW methods are based on a modification

of the Mantel-Haenszel test, whereas the ZTL methods are based on an empirical Bayes-enhanced

version of the Mantel-Haenszel test. An in-depth review of DIF methods can be found in Zwick

(2010).

1.3.2 Test Security

One large concern in computerized testing that frequently comes up is the security (and con-

fidentiality) of a test. For professional test-makers and test-users, this is a codified standard.

According to the “Standards for Educational and Psychological Testing” (2014), “Test users have

the responsibility of protecting the security of the test materials at all times” (Standard 5.7), and

“Reasonable efforts should be made to assure the integrity of test scores by eliminating opportu-

nities for test takers to attain scores by fraudulent means” (Standard 5.6). In the perspective of

testing companies, a large importance is placed on minimizing the cost of test development. One

way this can be done is with the efficient use of items. This concern is in line with the goals of
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test security; if items are used inefficiently—that is, that some items are used more frequently than

others—then the chance of these items being compromised, or stolen by thieves, increases (Yi,

Zhang, & Chang, 2008). In the continuous testing mode of CAT, efficient use of items is parti-

cularly of concern, since the method of selecting items may not necessarily guarantee a uniform

distribution of item usage.

To quantify test security, two indices are commonly used. One is the item exposure rate, and

the other is the test overlap rate (Chang & Ying, 1999; Way, 1998; Yi et al., 2008). Intuitively,

these make sense. As the exposure rate, defined as the ratio between the number of times an item

is administered and the total number of examinees, for an item increases, the more likely that

item is to be remembered by thieves and eventually compromised. Similarly, as the test overlap

rate (which is the average number of overlapping items encountered by a group of examinees over

a given test length) increases, the more likely that an item is to be remembered by a group of

thieves, compromising the item.

Particularly for the exposure rate, it is the case that the best distribution of item usage is the

uniform distribution, which can be achieved by random item selection. This is, of course, not a

tenable option under an adaptive testing system, but it does serve as a baseline for measuring a

best exposure rate for a test. For a test of length L with an item bank of size N , the uniform rate

is simply L/N . A simple value quantifying the differences between this baseline and the actual

exposure rate for n examinees

ri =
number of times the ith item is used

n

is just the scaled χ2 (Chang & Ying, 1999)

χ2 =

N∑
i=1

ri − L/N
L/N

. (1.15)

Essentially, χ2 measures the amount of departure from the uniform distribution, or skewness, of

item exposure. The higher the value, the more skewed the item exposure distribution is and the

more likely those items are to be compromised.

For test overlap rate, a baseline can also be constructed. Chang and Zhang (2002) argue that a
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reasonable benchmark for comparison is the lower bound for the item overlap rate, which they also

refer to as item sharing, as higher item overlap rates serve as evidence of skewed item exposure

rates. Furthermore, as test overlap rate is particularly sensitive to item selection method, ability

estimation method, and exposure control method, a theoretical lower bound over all methods can

serve as a useful benchmark. It turns out that this benchmark can be achieved like the exposure

rate, that is, assuming a random item selection. In Chang and Zhang (2002), a recursive formula

based on the hypergeometric distribution for this lower-bound is found. In the special case of two

examinees, the lower bound is simply L2

N , where L is the test length and N is the item bank size.

They also define a related concept called item pooling. Item pooling refers to the information pooled

from several former examinees; it can be indexed by the number of overlapping items encountered

by an examinee with a number of other examinees who have already taken the test. They also find

a lower-bound for the item pooling index. In the special case where an examinee pools information

from just one former examinee, this is equivalent to the item overlap rate between two examinees,

and the lower bound is, again, L2

N .

Several methods for handling the problem of a skewed item bank have been proposed, such as

the Sympson-Hetter method (Sympson & Hetter, 1985), a-stratification (Chang & Ying, 1999),

a-stratification with b blocking (Chang, Qian, & Ying, 2001), and the maximum priority index

method (Cheng & Chang, 2009). In Sympson and Hetter’s (1985) method, a probabilistic method

for exposure control was used. Their approach tries to make sure that the probability that an item

i is administered is less than some given value ri; that is, that P (Ai) ≤ ri. If the probability of an

item being selected is denoted as P (Si), then we know that the P (Ai) = P (Ai|Si)P (Si) ≤ ri. Since

the values of P (Si) depend on the item pool and the particular CAT algorithm used, they are fixed.

Since P (Si) and ri are both fixed, then after determining P (Si) from simulation, P (Ai|Si) can be

found so that the inequality is satisfied; that is, by setting P (Ai|Si) ≤ ri/P (Si). This method

has been found to acceptably handle the problem of over-exposure of items, but not the problem

of under-exposure of items. Modifications of the Sympson-Hetter method have been proposed by

Stocking and Lewis (1998, 2000).

The method of a-stratification (Chang & Ying, 1999) was developed as a response to the argu-

ment that it may be useful to consider selecting “less optimal” choices of items in the early stages
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of a CAT (Chang & Ying, 1996), and also as a way to remedy high exposure rates. When using

maximum information item selection in CAT, which is the standard, items are chosen so that Fisher

information is as large as possible. For the 2PL model (and 3PL model), this is the case when

true ability θ0 is as close as possible to bi and ai is maximized. However, since θ0 is not known,

it must be estimated by θ̂. When there is not enough data for an accurate estimate, such as in

earlier stages of a test, the estimate θ̂ and the true value θ0 of ability may be drastically different.

For the 2PL model, the true item information is, then

Ii(θ0|ai, θ̂) = a2i

exp
[
ai

(
θ0 − θ̂

)]
{

1 + exp
[
ai

(
θ0 − θ̂

)]}2 .
From this, we find that true information can be drastically less than expected information when

θ̂ 6= θ0 (as in the earlier stages of a test), and, in fact, approaches 0 as ai increases (Chang &

Ying, 2009). Thus, highly discriminating items should be avoided in the early parts of a test. The

method of a-stratification remedies this situation, which is described in the following. The items

in the item bank are ordered in terms of their a-parameters and split into K levels, and the test

is split into K corresponding stages. In the kth test stage, nk items are sequentially selected from

the kth level of the item bank; they are selected based simply on the closeness of b to θ̂. This is

repeated for each of the K stages. This method was found to have decreased test overlap rate and

more even exposure rates, as well as comparable ability estimation accuracy as the Sympson-Hetter

method.

A related method is the method of a-stratification with b blocking (Chang et al., 2001). A

very important assumption when using the a-stratification method is that b parameters are evenly

distributed across all levels of a; that is, that Corr(a, b) = 0. However, this is rare in practice, with

a- and b-parameters often positively correlated (Lord, 1984). Thus, the b-parameters also need to

be partitioned accordingly. First, the items in the item bank are ordered in order of increasing

b-parameters and split into M blocks. Importantly, all blocks should have roughly the same number

of items, differing by at most one. Within each block, the items are ordered in order of increasing

a-parameters. The items are then partitioned within block into K roughly equal sized strata. For

the kth stratum across each of the blocks are combined together to create K levels in the item
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pool. The test is also split into K corresponding stages. For the kth stage of the test, nk items are

sequentially selected from the kth level of the item bank according to closeness of b to θ̂. This is

repeated for all K stages of the test. For a simulated test administration of a retired item pool from

the GRE-Quant—which has a correlation between a and b within its item bank of 0.44—it was

found that the a-stratification with b blocking method outperformed the a-stratification method in

overlap rate, exposure rate, and ability estimation accuracy.

One final method to be discussed is the use of the MPI to include exposure control as a special

constraint (Cheng & Chang, 2009). As previously discussed, the MPI method seeks to choose items

such that the priority index in (1.14) is maximized. Here, wk is the weight for the kth constraint

and fik is an appropriate multiplier quantifying the “quota left” on a particular constraint for item

i on the kth constraint. If we suppose that constraint k′ requires that the exposure rate for item i

be less than or equal to ri, then a special constraint for item exposure can simply be

fik′ =
ri − ni

N

ri
,

where ni is the number of examinees that have seen item i out of N total examinees. The flexibility

to handle content constraints, as well as exposure rate controls as constraints, is a highly important

property of the MPI.

1.3.3 Extensions of CAT

MIRT models and unfolding IRT models are very useful for the measurement of a multitude of

constructs, most notably personality and attitudinal measures. As such, combining these models

with CAT is a very natural extension of CAT. While both of these topics are still fairly recent,

more has been done in the area of multidimensional-CAT (MCAT) than in unfolding-CAT. Indeed,

as much as unfolding IRT models are in their infancy, unfolding-CAT is in its infancy. Notably,

the TAPAS (Tailored Adaptive Personality Assessment System) uses an unfolding model along

with a preference switching model, the MDPP (Stark, 2002), to assess personality for use in Army

selection (Drasgow et al., 2012). The assessment gives an examinee two statements, and the exa-

minee must choose one of them as the statement that best describes himself. While in research and

diagnostic settings, examinees will generally provide truthful answers, in a high-stakes test, such

21



as job selection and placement, it is more likely that they will not be truthful; the forced choice

mechanism reduces the likelihood of an examinee simply providing answers seen as socially desi-

rable. The unfolding model is used, because the assessment is composed are attitudinal questions.

CAT elements are incorporated to maximize efficiency. For more information on current attempts

at unfolding-CAT, see Roberts, Lin, and Laughlin (2001) and W.-C. Wang, Liu, and Wu (2013).

The most well-known operational MCAT is the Armed Services Vocational Aptitude Test Bat-

tery (ASVAB), which is also one of the oldest operational CATs in general. It is used to measure

multiple facets of vocational aptitude simultaneously for the purpose of selection and placement in

the armed services, much as TAPAS is used. The difference is that the TAPAS measures personality,

while the ASVAB is a cognitive assessment.

In MCAT, much of the usual CAT mechanism is the same, with the largest change in imple-

mentation coming from the item selection algorithm. In a standard CAT with unidimensional IRT,

items are selected that give the most information about the latent trait. While this goal is still

desirable in MIRT, there is more than one latent trait, so a delicate balance between measuring all

traits simultaneously arises. This is done by use of the Fisher information matrix, which is just a

generalization of (refeq:iteminfo),

[Ii(θ)]jk ≡ −E

[
∂2

∂θj∂θk
lnPi(θ)

∣∣∣∣θ] , (1.16)

and the multidimensional K-L information index (Veldkamp & van der Linden, 2002; C. Wang,

Chang, & Boughton, 2011), a generalization of (1.10)

KIi(θ0) =

∫ θ10+δ

θ10−δ
· · ·
∫ θp0+δ

θp0−δ
KLi(θ0‖θ) ∂θ. (1.17)

To use the Fisher information matrix, the information must be aggregated to create a criterion.

Two possibilities are D-optimality (Mulder & van der Linden, 2009; Segall, 1996) and A-optimality

(Mulder & van der Linden, 2009; van der Linden, 1999). D-optimality serves to minimize the

generalized variance of the ability estimate (θ̂−θ0)
′Σ−1(θ̂−θ0), where Σ is a covariance matrix. A-

optimality, on the other hand, serves to minimize the sum of the variances of the ability dimensions,

which is simply the trace of the inverse of the Fisher information matrix. Interestingly, while KI is
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clearly superior to Fisher information in unidimensional-CAT, this is not the case in MCAT when

the MIRT model is compensatory in nature. Rather, a different use of K-L distance, the mutual

information method (Mulder & van der Linden, 2010; Weissman, 2007) is best, with D-optimality

providing similar results.

1.4 Response Times

CAT is an area with great promise and potential, but much work is left to do. Some current

trends in the testing industry have spurred research to move in new directions. One trend that

will be discussed here is using response time information. First, I will discuss models of response

times in testing. I will conclude by discussing the literature of how response times can be used in

testing.

1.4.1 Response Time Models

Response time information has become en vogue with the rise of computer-based tests, both

linear and adaptive, because response times are easily-collected, essentially-free data. However,

interest in the analysis of response times is not new. That interest is borne from the hypothesis—

which dates back to at least the dawn of psychology as a science in the 1860s—that different ways

of processing information take differing amounts of time, and so response times can, in essence,

allow a researcher a way to infer the structure of the mind through a series of experiments (Luce,

1986).

One of the most well-known relationships in psychology is that of speed and accuracy. In general,

it has been found that with increasing speed of response, accuracy decreases. This phenomenon,

known as the speed-accuracy trade-off, has been observed for a long time (e.g., Garrett, 1922;

Wickelgren, 1977; Woodworth, 1899). In testing, a distinction was made between a power test

(i.e., a test with a number of items of differing difficulties with no time constraint) and a speed

test (i.e., a time-limited test with a large number of easy items) by Gulliksen (1950). In a power

test, the focus is entirely on response accuracy, whereas speed tests try to measure how quickly

examinees answer items. Additionally, Gulliksen created a version of CTT for speed tests that

mirrors the standard CTT (which is applicable to power tests). In his view, a random variable
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E = N − X—where N is the total number of items, X represents the total correct score, and

E represents the total error score—can be decomposed into W , the number of items which the

examinee gives an incorrect answer, and U , the number of items that the examinee does not reach;

that is, E = W + U . A pure speed test can be defined as a test where P (W = 0) = 1, and,

conversely, a pure power test can be defined as a test where P (U = 0) = 1. In this view, it is easy

to see that in reality, no practical test is a pure power test or a power speed test; most tests are

constructed as power tests, but are time-limited. Indeed, for complex tasks, it is known that speed

and accuracy are distinct factors, so a single dimension is not sufficient to explain this relationship

(Schnipke & Scrams, 2002). Thus, it is important to be able to model both the response accuracy

and response time aspects of testing, though this has not always been the method of choice. As

Spearman (1927) wrote: “Now, if we desire any genuine measurement of cognitive ability, it is

to these universal quantitative properties of clearness [accuracy] and speed that we are obliged to

turn” (p. 245).

Models for response times can be described as those that include only response times and

those that include response times and response accuracy. Furthermore, van der Linden (2009b)

identified two general approaches to modeling response accuracy with response times: (1) using

separate models for response times and response accuracy, and (2) incorporating response times in

models for response accuracy (or vice versa).

The first set of response time models—those only including response times—would be most

applicable to tasks that are primarily governed by speed, such as speed tests. These models

primarily differ in the assumption for the distribution of response times. Scheiblechner (1979)

proposed a model for response times in the vein of IRT models that decomposes the mean response

time linearly into effects due to persons and due to items, assuming an exponential distribution for

response times, called the psychometric latency model. It takes the form

f(tij) = (θj + εi) exp [(θj + εi)tij ] , (1.18)

where θj > 0 is the person-effect on response time for person j, εi ≥ 0 is the item-effect on response

time for item i, and tij is the response time of person j on item i. He also suggested a further

linear decomposition of the item-effect εi, allowing for a better description of the item-effect. This
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is given as

εi =

m∑
k=1

aikηk + c0, (1.19)

where aik is the known value of observed covariate k on item i, ηk is the effect of covariate k on

the items, and c0 is a normalizing constant. This idea is similar to the linear logistic latent trait

model (LLTM; Fischer, 1973), where the item difficulty parameter in a logistic response model

is decomposed by known item attributes to elucidate the structure of item difficulty in a test.

Another model that uses this linear decomposition of parameters to create an additive model is the

generalized gamma distribution model by Maris (1993). He proposed to use a gamma distribution—

which can be seen as a two-parameter generalization of the exponential distribution—to model

response times, allowing a linear decomposition of the parameters for the gamma distribution. An

advantage of using this model is that a multiplicative decomposition of the parameters is also easily

handled and fit. A more recent model was given by (Rouder, Sun, Speckman, Lu, & Zhou, 2003).

In their model, a three-parameter Weibull distribution is specified for response times, taking the

form

f(tij) =
βj(tij − ψj)βj−1

σ
βj

j

exp

[
−(tij − ψj)βj

σ
βj

j

]
, tij > ψj , (1.20)

where βj , σj , and ψj are shape, scale, and shift parameters for person j, respectively. Importantly,

this model assumes that response times tij within person j are identically distributed across items,

and, thus, that the cognitive process for that individual is captured by the shape, scale, and shift

parameters. Tatsuoka and Tatsuoka (1980) also proposed using a Weibull model for modeling

response times in a testing situation, but unlike Rouder et al. (2003), they assumed the shape

and scale were item parameters rather than person parameters, and that the shift parameter ψ

represents “minus” the person speededness. Other response time only models were given by Pieters

and van der Ven (Poisson-Erlang model; 1982) and van der Linden (log-normal model; 2006).

The second modeling approach uses separate models for response times and response accuracy.

A well-known example of this was given by Rasch (1960). In this volume, he gives two models

for reading: a model for misreadings (measuring accuracy), and a model for reading speed. In the

misreadings model, he assumes that for a reading passage i with Ni, that the number of misreadings
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aij for examinee j follows a Poisson distribution:

p(aij |Ni) =
λ
aij

ij

aij !
exp(−λij), (1.21)

where λij = Niθij and θij = δi
ξj

. Rasch interpreted δi as the difficulty of a text passage and ξj

as the ability of a reader. Thus, for more difficult texts or less able readers, the probability of a

misreading goes up. It is a standard result in statistics that if the number of events given a fixed

time is Poisson distributed, as above, then the amount of time taken for a fixed number of events

to occur is gamma distributed. Thus, Rasch (1960) also proposed a model for reading speed where

the time tij taken to read Ni words in a text passage is assumed to be gamma distributed. This is

given as

p(tij |Ni) = νij exp(−νijtij)
(νijtij)

Ni−1

(Ni − 1)!
, (1.22)

where νij = τj
ωi

, and ωi is the difficulty of a text i and τj is the speededness of an examinee j. Thus,

for a faster examinee and a less difficult text, the rate at which an examinee reads Ni words goes

up. Taken together, Rasch was able to simultaneously model ability and speededness of examinees.

Extensions of Rasch’s approach were given by Jansen (1986, 1997a, 1997b) and Jansen and van

Duijn (1992). Another approach used is that of Gorin (2005), where used the LLTM to decompose

item difficulty into item attributes (experimental predictors) and attribute weights, as well as

regressing the log-response times onto item difficulties and those same experimental predictors.

This was done to find how much experimental predictors were related to correctly solving a reading

comprehension problem and how quickly it was solved. Similar procedures were done by Embretson

(1998) for abstract reasoning problems. One further response time model was proposed by van der

Linden, Scrams, and Schnipke (1999). They propose a linear model of the log-response times

ln tij = µ+ δi + τj + εij , (1.23)

where µ is a grand-mean response-time level, δi is a time-intensity parameter for item i, τj is a

slowness parameter for examinee j, and εij is a normally distributed residual term. In their paper,

they propose to use this model in a shadow-test approach to item selection (van der Linden & Glas,

2010; van der Linden & Reese, 1998), by incorporating model-estimated response times into the
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constraints to control for differential speededness of examinees. This model was also used to detect

aberrant behaviors (van der Linden & van Krimpen-Stoop, 2003). Importantly, modeling response

times and response accuracy separately assumes that they are fully independent, which may not

be the case.

The final modeling approach uses incorporates response times into models for response accuracy

(and vice versa). Examples of these models include those given by Thissen (1983), Roskam (1987),

Verhelst, Verstralen, and Jansen (1997), and Rouder et al. (2003). In Thissen (1983), for instance,

proposed a model, modified from Furneaux (1961) as

ln tij = µ+ δi + τj − ρzij + εij , (1.24)

where µ, δi, and τj are defined similarly to the model in (1.23); zij = ai(θj − bi), as defined by the

2PL model (used, here, as the response accuracy model); ρ is a regression parameter describing how

examinee ability and item difficulty relate to log-response time; and εij is a normally distributed

residual term. In this model, it is assumed that as ability increases (or difficulty decreases), response

time decreases; it does not assume that response time directly affects response accuracy. This is

an example of a model incorporating ability into a response time model. Other models include

response times into a model of response accuracy. Roskam (1987, 1997) proposed one such model.

His model is a Rasch-type response accuracy model with response time as a predictor:

Pi(θj) = [1 + exp(θj + ln tij − bi)]−1 . (1.25)

An interesting feature of this model is that the speed-accuracy trade-off is directly incorporated; for

a faster examinee response (i.e., ln tij decreases), the probability of a correct response decreases.

One other feature of this model is that it assumes that given enough time, any examinee can

increase the probability of a correct response to 1. A related model given by Verhelst et al. (1997)

uses a latent variable of person-speededness τj instead of a directly using response time in the

model

Pi(θj , τj) = [1 + exp(θj − ln τj − bi)]−νi , (1.26)

where νi is an item-dependent shape parameter; with νi = 1, this is just a Rasch-type logistic
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model. As in the Roskam (1997) model, the speed-accuracy trade-off is directly incorporated;

however, speededness is assumed to be a person-parameter invariant to the item which may not be

reasonable in many cases. T. Wang and Hanson (2005) give a third model in this mold where the

speed-accuracy trade-off is incorporated into a 3PL model rather than a Rasch-type model. It is

given as follows:

Pi(θj) = ci + (1− ci)
{

1 + exp

[
−ai

(
θj −

ρjdi
tij
− bi

)]}−1
, (1.27)

where ρj and di are person- and item-parameters for speededness, respectively. An interesting

property of this model is that as response time increases, this model approaches a standard 3PL

model, implying that unlike the Roskam (1997) model, a given examinee can increase the probability

of a correct response, but is still limited by his or her ability.

Other joint models for response time and accuracy follow a multilevel approach. These mo-

dels have two levels; at the first level, a response accuracy and a response time model are given

separately, and at the second level, the person parameters for ability and speededness across the

population are modeled jointly with a multivariate distribution, such as the multivariate normal

distribution. Within this set of models, two approaches have been taken for modeling the response

times in the first level: using a parametric model (Fox, Klein Entink, & van der Linden, 2007; Klein

Entink, Fox, & van der Linden, 2009; Klein Entink, Kuhn, Hornke, & Fox, 2009; Molenaar, Tuer-

linckx, & van der Maas, 2015; van der Linden, 2007); or using a semiparametric model (C. Wang,

Chang, & Douglas, 2013; C. Wang, Fan, Chang, & Douglas, 2013). Justification for these types of

models is given by the recognition of two things: 1) ability and speededness are separate factors

(Kennedy, 1930); and 2) for a given examinee and a fixed level of speededness, accuracy remains

constant (Tate, 1948). These models reject the idea of incorporating the speed-accuracy trade-off

directly in some tests, because, as van der Linden (2007) notes, if the test has a reasonable time

limit, then an examinee should have a fixed level of speededness throughout the test. Thus, the

speed-accuracy trade-off is a within-person constraint, not allowing the prediction of accuracy of

one person from another (Klein Entink, Fox, & van der Linden, 2009).

Of the multilevel approach models, the most popular is van der Linden’s (2007) hierarchical

model. The first level models include the 3PL model, given in (1.1), as a response accuracy model,
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and a lognormal model for the response time model. The intuition behind the lognormal model

can be traced the concept of speed in physics (van der Linden, 2006).

The average speed of an object is simply the distance D from the object’s location at the first

time point to the object’s location at the second time point divided by the time T it took to go

from the first location to the second location. In other words,

average distance =
D

T
.

Similarly, the speed of an examinee τ∗j on a test item should be measured as the amount of labor

β∗i needed to finish the item divided by the amount of time tij needed to complete the item, which

can be expressed as follows:

τ∗j =
β∗i
tij
.

Clearly, then, by algebraic manipulation tij = β∗i /τ
∗
j ⇒ ln tij = βi − τj , where βi = lnβ∗i and

τj = ln τ∗j . If we allow for an item-specific error term, then the lognormal model is obtained. It is

as follows:

lnTij = βi − τj + εi, (1.28)

where βi is an time-intensity effect for item i, τj is speededness for person j, and εi is a normally-

distributed error term with mean 0 and variance α−2i . The αi parameters can be interpreted as

item discrimination parameters. Another way of stating this is that

T ∗ij ≡ lnTij ∼ N(βi − τj , α−2i ). (1.29)

At the second level of the hierarchical model, the person parameters ξj = (θj , τj) take on a joint

multivariate normal distribution with mean vector µP and covariance matrix ΣP .

1.4.2 Using Response Times in Testing

With this wealth of information, it has fallen upon psychometricians to find ways in which re-

sponse times and response time models can be used effectively for testing purposes. Currently, the

most popular model in the literature is van der Linden’s (2007) hierarchical model. Some applica-
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tions of the use of response times that make use the hierarchical model include cheating detection

(van der Linden, 2009a; van der Linden & Guo, 2008; van der Linden & van Krimpen-Stoop, 2003),

item parameter estimation (van der Linden, Klein Entink, & Fox, 2010), and item selection (Choe

& Kern, 2014; Fan et al., 2012; van der Linden, 2008, 2009c). Much of the future work in re-

sponse time research revolves around parameter estimation—the current methods rely heavily on

computationally intensive Markov chain Monte Carlo techniques—and newer applications.

One hot topic in measurement right now is detecting cheating and its cousin, aberrant responses.

Aberrant responses can be any response pattern which is out of the ordinary, which can occur due

to bad test items, ambiguous instructions, copying answers (cheating), students that need test

accomodations, and so on (van der Linden & Guo, 2008). In particular, it seems especially fruitful

to consider response time information for detecting cheating and aberrant responses, and several

methods have been created for this task.

In van der Linden (2009a), the author focuses on detecting a specific kind of cheating: the

collusion between two test-takers. To this end, the lognormal model for response times is generalized

to a bivariate lognormal model to analyze the RTs between pairs of test takers. This model is as

follows:

f(ln tij , ln tik|τj , τk) =
α2
i

2π
√

1− ρ2jk
exp

{
− 1

2(1− ρ2jk)
(ψ2

jk − 2ρjkψijψik + ψ2
ik)

}
, (1.30)

where ψij = αi[ln tij − (βi − τj)], ρjk is the degree to which the response times for two fixed test

takers agree, and αi, βi, and τj are defined as in the univariate lognormal model. It was proposed

to use a test of the hypothesis

H0 : ρjk = 0,

against

H1 : ρjk > 0,

as a way to detect whether or not two test-takers were colluding together. In van der Linden and

Guo (2008), the goal is to detect, more generally, aberrant responses using the posterior predictive

distribution of the log-response time on item i (given the response times and responses on all

30



remaining items). It is shown that using the hierarchical model that this is given as

f(t∗ij |t∗j(−i),uj(−i)) =

∫
f(t∗ij |τj)f(τj |t∗j(−i),uj(−i)) dτj

=

∫∫ [ n∏
k=1

f(t∗kj |τj)

]
f(τj |θj)f(θj |uj(−i)) dτj dθj

(1.31)

where t∗ = ln t, t∗j(−i) = (t∗1j , . . . , t
∗
(i−1),j , t

∗
(i+1),j , . . . , t

∗
nj), and uj(−i) is defined similarly to t∗j(−i).

Two types of aberrances for an item can occur: low response times and high response times. If

interest is on low response times, then define πij = P (T ∗ij ≤ t∗ij |t∗j(−i),uj(−i)), and if interest is on

high response times, then define πij = P (T ∗ij ≥ t∗ij |t∗j(−i),uj(−i)). Then, the probability of observing

a response time pattern on k items is

πpatternj = 1−
k∏
i=1

(1− πij).

An exceptionally small value of πpatternj means that this response time pattern is aberrant, and

might warrant further investigation.

In testing, one common application is to use collateral information—that is, information that is

not of direct interest to the parameters of concern that is collected simultaneously with the direct

information—to bolster the estimation accuracy of item parameters or the ability parameter. It

should be clear that response times can be considered to be a form of collateral information. In

van der Linden et al. (2010), two sources of collateral information are identified and exploited:

the joint information in the responses and the response times, as summarized in second-level pa-

rameters; and the information in the posterior distribution of the response parameters given the

response times. For this application, an additional assumption of the joint second-level model

of the item parameters ai, bi, ci, αi, and βi is needed; in this case, it is simply assumed that

(a, b, c, α, β) ∼ MVN(µI ,ΣI). If we take ξi = (ai, bi, ci), then the authors show that

f(ξi|xi, ti,µI ,ΣI) ∝ f(xi|ξi)f(ξi|ti,µI ,ΣI). (1.32)
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Furthermore, it can be shown that

f(θj |xj , tj ,µP ,ΣP ) ∝ f(xj |θj)f(θj |tj ,µP ,ΣP ). (1.33)

An MCMC algorithm, such as the Gibbs sampler, can be used to estimate ξi and θj , jointly. If only

θj is of interest and the item parameters are assumed to be known, such as in a CAT, then θj can

be estimated in this framework by either taking the mean of the posterior (i.e., the EAP estimator)

or taking the maximum of the posterior (i.e., the MAP estimator). In van der Linden (2008), it is

shown that the empirical prior for θj in (1.33), f(θj |tj), can be given as θj |tj ∼ N(µθ|tk−1
, σ2θ|tk−1

),

where

µθj |tk−1
=
σθτ

∑k−1
i=1 α

2
i (βi − t∗ij)

1 + σ2τ
∑k−1

i=1 α
2
i

and

σ2θj |tk−1
= 1−

σ2θτ
σ2τ

+
σ2θτ

1 + σ2τ
∑k−1

i=1 α
2
i

.

One very natural application in CAT is to use response times for item selection. In thinking

about item selection, several criteria can be formulated corresponding to different goals. One

possibility is to control for differential speededness. Differential speededness refers to the differences

in time intensity for an overall test between examinees that is due to a combination of the tailored

nature of a CAT and the differences in speededness parameters τ between examinees. This can

become a problem for time-limited tests. For instance, some examinees may have to work under

high pressure, because they were administered many highly time-intensive items, whereas other

examinees have plenty of time to finish, because they were given many low time-intensity items.

This can give the impression of unfairness between the test-takers, and can potentially impact their

scores. Controlling for differential speededness can mitigate this issue. As previously discussed,

one way of controlling for differential speededness is to use the log-response time model in (1.23)

as a constraint within a shadow-test approach (van der Linden et al., 1999). In van der Linden

(2009c), it was proposed to instead use the one of two posterior predictive densities of log-time

derived from the hierarchical model within a shadow-testing approach, instead.

The main goal of a CAT is to minimize the length of a test while maintaining the accuracy

of ability estimation. When response times are involved, another possible goal of item selection
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could be to minimize the total time taken to complete a test; that is, to minimize length in terms

of real time. Of course, just blindly minimizing test time by itself would undoubtedly mean that

most items would be too easy for the majority of examinees, which, in turn, means that the

tests are inappropriate for finding the locations of most examinees on the ability scale. Thus, when

minimizing test time, it should be done in conjunction with maximizing ability estimation accuracy.

One method that does this in a simple way is the maximum information per time unit (MICT)

method of Fan et al. (2012). In this method, the next item is chosen to maximize the function

MICTi =
Ii(θ̂)

E(Ti|τ̂)
, (1.34)

where θ̂ and τ̂ are the current estimates of ability and speededness. Since the response time is

lognormally distributed, it is easy to show that

E(Ti|τ̂) = exp

(
βi − τ̂ +

1

2α2
i

)
.

This method works great for minimizing total test time; it has been shown to work better than other

competing item selection methods for minimizing total test time (Veldkamp, 2016). Unfortunately,

this comes with the huge drawback of greatly skewing the item exposure. The method that Fan

et al. (2012) take is to use a-stratification with b blocking in conjunction with the information per

time unit concept. This method adequately handles the item exposure issue, while still lessening

total test time, though not as much as with MICT.

A final method for item selection using response times is a generalization based on the MICT,

called the generalized time-weighted maximum information criterion (GMICT; Choe & Kern, 2014).

This is as follows:

ITG
i =

Ii(θ̂)

|E(Ti|τ̂)− v|w
. (1.35)

This method generalizes MICT in two ways. First, it includes a centering value v that allows

for more control over the test time; the procedure will tend to choose items where the expected

response time is close to v. This can help with the problem of perceived fairness and differential

speededness. Second, it adds an exponent weighting parameter w for control over how the deviance

of the expected response time from v is weighted. Notably, the standard maximum information
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criterion (w = 0) and MICT (w = 1, v = 0) are special cases of GMICT. To assess the performance

of the item selection algorithm, MSE of θ, MSE of τ , mean and (MTT) standard deviation (STT)

of test times across persons, and the item exposure rate skewness χ2 given in (1.15). It is argued

that standard deviation of test time is an important index of differential speededness; a lower

STT means that there are fewer differences in test times between persons, implying fewer effects

of differential speededness. When compared on these measures, with the appropriate v parameter

and w = 1, item skewness, MTT, and STT for GMICT are all smaller than for the maximum

information criterion, while the MSE of θ is increased. Compared to the MICT, item skewness

and STT are greatly decreased, while MTT and MSE of θ are increased slightly. In all cases, MSE

of τ is fairly constant. Thus, we find a complex relationship between θ estimation accuracy, test

security control, differential speededness control, and overall test time minimization.
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Chapter 2

A Method for Estimating Ability and
Speededness Jointly

2.1 Introduction

Computerized adaptive testing (CAT) systems are particularly suited for situations where an

accurate estimation of an examinee’s true score is of utmost importance, such as large-scale, high-

stakes admissions exams. Additionally, computer-based tests, such as CATs, allow for easy col-

lection of response times. With this abundance of essentially-free data, methods and applications

for using response time data have become en vogue. Some of the applications include cheating

detection (van der Linden, 2009a), shortening the time needed to take a test (Fan et al., 2012),

and item selection (van der Linden, 2008). It only seems natural that CATs be modified to take

advantage of response time information, especially since it is well-known that response accuracy

and response time are related.

To use response times to their greatest potential, it is necessary to create a model to make a

connection between observed response times and a latent trait describing the speededness of the

test-takers. Much research has been done on this topic; for a comprehensive review of response time

modeling in testing, see either Schnipke and Scrams (2002) or Lee and Chen (2011). Some examples

of response time models, as discussed in Section 1.4.1, were developed by Scheiblechner (1979),

Tatsuoka and Tatsuoka (1980), Thissen (1983), Maris (1993), Verhelst et al. (1997), Douglas,

Kosorok, and Chewning (1999), T. Wang and Hanson (2005), Meyer (2008), and Klein Entink,

Fox, and van der Linden (2009). Several of these models try to model the time-accuracy trade-off

directly. However, to model the usual time-accuracy trade-off directly would seem to run counter to

the ideal of an exam score—particularly on a high-stakes exam—being based on only the examinee’s

problem-solving ability, and not the speed at which he or she finishes a problem.

To handle this modeling situation, van der Linden (2007) developed a hierarchical framework for
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response time, in which he introduced a second latent variable for the speededness of the test-taker

along with the usual latent variable for the test-taker’s ability. Later, van der Linden (2008) used

his model in a CAT. In his method, he estimated ability using a response time–based expected a

posteriori (EAP)-type procedure, but did not directly estimate speededness as well. He argued that

by having more accurate estimation of ability, even though items were selected using maximum

information of ability without taking response times into account, item selection was improved.

By similar reasoning, it can be argued that if one utilizes a method for selecting items that uses

estimates for both ability and speededness, then similar gains can be gleaned if better estimates

for both ability and speededness can be obtained by using response times. Here, a method for

incorporating response times in a maximum a posteriori (MAP) type estimator will be pursued.

The gold standard in test scoring has tended to be using the maximum likelihood estimate

(MLE). This can be attributed to two properties of the MLE. First, MLE is an unbiased estimator

of ability for long tests (Lord, 1983). In testing, this is generally seen as a desirable property, because

we would like the estimated scores to be as indicative of the true scores as possible, especially in

cases when the scores are used to determine pass-fail, such as in licensure testing. Second, we know

the asymptotic properties of the MLE; that is, it is distributed normally, with a mean θ (which

is the true ability, so it is unbiased) and variance as the inverse of the Fisher information of θ.

Thus, with long tests, we know the behavior of the estimator quite well. However, there are some

downsides to the MLE as well. The most well-known is that in some cases, the likelihood may only

have a maximum at a boundary. This can happen, for instance, when an examinee answers all

items correctly or all items incorrectly. Furthermore, for short tests, it can have large bias (Lord,

1983).

One answer for this is to use the MAP estimator. Instead of finding the maximum of the

likelihood, the MAP is the maximum of the posterior distribution. This is accomplished by simply

weighting the likelihood by an appropriate prior distribution. The MAP estimator has several

properties that are important. First and foremost, the MLE can be considered a special case of

the MAP when the prior distribution is uniform. As such, with a non-uniform prior (the standard

is a normal prior), it can be considered to be a “regularized” form of MLE, and is thus able to

avoid the likelihood issues present in MLE. In some sense, the prior acts as an extra observation
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which will tend to make the likelihood behave. Secondly, the MAP is a convex combination of

the MLE and the prior. Essentially, the MAP “shrinks” the estimate towards the prior; this can

help the estimate to avoid overfitting to the data, which can be especially helpful for shorter tests.

Furthermore, in comparison to the MLE, the MAP has a smaller variance, but tends to have a

larger bias (C. Wang, 2015).

In the current study, van der Linden’s (2007) hierarchical framework is used, and a MAP es-

timation method is developed for the joint estimation of the person parameters for ability and

speededness. The reason for jointly estimating ability and speededness is that in a Bayesian fra-

mework, both latent variables should benefit from the borrowing of information from the other.

Furthermore, it can be argued that for many applications, the values of both latent variables are

of interest. Here, we assume that the items are already operational, so that their item parameters

are known. We also assume that the covariance between the ability and speededness parameters is

known. Furthermore, the joint posterior information matrix for the person parameters is derived.

A simulation study comparing the performance of the new MAP estimation method using response

times with the standard MLE method is done for a variety of relationships between ability and

speededness to determine when the MAP and the MLE perform best. A second simulation study is

also completed which compares the two estimation methods with a real item bank. This simulation

study is further extended by comparing these methods with two different item selection methods:

using the maximum information criterion (MIC) and using the maximum information per time unit

criterion (MICT; Fan et al., 2012).

2.2 Model

A hierarchical modeling framework was proposed by van der Linden (2007) to model speed and

accuracy on test items. One level consists of an IRT model and a RT model, while a second level

accounts for interdependencies between the item and person parameters within the two models.

2.2.1 First-level models

Let the items be indexed by i = 1, . . . , I and the persons be indexed by j = 1, . . . , J . For

each examinee j there is a vector of responses Xj = (X1j , . . . , XIj) and a vector of response time
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Tj = (T1j , . . . , TIj). The responses are assumed to be modeled by a 3PL model. That is, given the

jth person’s ability parameter θj , the probability of answering the ith item correctly is modeled as

Pi(θj) = ci + (1− ci)
1

1 + e−ai(θj−bi)
, (2.1)

where ai, bi, and ci are the discrimination, difficulty, and guessing parameters of item i, respectively.

Then, the likelihood of examinee j’s responses is given as

lj(Xj) =

I∏
i=1

Pi(θj)
xij (1− Pi(θj))1−xij . (2.2)

The response times Tij for the jth person on the ith item are assumed to be modeled by the

lognormal model proposed by van der Linden (2006), and so the log of the response times lnTij

are normally distributed. This is expressed as follows:

lnTij ∼ f(ln tij |τj , αi, βi) = N(βi − τj , α−2j ),

such that

f(ln tij |τj , αi, βi) =
αi√
2π

exp

{
−1

2
[αi(ln tij − (βi − τj))]2

}
, (2.3)

where τj is the speed parameter for examinee j, and αi and βi are the time intensity and discrimi-

nating power parameters of item i, respectively.

Let ξj = (θj , τj) denote the vector of person parameters for person j, and let ψi = (ai, bi, ci, αi, βi)

denote the vector of item parameters for item i. Here, we note that an important assumption,

beyond the usual IRT assumptions, is that Xij is conditionally independent from Tij given (θ, τ).

Due to this conditional independence, the joint sampling distribution of Xj and Tj , j = 1, . . . , J ,

follows directly from Equations 2.2 and 2.3:

f(xj , ln tj |ξj ,ψ) =

I∏
i=1

l(xij |θj , ai, bi, ci)f(ln tij |τj , αi, βi). (2.4)
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2.2.2 Second-level models

At the second level, we have one model that describes the joint distribution of the person

parameters. We assume that the values of ξj come from a multivariate normal distribution

ξj ∼ N2(µp,Σp) = f(ξj |µp,Σp),

where the joint density is given as

f(ξj |µp,Σp) =
|Σp|−1/2

2π
exp

[
−1

2
(ξj − µp)

T
Σ
−1
p (ξj − µp)

]
, (2.5)

with a mean vector

µp = (µθ, µτ )

and a covariance matrix

Σp =

 σ2θ σθτ

σθτ σ2τ


Finally, combining Equations 2.4 and 2.5, we find that the joint density for responses, response

times, and person parameters for the jth examinee is given as

f
(
xj , ln tj , ξj |ψ

)
= f

(
xj , ln tj |ξj ,ψ

)
f
(
ξj |µp,Σp

)
. (2.6)

For ease of notation, where the meaning is clear, the person index j is dropped throughout the rest

of the present chapter.

2.2.3 Maximum a posteriori (MAP) estimation of person parameters

To find the joint maximum a posteriori (MAP) estimate of θ and τ , it is necessary to find the

maximum of the posterior distribution of ξ; that is, to find argmaxθ,τ f(ξ|x, ln t,Ψ), where x and
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ln t are the given data. This problem can be simplified as follows:

argmax
θ,τ

f(ξ|x, ln t,Ψ) = argmax
θ,τ

f(x, ln t, ξ|Ψ)∫
ξ
f(x, ln t, ξ|Ψ)

= argmax
θ,τ

f(x, ln t, ξ|Ψ)

= argmax
θ,τ

f(x, ln t|ξ,ψ) f
(
ξ|µp,Σp

)
= argmax

θ,τ
ln f(x, ln t|ξ,ψ) + ln f

(
ξ|µp,Σp

)
.

This is done by finding the zeros for the first derivatives of the log of the joint density in

Equation 2.6 with respect to θ and τ , ∂ ln f
∂τ and ∂ ln f

∂θ , jointly. These are given as follows:

∂ ln f(x, ln t|ξ,ψ)

∂θ
=

I∑
i=1

(
ai(xi − Pi(θ))

(1− ci)

)(
Pi(θ)− ci
Pi(θ)

)
− σ2τ (θ − µθ)− σθτ (τ − µτ )

σ2θσ
2
τ − σ2θτ

,

∂ ln f(x, ln t|ξ,ψ)

∂τ
= −

I∑
i=1

α2
i (ln ti − (βi − τ))−

σ2θ(τ − µτ )− σθτ (θ − µθ)
σ2θσ

2
τ − σ2θτ

.

(2.7)

A solution to this may be found by using a Newton-Raphson algorithm. For this, the second

derivatives of the function to be maximized are needed. They are as follows:

∂2 ln f(x, ln t|ξ,ψ)

∂θ2
=

I∑
i=1

a2i

(
Pi(θ)− ci
(1− ci)2

)(
1− Pi(θ)
Pi(θ)

)(
xici − Pi(θ)2

Pi(θ)

)
− σ2τ
σ2θσ

2
τ − σ2θτ

,

∂2 ln f(x, ln t|ξ,ψ)

∂τ2
= −

I∑
i=1

α2
i −

σ2θ
σ2θσ

2
τ − σ2θτ

, and

∂2 ln f(x, ln t|ξ,ψ)

∂θ ∂τ
=

σθτ
σ2θσ

2
τ − σ2θτ

.

(2.8)

Finally, given close enough starting values for the person parameters θ0 and τ0, and using (2.7) and

(2.8), the equation

θn+1

τn+1

 =

θn
τn

−
∂2 ln f

∂θ2
∂2 ln f
∂θ∂τ

∂2 ln f
∂θ∂τ

∂2 ln f
∂τ2


−1∂ ln f

∂θ

∂ ln f
∂τ

 (2.9)

can be solved iteratively until convergence. The resulting value is the joint MAP.

Note that for use in a CAT, reasonable estimates for σ2θ , σ
2
τ , and σθτ are needed. Also, µθ and µτ
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are needed. When estimating an item bank, these values are largely arbitrary, and need to be set

for identification purposes. For instance, we could set µθ = µτ = 0, and σ2θ = 1. The other values,

σ2τ and σθτ , would be estimated. With a known, operational item bank, these values for a given

population of test-takers are not arbitrary. They would need to be known (from past experience)

ahead of time for use within a single examinee’s test.

2.2.4 Information functions

Generally, the accuracy of the measurement in a Bayesian context is indexed by the posterior

variance of the variables of interest, which is ξ = (θ, τ)′ in this case. By Sorensen and Gianola

(2002, pg. 331), we find that asymptotically this is the inverse of the information matrix of ξ. This

information matrix is calculated as the Fisher information matrix which, under certain regularity

conditions, is

[I(ξ)]ij = I(θ, τ)ij = −E

[
∂2

∂ξi∂ξj
ln f(ξ|x, ln t)

∣∣∣ ξ

]
= −E

[
∂2

∂ξi∂ξj
ln f(x, ln t, ξ)

∣∣∣ ξ

]
. (2.10)

From (2.8), we find that

I(θ, τ)11 =

I∑
i=1

a2i

(
Pi(θ)− ci

1− ci

)2(1− Pi(θ)
Pi(θ)

)
+

σ2τ
σ2θσ

2
τ − σ2θτ

,

I(θ, τ)12 = − σθτ
σ2θσ

2
τ − σ2θτ

, and

I(θ, τ)22 =

I∑
i=1

α2
i +

σ2θ
σ2θσ

2
τ − σ2θτ

,

(2.11)

so that

I(θ, τ) =

I(θ, τ)11 I(θ, τ)12

I(θ, τ)12 I(θ, τ)22

 .

Finally, we find that the measurement error variance matrix is given as
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I(θ, τ)−1 =
1

I(θ, τ)11I(θ, τ)22 − I(θ, τ)212

 I(θ, τ)22 −I(θ, τ)12

−I(θ, τ)12 I(θ, τ)11

 . (2.12)

Keeping in mind that the usual goal of CAT is to select items so that the number of items needed

for an accurate measurement is minimized—that is, to select items that measure ability well for

a given individual—a scant glance at Equation 2.12 suggests a new item selection technique: to

select items that minimize

[I(θ, τ)−1]11 =
I(θ, τ)22

I(θ, τ)11I(θ, τ)22 − I(θ, τ)212
. (2.13)

2.2.5 Maximum Information Per Time Unit Item Selection

The main goal of a CAT is to minimize the length of a test while maintaining the accuracy of

ability estimation. Traditionally, this is done by simply choosing items at every step of the test so

that the chosen item maximizes Fisher information given the current estimate of ability θ̂ (Lord,

1980). That is, the next item i to be administered is the one that makes

Ii(θ̂) =

[
∂
∂θ̂
P (θ̂)

]2
Pi(θ̂)

(
1− Pi(θ̂)

) (2.14)

as small as possible.

When response times are involved, another possible goal of item selection could be to minimize

the total time taken to complete a test; that is, to minimize length in terms of real time. Of

course, just blindly minimizing test time by itself would undoubtedly mean that most items would

be too easy for the majority of examinees, which, in turn, means that the tests are inappropriate

for finding the locations of most examinees on the ability scale. Thus, when minimizing test time,

it should be done in conjunction with maximizing ability estimation accuracy. One method that

does this in a simple way is the maximum information per time unit (MICT) method of Fan et al.

(2012). In this method, the next item is chosen to maximize the function

MICTi =
Ii(θ̂)

E(Ti|τ̂)
, (2.15)
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where θ̂ and τ̂ are the current estimates of ability and speededness. Since the response time is

lognormally distributed, it is easy to show that

E(Ti|τ̂) = exp

(
βi − τ̂ +

1

2α2
i

)
.

This method works great for minimizing total test time; it has been shown to work better than other

competing item selection methods for minimizing total test time (Veldkamp, 2016). Examination

of Equation 2.15 shows that estimates for both ability, θ̂, and speededness, τ̂ , are used in the item

selection scheme for MICT. In their method, they used the maximum likelihood estimates for both

of these.

2.3 Simulation 1: Simulated Item Bank and Examinee

Populations

2.3.1 Method

Simulation studies are carried out to compare the new MAP estimator with the standard MLE

estimator. To determine when using response times improves ability estimation over a standard

CAT, several factors are manipulated. First, the person parameters are simulated asθ
τ

 ∼ N2


0

0

 ,

 1 ρθτ

ρθτ 1


 ,

where ρθτ is either 0, .25, .50, or .75. For these four conditions, ability and speededness are estimated

using the joint MAP. Additionally, a set of persons is simulated with θ ∼ N(0, 1), τ ∼ N(0, 1), and

ρθτ = 0. For this condition, ability (and speededness) is estimated using the MLE estimator. For

each of these five conditions, tests have fixed lengths of either 10, 15, or 30 items. Thus, there are

a total of 5× 3 = 15 conditions.

A 1000-item bank is simulated with the item parameters a, b, c, α, and β as defined earlier.

Parameters are generated as follows:
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• (a∗, b, β) ∼ N3




0.3

0.0

0.0

 ,


0.10 0.16 0.00

0.16 1.00 0.25

0.00 0.25 0.25




where a∗ = log a;

• c ∼ beta(2, 10);

• α ∼ unif(1, 4).

The choices of distributions here were chosen to simulate items that are commonly found in stan-

dardized testing. Because it is known that there is typically a relationship between item difficulty

and discrimination parameters, the covariance matrix has a non-zero relationship between a∗ and

b. Furthermore, in the same covariance matrix, the covariance between the item difficulty and time

intensity parameters is chosen because it is believed there is a moderate association between these

parameters.

Finally, for every factor combination, 2000 examinees are simulated with true ability parameters

θ at evenly spaced increments of 0.10 from -3 to 3. This is done to better assess the performance

for typically undersampled points along the distribution. The true speededness parameters τ are

generated from the conditional distribution of τ |θ. Here, that is given as

τ |θ ∼ N
(
µτ + ρθτ

στ
σθ

(θ − µθ), σ2τ − ρ2θτσ2τ
)
.

The values for the population parameters of µθ, µτ , σθ and στ were chosen to standardize the latent

variables. They are as follows: µθ = µτ = 0 and σθ = στ = 1.

Ability (and speededness) estimation is assessed using bias, RMSE, and correlation. Due to

the oversampling at the extremes of the ability distribution, these statistics must be weighted to

account for this. Thus, the weighted outcome statistics are calculated as follows:

• Weighted bias:

WBias(θ, θ̂) =

∑J
j=1 f(θj)(θ̂j − θj)∑J

i=j f(θj)
.

• Weighted RMSE:

WRMSE(θ, θ̂) =

∑J
j=1 f(θj)(θ̂j − θj)2∑J

j=1 f(θj)
.
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• Weighted correlation:

WCor(θ, θ̂) =
WCov(θ, θ̂)[

WV ar(θ, θ)1/2
] [
WV ar(θ, θ̂)1/2

] ,
where

WV ar(θ, θ̂) =

∑J
j=1 f(θj)

(
θ̂j − 1

J

∑J
j=1 θ̂j

)2
∑J

j=1 f(θj)

and

WCov(θ, θ̂) =

∑J
j=1 f(θj)

(
θ̂j − 1

J

∑J
j=1 θ̂j

)(
θj − 1

J

∑J
j=1 θj

)
∑J

j=1 f(θj)
.

Ability estimation is further assessed using bias and RMSE conditioned on the ability level; because

these are conditional, these are not weighted.

2.3.2 Results

Results of the simulation are summarized in Table 2.1. Bias for θ̂ and τ̂ is very small for all

conditions, though it does decrease slightly as the test length increases. As ρθτ increases for MAP,

bias decreases. Also, overall, bias tends to be smaller for MLE than MAP. In contrast, RMSE is

smaller for MAP than MLE in every case. As with bias, RMSE decreases as test length increases.

Furthermore, as ρθτ increases, RMSE decreases. Correlation for ability estimation Corr(θ, θ̂) follows

a similar pattern to RMSE. Across cases, Corr(θ, θ̂) is larger for MAP than MLE. Also, as test

length increases, the Corr(θ, θ̂) increases. Furthermore, as ρθτ increases, the Corr(θ, θ̂) increases.

Lastly, correlation for speededness estimation is nearly perfect for all cases.

To further compare how the MAP performs against the MLE, bias and RMSE conditioned on

the level of θ are examined. Figures 2.1 and 2.2 show the conditional bias and RMSE for all

conditions. We find that for all conditions, there is a positive bias for values of θ less than µθ = 0,

and a negative bias for values of θ greater than µθ = 0. As the length of the test increases, bias is

lessened across the scale of θ. The MAP has greater bias than the MLE across θ for all levels of

ρθτ , but as ρθτ increases, this difference decreases. For any given level of θ, RMSE decreases as the

test length increases. Also, we find that in the middle of the θ-scale, RMSE is smaller for MAP

than for MLE; this is reversed for the ends of the θ-scale. An examination of the locations where
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selection test

method ρθτ length RMSE(θ̂) RMSE(τ̂) Bias(θ̂) Bias(τ̂) Cor(θ,θ̂) Cor(τ ,τ̂)
MLE 0.00 10 0.37 0.12 0.012 0.0002 0.93 0.99
MLE 0.00 15 0.30 0.10 0.005 -0.0003 0.96 0.99
MLE 0.00 30 0.22 0.07 0.001 -0.0002 0.98 0.99
MAP 0.00 10 0.35 0.12 0.028 -0.0002 0.94 0.98
MAP 0.00 15 0.28 0.10 0.020 -0.0000 0.96 0.99
MAP 0.00 30 0.21 0.07 0.011 -0.0001 0.98 0.99
MAP 0.25 10 0.34 0.12 0.029 0.0002 0.94 0.99
MAP 0.25 15 0.28 0.10 0.020 0.0003 0.96 0.99
MAP 0.25 30 0.21 0.07 0.011 0.0001 0.98 0.99
MAP 0.50 10 0.33 0.12 0.025 0.0015 0.94 0.99
MAP 0.50 15 0.28 0.10 0.018 0.0005 0.96 0.99
MAP 0.50 30 0.21 0.07 0.011 0.0002 0.98 0.99
MAP 0.75 10 0.31 0.12 0.020 0.0017 0.95 0.99
MAP 0.75 15 0.27 0.10 0.015 0.0011 0.96 0.99
MAP 0.75 30 0.20 0.07 0.009 0.0006 0.98 0.99

Table 2.1: Results for Simulation 1.

RMSE is lower for MAP shows that for 95% of the population of test-takers, the MAP outperforms

the MLE in terms of RMSE. This effect is especially true for short tests. Lastly, as ρθτ increases,

RMSE decreases across the θ-scale.

2.4 Simulation 2: Real Item Bank and Examinee Population

2.4.1 Method

Simulation studies with a real item bank are carried out to determine when using the joint MAP

estimator improves ability estimation over the MLE. Several factors are manipulated. First, the

estimation method is either the joint MAP or the MLE. Second, the item selection method is either

the MIC or the MICT. Since both latent variables θ and τ are used in item selection for MICT,

it would be interesting to see how having better estimates of both θ and τ affects the test. Third,

the tests have fixed lengths of either 10, 15, or 30.

The item bank comes from a data set of a real high-stakes, large-scale standardized CAT. The

data consist of raw responses and RTs from about 2000 examinees with an item pool containing

about 500 multiple-choice items that were pre-calibrated according to 3PLM. The lognormal model

item parameters α and β were estimated using a modified version of van der Linden’s (2007) MCMC

routine that fixed the 3PLM item parameters to the pre-calibrated values, and the distribution of
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Figure 2.1: Plot of conditional bias of estimates by true ability for Simulation 1.

τ was set to have a mean of 0. All parameters appeared to converge using 10000 MCMC draws

with a burn-in size of 5000.

Examinees are simulated as in Simulation 1, except the values for the population parameters of

µθ, µτ , σθ, στ , and ρθτ were chosen to reflect the population of test-takers from the real data set.

They are as follows: µθ = 0.5, µτ = 0, σθ = 1, στ = 0.16, and ρθτ = 0.76.

Bias, RMSE, and correlation are used to assess ability and speededness estimation. As discussed

previously, the oversampling at the extremes of the ability distribution must be taken into account

in these statistics; they are weighted as in in Simulation 1. Furthermore, ability estimation is

assessed with a combination of (unweighted) bias and RMSE conditioned on the ability level.

Lastly, mean overall test time across individuals and the standard deviation of test times across

individuals is assessed.

2.4.2 Results

Results of the simulation are summarized in Table 2.2. Bias for θ̂ and τ̂ is very small for all

conditions—for θ̂ absolute bias is between 0.001 and 0.041, and for τ̂ absolute bias is between 0.0002

and 0.0068—though it does seem to decrease slightly as the test length increases. Interestingly,

for MLE bias is larger for MICT than MIC, and for MAP bias is smaller for MICT than MIC;

this effect is the case for both θ and τ . Furthermore, overall, bias tends to be smaller for MLE
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Figure 2.2: Plot of conditional RMSE of estimates by true ability for Simulation 1.

selection estimation test mean SD

method method length RMSE(θ̂) RMSE(τ̂) Bias(θ̂) Bias(τ̂) Cor(θ,θ̂) Cor(τ ,τ̂) test time test time
MIC MLE 10 0.64 0.19 0.007 0.0002 0.83 0.63 18.59 5.93
MIC MLE 15 0.53 0.15 -0.004 -0.0003 0.87 0.70 27.78 7.61
MIC MLE 30 0.39 0.11 -0.008 0.0028 0.93 0.82 57.32 12.15
MIC MAP 10 0.49 0.09 0.041 0.0068 0.87 0.80 19.12 6.14
MIC MAP 15 0.42 0.08 0.031 0.0042 0.91 0.83 28.47 7.81
MIC MAP 30 0.32 0.07 0.018 0.0011 0.95 0.88 57.86 12.33
MICT MLE 10 0.68 0.21 -0.011 0.0007 0.81 0.59 12.27 4.04
MICT MLE 15 0.57 0.17 -0.018 0.0010 0.86 0.67 18.29 5.06
MICT MLE 30 0.42 0.11 -0.014 0.0006 0.92 0.80 37.90 8.24
MICT MAP 10 0.52 0.09 0.023 0.0053 0.86 0.79 12.06 3.83
MICT MAP 15 0.45 0.09 0.017 0.0038 0.90 0.82 17.90 4.80
MICT MAP 30 0.34 0.07 0.013 0.0016 0.94 0.88 37.28 7.44

Table 2.2: Results for Simulation 2.

than MAP. In contrast, RMSE is smaller for MAP than MLE in every case. Unlike bias, RMSE

is larger for MICT than MIC for both MLE and MAP, however the increase in RMSE from MIC

to MICT for the MAP estimator is minimal at all test lengths. Furthermore, for all cases, RMSE

decreases as test length increases. Lastly, correlation follows a similar pattern to RMSE. Across

cases, correlation is smaller for MICT than MIC, and larger for MAP than MLE. Interestingly, the

increase in correlation for MAP over MLE is fairly large, especially for speededness. For instance,

for a small test length of 10 with items selected via MICT, the correlation of the true value and

the estimate of speededness is 0.59 for MLE and 0.79 for MAP. Lastly, as test length increases, the

correlation increases.

One of the main goals of using the MICT to select items is to decrease the test times for indivi-

duals. As such, it is important to investigate the mean test times across individuals. Furthermore,

it is also important to compare the standard deviations of the test times across individuals as an
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Figure 2.3: Plot of conditional bias of estimates by true ability for Simulation 2.

index of differential speededness. Obviously, as the number of items increases, the mean test time

increases; the standard deviation of the test times also increases with the test length. As expected,

MICT has much smaller mean test times than MIC for all conditions as well as smaller standard

deviations of test times. Interestingly, within the MIC conditions, MLE has smaller mean test

times and SD test times than MAP, whereas within the MICT conditions, mean test times and SD

test times are larger for MLE than MAP.

To further compare how the MAP performs against the MLE, bias and RMSE conditioned on

the level of θ are examined. Figures 2.3 and 2.4 show the conditional bias and RMSE for all

conditions. We find that for all conditions, there is a positive bias for values of θ less than µθ = 0.5,

and a negative bias for values of θ greater than µθ = 0.5. As the length of the test increases, bias

is lessened across the scale of θ. The MAP has greater bias than the MLE across θ. The difference

in conditional bias between the MIC and MICT for each estimation method is very small. For any

given level of θ, RMSE decreases as the test length increases. Also, we find that in the middle of

the θ-scale, RMSE is smaller for MAP than for MLE; this is reversed for the ends of the θ-scale.

This means that for 90% of the population of test-takers, the MAP outperforms the MLE. This

effect is especially pronounced for short tests. Lastly, though the effect is small, RMSE is larger

across the θ-scale for MICT than for MIC.
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Figure 2.4: Plot of conditional RMSE of estimates by true ability for Simulation 2.

2.5 Discussion

Large-scale, high-stakes admissions exams, such as the GMAT, have one basic goal in mind: to

accurately measure an examinee’s true score with fewer items than needed for a paper-and-pencil

test. It is also possible to decrease the amount of real time needed to finish a test. This study

proposes a method that can improve on both tasks in a simple fashion, with minimal extra cost.

Of course, this is all predicated on the assumption that ability and speededness of an individual

are related in the context of a high-stakes exam, such as in our real data example; if they are, then

that relationship can be exploited.

From the results, we see that using response time information improves estimation for both θ

and τ with respect to RMSE. More to the point, as the relationship between θ and τ becomes

stronger, the gains in efficiency with respect to RMSE increases; this is especially true for short

tests. While the increase in performance is largely dependent on knowing the true correlation of

ability and speededness, in an actual operational test, a good estimate of this correlation should

emerge as the number of examinees increases. It could be recommended that a standard maximum

likelihood estimation routine be used (that is, without using response times to estimate ability)

while simultaneously estimating speededness independently of ability to calibrate the system and

obtain a good estimate of their correlation.

The real data simulation demonstrates two things of particular interest to test creators. First,
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if the goal is simply to have an accurate test, the MLE will result in a small RMSE and bias for

θ, with a fairly high correlation between θ and θ̂, particularly in conjunction with MIC. Of course,

since absolute bias is very small for all conditions (at most 0.041), it is not necessary to rule out

MAP in this situation. Indeed, at the expense of higher bias, MAP yields a smaller RMSE(θ̂) for

10 items (RMSE = 0.49) than MLE does for 15 items (RMSE = 0.53). And even though mean

testing time is not a consideration, certainly having fewer items would result in shorter test times;

this is borne out in Table 2.2. On the other hand, if the dual objective of having an accurate

ability estimate and decreasing overall test-taking time is desired, then using MICT clearly beats

out using MIC for item selection, with lower test times across the board. Furthermore, using MAP

for estimation alongside MICT is the best option. Not only does it have smaller RMSE for θ and

shorter mean test times, but it also has similar levels of bias for θ, negating the main advantage

of using MLE. Furthermore, MAP-MICT has the lowest standard deviations of test times for all

conditions, which signifies that there is less variability in test times amongst the examinees. One

reason this is desirable is because there would be less perceived unfairness amongst the test-takers,

which may allay the feelings of anxiety that they feel when someone finishes before themselves.

From the test-maker’s perspective, this is great for two interrelated reasons. First, the test-maker

will have an easier time setting a reasonable time limit within which most test-takers will complete

the test. Second, there should be less of an effect on the test scores due to examinees coming up

against the test’s time limit; if a reasonable time limit is set, then the examinee should not come

dangerously close to the time limit and alter their test-taking behavior. Whenever this happens,

the test score will reflect not only ability, but also their changing speededness towards the end of

the test, reducing the effectiveness of the test scores as a measure of ability.

Lastly, while not the main focus, it is important to discuss the implications of using Equation

2.13 (minimum standard error; MinSE) to select items as opposed to either the MIC or MICT

methods. I did a simulation to compare MIC with MinSE and found that the methods were nearly

identical. Because the methods were so similar, the results of that simulation are not shown here.

However, some knowledge may be gleaned from this. One thing to note is that the MinSE method

was suggested by means of the asymptotic posterior variance of θ with response times.
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Chapter 3

Using GMICT to Select Items With
the MAP Estimator

3.1 Introduction

In Chapter 2, it was shown that ability θ can be more effectively estimated, when estimated

jointly with speededness τ than by itself. Similarly, speededness is effectively estimated in this

framework as well. These effects are more pronounced as the true correlation between θ and τ

increases. Furthermore, it was shown that the MAP is especially effective in terms of increasing

estimation accuracy and decreasing overall test time when items are selected via the MICT ap-

proach. It seems reasonable, then, given these results that any method that makes use of both of

these should be more effective when estimated jointly.

In Section 1.4.2, the generalized time-weighted maximum information criterion (GMICT; Choe

& Kern, 2014) was introduced. It is a generalization of the MICT method in (2.15) that was

shown to effectively choose items so that θ estimation accuracy is high, test security is controlled,

differential speededness is controlled, and overall test time is minimized (Choe & Kern, 2014). It

is reproduced here as follows:

ITG
i =

Ii(θ̂)

|E(Ti|τ̂)− v|w
. (3.1)

This method generalizes MICT by including a centering value v that allows for more control over

the test time, and by also including an exponent weighting parameter w for control over how the

deviance of the expected response time from v is weighted. Combined, this item selection criterion

provides much more flexibility over how items are selected in the face of the competing goals of

score reliability, overall test-taking time, and overall test security. Note that the standard MIC

(w = 0) and MICT (w = 1, v = 0) both are special cases of GMICT.

As the effects are dependent on the estimated values for θ and τ , it stands to reason that better
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estimated latent traits will result in better control. Thus, in this chapter, the effectiveness of using

the GMICT for item selection with the ability and speededness parameters estimated jointly is

investigated using both a simulated item bank and a real item bank.

3.2 Simulation 1: Simulated Item Bank and Examinee

Populations

3.2.1 Method

Simulation studies are carried out to compare the new MAP estimator with the standard MLE

estimator. To determine when using response times improves ability estimation over a standard

CAT, several factors are manipulated. First, the person parameters are simulated asθ
τ

 ∼ N2


0

0

 ,

 1 ρθτ

ρθτ 1


 ,

where ρθτ is either 0, .25, .50, or .75. In the CAT, ability and speededness are estimated either

using the joint MAP or MLE. Tests have fixed lengths of either 10, 20, or 30 items. Finally, items

are selected using several combinations of v and w in GMICT selection procedure; here v ranges

from 0 to 3 in 0.1 increments and w is either 0.50, 0.75, or 1.00. For each factor combination, 10

replications of 2000 examinees are simulated.

A 500-item bank is simulated with the item parameters a, b, c, α, and β as defined earlier.

Parameters are generated as follows:

• (a∗, b, β) ∼ N3




0.3

0.0

0.0

 ,


0.10 0.16 0.00

0.16 1.00 0.25

0.00 0.25 0.25




where a∗ = log a;

• c ∼ beta(2, 10);

• α ∼ unif(1, 4).
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The choices of distributions here were chosen to simulate items that are commonly found in stan-

dardized testing. Because it is known that there is often a relationship between item difficulty and

discrimination parameters, the covariance matrix has a non-zero relationship between a∗ and b.

Furthermore, in the same covariance matrix, the covariance between the item difficulty and time

intensity parameters is chosen because it is believed there is a moderate association between these

parameters. If J is the number of examinees, then ability estimation is assessed using bias, RMSE,

and correlation:

• Bias:

Bias(θ, θ̂) =

∑J
j=1(θ̂j − θj)

J
,

• RMSE:

RMSE(θ, θ̂) =

∑J
j=1(θ̂j − θj)2

J
,

• Correlation:

Cor(θ, θ̂) =
Cov(θ, θ̂)[

V ar(θ)1/2
] [
V ar(θ̂)1/2

] .
To further assess the effectiveness of the test, mean test time (MTT), standard deviation of test

time (STT), and the test overlap rate.

3.2.2 Results

The results of the simulation on estimation bias, RMSE, and correlation of ability are given in

Figures 3.1, 3.2, and 3.3, respectively. Several conclusions can be made. First, it is clear that when

choosing items using GMICT all combinations of w and v, absolute bias increases, RMSE increases,

and the correlation between estimated θ and true θ decreases compared to choosing items using

MIC; that is, using GMICT necessarily worsens the accuracy of estimating ability. Conversely, the

test overlap drops, MTT decreases, and STT decreases for GMICT compared to MIC for most

values of v. Across values of w, the general trend that using GMICT over MIC has on all measures

is present, but to varying degrees. Essentially, just as it is designed to do, as w increases, GMICT

places more weight on selecting items according to the absolute deviation of expected response

time from v relative to Fisher information of θ̂, meaning that items are selected with increasing
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importance on minimizing response times. Thus, as w increases, estimation of ability worsens, but

MTT, STT, and test overlap all decrease. Simulation results on test overlap rate, MTT, and STT

are given in Figures 3.4, 3.5, and 3.6, respectively.

For all levels of ρθτ and test lengths, the general effect of selection method is true, though

the effects may be moderated. For instance, as test length increases, the effect of item selection

method on ability estimation decreases. Furthermore, increasing test length has an obvious impact

of increasing MTT and STT, while an increasing ρθτ very slightly decreases MTT and STT. On

the other hand, test length very slightly increases test overlap, while ρθτ has no discernible effect

on overlap rates.

Lastly, and most importantly for this study, the choice of estimator has a noticeable impact on

the outcomes of interest. First, independently of selection method, using the MAP decreases RMSE

over using the MLE while increasing bias. Additionally, the correlation between true and estimated

ability is higher for MAP. This effect is mitigated by test length, as well as by ρθτ ; as test length

increases, the difference in RMSE, bias, and correlation between the estimation methods lessens,

but as the ρθτ increases, the effect gets larger. Thus, the methods have the largest difference when

the strength of relationship between ability and speededness is largest and test length is short,

and have the smallest difference when ability and speededness are unrelated and the test is long.

Interestingly, MTT and test overlap do not seem to be affected by estimator. For STT, on the

other hand, the effect of estimator is unclear. For some combinations of test length and ρθτ (length

of 30, ρθτ = 0.25 and 0.50), STT noticeably decreases, but for all others the effect is negligible.

3.3 Simulation 2: Real Item Bank and Examinee Population

3.3.1 Method

Simulation studies with a real item bank are carried out to determine how the joint MAP

estimator performs against the MLE estimator when selecting items using the GMICT in a situation

closer to a real operational setting. Several factors are manipulated. First, estimation method is

either the joint MAP or the MLE. Second, items are selected using several combinations of v (0

to 3 in 0.1 increments) and w (0.50, 0.75, or 1.00) in GMICT selection procedure. Third, the tests
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have fixed lengths of either 10 or 30.

The item bank comes from a data set of a real high-stakes, large-scale standardized CAT. The

data consists of raw responses and RTs from about 2000 examinees with an item pool containing

about 500 multiple-choice items that were pre-calibrated according to 3PLM. The lognormal model

item parameters α and β were estimated using a modified version of van der Linden’s (2007) MCMC

routine that fixed the 3PLM item parameters to the pre-calibrated values, and the distribution of

τ was set to have a mean of 0. A check of trace plots showed that all parameters appeared to

converge using 10000 MCMC draws with a burn-in size of 5000.

Examinee ability and speededness parameters are simulated from a multivariate normal distri-

bution with population parameters of µθ, µτ , σθ, στ , and ρθτ chosen to reflect the population of

test-takers from the real data set. They are as follows: µθ = 0.5, µτ = 0, σθ = 1, στ = 0.16, and

ρθτ = 0.76. Ten replications of 1000 examinees were carried out for each condition.

Bias, RMSE, and correlation are used to assess ability estimation. Furthermore, test perfor-

mance is assessed using mean overall test time across individuals (MTT), the standard deviation

of test times across individuals (STT), and the test overlap rate.

3.3.2 Results

The results of the simulation on estimation bias, RMSE, and correlation of ability are given

in Figures 3.7, 3.8, and 3.9, respectively. Many of the conclusions from Section 3.2 are similar,

which is promising. In particular, using GMICT increases bias, increases RMSE, and decreases the

correlation in estimating ability over MIC; this is true for all values of w and v. Thus, using GMICT

makes ability estimation worse compared to MIC. On the other hand, using GMICT makes the

test overlap rate drop for large enough values of v, and MTT and STT decrease for small enough

values of v. The results of these are given in Figures 3.10, 3.11, and 3.12 for test overlap, MTT,

and STT, respectively. As can be seen, these effects are true for all values of w. That said, the

magnitude of the results are moderated by w; larger values for w makes the difference between

GMICT and MIC larger.

The length of the test has the expected effect on the measures. First, the estimation of ability

is more accurate for a longer test—bias decreases, RMSE decreases, and correlation increases.
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Furthermore, the overlap rate increases just a little. Lastly, the mean test time increases and the

SD of test time increases. None of these results are surprising.

The effect of the estimator is very similar to those in Section 3.2. First, bias increases, RMSE

decreases, and correlation increases when using MAP over MLE. Thus, while estimation accuracy

gets worse in one way, it gets better in other ways. This is pretty typical effect for Bayesian

methods. Furthermore, MTT and STT are incredibly similar for the two estimators, with MTT

being nearly identical. STT has a little more variability in the results, so it is hard to say with

certainty, but it looks like for a small value of v in GMICT, MAP has smaller STT, and for a large

value of v, MAP has a larger STT. For the MIC, STT is smaller for MAP. The biggest difference

from Simulation 1 is that unlike previous results, the test overlap rate is larger for the MAP than

the MLE.

3.4 Discussion

The main question for this chapter is whether the joint MAP estimator should be used in con-

junction with a method that uses ability and speededness parameters in item selection. The answer

to this question largely depends on two things: is the trade-off of larger bias and smaller RMSE

worth it; and is estimation accuracy, test security, or controlling differential speededness/testing

time more important.

Let us first tackle the first question: is the trade-off of larger bias and smaller RMSE worth it?

To answer this, it is important to understand where this comes from. As mentioned earlier, this

is a pretty standard effect of using a Bayesian method vs. a maximum likelihood method. It is

indicative of a bias–variance trade-off. Basically, mean-squared error can be decomposed into two

additive parts, squared bias and variance; that is,

MSE(θ̂) = bias(θ̂, θ)2 + Var(θ̂),

meaning that

Var(θ̂) = MSE(θ̂)− bias(θ̂, θ)2.

Thus, if bias increases, but RMSE decreases, then variance must necessarily have decreased. The
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question becomes, then, is the overall increase in precision (i.e., (R)MSE) worth the increase in

bias. Here, I would say, yes, since the absolute magnitude of bias is so small—it is only about

0.06 at its highest—then decreasing variability, in the end, will have a greater effect on overall

outcomes. Essentially, while the estimator is “wrong on average” (bias is larger), it will be “close

to right” (bias is only slightly larger) most of the time (variance is smaller). This is captured by

the fact that the MSE for the biased estimator (MAP) is smaller than the MSE of the unbiased

estimator (MLE). Since we only have one shot at estimating a person’s ability level, being close to

truth more often than a small bit closer to truth less often is desirable.

The answer to the second question is largely dependent on the purpose of the test. On one

hand, it is always desirable to have more accurate estimation results. On the other, there are

practical global test constraints: time-limits and test security. To some major extent, time-limits,

while practically necessary, can have serious negative effects on measurements. For instance, as an

examinee closes in on a time-limit, oftentimes he will speed up to try to complete the test, which

will, due to the well-known speed–accuracy trade-off effect, cause the person to get more items

wrong. This, in turn, increases measurement error, thereby decreasing the accuracy of determining

the ability-level of the examinee. Decreasing the overall mean test time and standard deviation of

test times for examinees will mean fewer examinees come against the time-limit. Thus, the effect

due to time-limits is minimized, which increases accuracy of determining ability-levels of examinees.

At the same time, test security is an important concern. One important way to help maintain test

security is to make the distribution of test items across examinees as uniform as possible; this can

be done by making the test overlap between examinees small.

What has been shown is that the choice of estimator has little effect on mean test times and the

variability in test times given a particular selection routine (GMICT or MIC). Test overlap, on the

other hand, seems to be dependent on estimator: MAP has higher test overlap rates than MLE

does in the real item bank case. Curiously, this same effect was not present for the simulated item

bank. While not investigated here, possible reasons should be discussed. First, investigation of the

real item bank shows that a large positive correlation between lnα and β exists (ρlnα,β = 0.53).

This correlation was not modeled in the simulated item bank. This doesn’t seem terribly likely

to have caused this difference. The other possibility, on the other hand, does. It was found that
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the distributions of θ and β do not match in the real item bank simulation (µθ = 0.5, µβ = 0,

σθ = 1, σβ = 1.11). Thus, there are fewer possible items to match with levels of ability across the

scale of θ. This may be exacerbated by the values of θ being pulled toward the prior distribution

of θ in the MAP estimator, causing the increase in test overlap. With this in mind, test overlap

is still greatly reduced for GMICT compared to MIC for either estimator. Since the accuracy of

ability estimation is of primary concern, it seems that using MAP with GMICT is the best of all

competing worlds; it has great accuracy (nearly as good as with MIC), much lower test overlap,

low mean test times, and low variability in test times. Thus, it should be recommended that if

GMICT is to be used, it is best to use the MAP estimator in conjunction with it.
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Figure 3.1: Plot of bias of ability estimates for Simulation 1.
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Figure 3.2: Plot of RMSE of ability estimates for Simulation 1.
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Figure 3.3: Plot of correlation of ability estimates with true values for Simulation 1.
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Figure 3.4: Plot of test overlap rate for Simulation 1.
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Figure 3.5: Plot of mean test time for Simulation 1.
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Figure 3.6: Plot of SD of test time for Simulation 1.
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Figure 3.7: Plot of bias of ability estimates for Simulation 2.
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Figure 3.8: Plot of RMSE of ability estimates for Simulation 2.
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Figure 3.9: Plot of correlation of ability estimates with true values for Simulation 2.
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Figure 3.10: Plot of test overlap rate for Simulation 2.
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Figure 3.11: Plot of mean test time for Simulation 2.
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Figure 3.12: Plot of SD of test time for Simulation 2.
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Chapter 4

Expected Posterior Variance

4.1 Introduction

As noted earlier, the new item selection technique suggested by the information matrix of the

MAP estimator in (2.12) is indistinguishable from the standard maximum information method.

One reason for this may that the item selection technique discussed is based on the asymptotic

posterior variance of θ. By using the non-asymptotic posterior variance, there may be a larger

gain in efficiency (van der Linden, 1998) when using response times. Furthermore, it is important

to note that the areas of largest gains when using the non-asymptotic posterior variance are the

same areas where there is most uncertainty in choosing efficient items, that is, at the beginning

of test. Therefore, it is very possible that the slight effect that using response times for selecting

items has is actually a function of that inherent uncertainty. As such, item selection methods that

take uncertainty of the estimate of θ into account at the beginning of the test, such as a Bayesian

selection method (van der Linden, 1998) or the KL-information method (Chang & Ying, 1996)

would be beneficial and calls for an investigation.

The item selection method can also be investigated for two other possibilities: minimizing

overall test-taking time, and effects on item exposure. Previous studies have shown trade-offs

between minimizing test time and maximizing spread of item exposure (Choe & Kern, 2014; Fan

et al., 2012). Indeed, a more efficient estimator of both θ and τ , such as the maximum a posteriori

(MAP) estimator in Chapter 2, would help with item selection for these trade-offs. In this chapter,

the Bayesian selection method will be investigated. The next chapter will similarly investigate the

KL-information method.
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4.2 Expected Posterior Variance Using Response Times

Using van der Linden’s (2007) hierarchical framework to model the between-persons relationship

of ability and speededness, a joint estimation technique using a MAP estimator of the parameters

for ability θ and speededness τ was developed in the Chapter 2. It was showed that this estimator

improves the estimation of ability when the covariance between θ and τ (σθτ ) is moderate to

high, and its estimate σ̂θτ to used in estimation is fairly accurate. Furthermore, it was shown that

selecting items using a minimum asymptotic posterior variance of θ (with response times accounted

for) vs. using the standard maximum information method made little to no difference in the

accuracy of θ. However, according to Ranger (2013), response times do contain some information

on ability. This suggests that the use of a large sample selection method may not have been

appropriate.

Van der Linden (1998) proposed several Bayesian item selection criteria appropriate for use with

Bayesian estimation methods, such as the MAP. Of the criteria he proposed, the best performing

method was the minimum expected posterior variance (MEPV) where the selected item is one

chosen according to (1.12). This method is especially effective for small sample (i.e., short) tests.

A similar selection method is developed here using response times based on van der Linden’s (2007)

model. Items will be selected according to a generalization of the MEPV, called the MEPVT:

EPVTi =

1∑
x=0

∫
pi(Xi = x, Ti = t|x(−i), t(−i), τ)Var(θ|x(−i), Xi = x, t(−i), Ti = t, τ) dti, (4.1)

where x(−i) = (x1, . . . , xi−1), t(−i) = (t1, . . . , ti−1), pi(Xi = x, Ti = t|x(−i), t(−i), τ) is the poste-

rior predictive distribution after responses and response times to the i − 1 previous items, and

Var(θ|x(−i), Xi = x, t(−i), Ti = t, τ) is the posterior variance of θ. It is shown in Appendix A that
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the posterior predictive distribution is

pi(Xi = x, Ti = t|x(−i), t(−i), τ) =

∫
f(x|θ)f(t|τ)f(θ|x(−i), t(−i), τ) dθ

=

∫
f(x|θ)f(t|τ)f(x(−i)|θ)f(θ|τ) dθ∫

f(x(−i)|θ)f(θ|τ) dθ

=
f(t|τ)

∫
Pi(θ)

xQi(θ)
1−x

[∏i−1
k=1 Pk(θ)

xkQk(θ)
1−xk

]
f(θ|τ) dθ∫ [∏i−1

k=1 Pk(θ)
xkQk(θ)1−xk

]
f(θ|τ) dθ

.

(4.2)

Thus, the posterior predictive distribution is independent of the previous response times. This ma-

kes sense, as τ and t(−i) contain the same information. Therefore, pi(Xi = x, Ti = t|x(−i), t(−i), τ) =

pi(Xi = x, Ti = t|x(−i), τ).

In Appendix B, it is shown that the posterior variance is

Var(θ|x(−i), Xi = x, t(−i), Ti = t, τ) = Var(θ|x(−i), Xi = x, τ)

= E(θ2|x(−i), Xi = x, τ)− [E(θ|x(−i), Xi = x, τ)]2, (4.3)

where

E(θ2|x(−i), Xi = x, τ) =

∫
θ2Pi(θ)

xQi(θ)
1−x

[∏i−1
k=1 Pk(θ)

xkQk(θ)
1−xk

]
f(θ|τ) dθ∫

Pi(θ)xQi(θ)1−x
[∏i−1

k=1 Pk(θ)
xkQk(θ)1−xk

]
f(θ|τ) dθ

and

E(θ|x(−i), Xi = xi, τ) =

∫
θPi(θ)

xQi(θ)
1−x

[∏i−1
k=1 Pk(θ)

xkQk(θ)
1−xk

]
f(θ|τ) dθ∫

Pi(θ)xQi(θ)1−x
[∏i−1

k=1 Pk(θ)
xkQk(θ)1−xk

]
f(θ|τ) dθ

.

By plugging (4.2) and (4.3) into (4.1), we find that the expected posterior variance using re-

sponses/response times is

EPVTi =

∫
f(t|τ) dt∫

f(x(−i)|θ)f(θ|τ) dθ

×
1∑

x=0

[∫
θ2f(x|θ)f(x(−i)|θ)f(θ|τ) dθ −

[∫
θf(x|θ)f(x(−i)|θ)f(θ|τ) dθ

]2∫
f(x|θ)f(x(−i)|θ)f(θ|τ) dθ

]
. (4.4)
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However, since
∫
f(t|τ) dt = 1 and

∫
f(x(−i)|θ)f(θ|τ) dθ is a constant that does not depend on the

next item, the first term in (4.4) is constant across all choices of item i. Thus, the MEPVT would

choose as the next item, the item that minimizes:

PVi =

1∑
x=0

[∫
θ2f(x|θ)f(x(−i)|θ)f(θ|τ) dθ −

[∫
θf(x|θ)f(x(−i)|θ)f(θ|τ) dθ

]2∫
f(x|θ)f(x(−i)|θ)f(θ|τ) dθ

]
. (4.5)

This method can be further modified for use in a GMICT-type selection method. To do this,

the inverse of PVi in (4.5) can be used in place of the item Fisher information in the GMICT.

Equivalently, items could be chosen so that the expected posterior variance modified GMICT (PV-

GMICT)

ITPV
i = PVi × |E(Ti|τ̂)− v|w (4.6)

is minimized.

As the expected posterior variance is a small sample Bayesian technique, it is expected that the

performance of ability estimation should be increased over maximum information item selection,

especially for shorter tests. In the first simulation, MEPVT will be compared against MIC with a

simulation using the simulated item bank. In the second simulation, PV-GMICT will be compared

to both the MIC and the GMICT, with a simulation using the real item bank. Estimation of traits

will be done using both the MLE and the MAP.

4.3 Simulation 1: MIC vs. MEPVT

4.3.1 Method

A simulation study is carried out to compare the MIC with the MEPVT. To determine when the

MEPVT improves ability estimation over a standard CAT, several factors are manipulated. First,

the person parameters are simulated from the multivariate normal distribution, where µθ = 0,

µτ = 0, σ2θ = 1, σ2τ = 1, and ρθτ is either 0, .25, .50, or .75. In the CAT, ability and speededness

are estimated using either the joint MAP from Chapter 2 or the standard MLE. Tests have fixed

lengths of either 5, 10, 20, or 30 items. For each factor combination, 2000 examinees are simulated.

Ten replications of all factor combinations were done.
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A 1000-item bank is simulated with the item parameters a, b, c, α, and β as defined earlier.

Parameters are generated as follows:

• (a∗, b, β) ∼ N3




0.3

0.0

0.0

 ,


0.10 0.16 0.00

0.16 1.00 0.25

0.00 0.25 0.25




where a∗ = log a;

• c ∼ beta(2, 10);

• α ∼ unif(1, 4).

The choices of distributions here were chosen to simulate items that are commonly found in stan-

dardized testing. Because it is known that there is often a relationship between item difficulty and

discrimination parameters, the covariance matrix has a non-zero relationship between a∗ and b.

Furthermore, in the same covariance matrix, the covariance between the item difficulty and time

intensity parameters is chosen because it is believed there is a moderate association between these

parameters. Ability estimation is assessed using bias, RMSE, and correlation:

• Bias:

Bias(θ, θ̂) =

∑J
j=1(θ̂j − θj)

J
,

• RMSE:

RMSE(θ, θ̂) =

∑J
j=1(θ̂j − θj)2

J
,

• Correlation:

Cor(θ, θ̂) =
Cov(θ, θ̂)[

V ar(θ)1/2
] [
V ar(θ̂)1/2

] .
To further assess the effectiveness of the test, mean test time (MTT), standard deviation of test

time (STT), and the test overlap rate.

4.3.2 Results

The results of the simulation are given in Tables 4.1 and 4.2. As expected, as test length

increases ability estimation accuracy increases: RMSE decreases, bias decreases, and correlation
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Test Selection Absolute Mean SD Overlap

Length Cor(θ, τ) Method RMSE(θ̂) Bias(θ̂) Cor(θ,θ̂) Test Time Test Time rate
5 0.00 MIC 0.54 0.001 0.86 9.10 13.49 0.33
5 0.00 MEPVT 0.52 0.013 0.87 8.85 12.58 0.42
5 0.25 MIC 0.54 0.001 0.86 8.86 12.77 0.34
5 0.25 MEPVT 0.52 0.010 0.87 8.82 12.08 0.42
5 0.50 MIC 0.53 0.000 0.86 8.68 12.12 0.33
5 0.50 MEPVT 0.51 0.006 0.87 8.62 11.46 0.37
5 0.75 MIC 0.54 0.006 0.86 8.62 11.65 0.33
5 0.75 MEPVT 0.51 0.003 0.88 8.37 10.65 0.29
10 0.00 MIC 0.39 0.009 0.93 19.23 26.48 0.32
10 0.00 MEPVT 0.39 0.003 0.93 18.46 24.40 0.38
10 0.25 MIC 0.40 0.009 0.93 18.45 24.19 0.32
10 0.25 MEPVT 0.38 0.002 0.93 17.99 23.14 0.38
10 0.50 MIC 0.39 0.009 0.93 17.85 21.28 0.32
10 0.50 MEPVT 0.38 0.003 0.93 17.15 19.79 0.36
10 0.75 MIC 0.39 0.010 0.93 17.52 21.46 0.32
10 0.75 MEPVT 0.38 0.003 0.93 16.48 18.47 0.31
20 0.00 MIC 0.28 0.003 0.96 39.14 52.74 0.33
20 0.00 MEPVT 0.28 0.001 0.96 37.86 51.95 0.37
20 0.25 MIC 0.28 0.002 0.96 36.73 46.93 0.33
20 0.25 MEPVT 0.29 0.002 0.96 36.81 47.30 0.37
20 0.50 MIC 0.28 0.003 0.96 35.48 43.65 0.33
20 0.50 MEPVT 0.28 0.002 0.96 34.62 42.20 0.37
20 0.75 MIC 0.28 0.001 0.96 34.00 39.24 0.33
20 0.75 MEPVT 0.28 0.001 0.96 33.62 39.03 0.34
30 0.00 MIC 0.24 0.002 0.97 58.40 84.93 0.34
30 0.00 MEPVT 0.24 0.001 0.97 57.96 81.90 0.37
30 0.25 MIC 0.24 0.001 0.97 56.21 72.14 0.34
30 0.25 MEPVT 0.24 0.000 0.97 53.45 67.14 0.37
30 0.50 MIC 0.24 0.002 0.97 53.82 65.37 0.34
30 0.50 MEPVT 0.24 0.001 0.97 52.10 60.75 0.37
30 0.75 MIC 0.24 0.002 0.97 51.81 58.60 0.34
30 0.75 MEPVT 0.24 0.002 0.97 49.82 56.90 0.36

Table 4.1: Results for Simulation 1 (MLE).

increases. Furthermore, MTT and STT both increase. Also, overall, test overlap rate increases.

Similarly, the effect of ρθτ on ability estimation is as expected as well; as ρθτ increases, RMSE

decreases, bias decreases, and correlation increases. Additionally, as ρθτ increases, MTT, STT, and

test overlap all decrease. Finally, the effect of using the MAP estimator over the MIC estimator is

consistent with earlier findings. First, with respect to ability estimation accuracy, RMSE decreases,

bias increases, and correlation increases. Also, MTT and STT both decrease, whereas overlap rate

increases.

Inspection of the results shows that there is very little difference between the selection methods.

In general, ability estimation accuracy is very slightly better using MEPVT over MIC; RMSE for
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Test Selection Absolute Mean SD Overlap

Length Cor(θ, τ) Method RMSE(θ̂) Bias(θ̂) Cor(θ,θ̂) Test Time Test Time rate
5 0.00 MIC 0.50 0.047 0.86 8.74 11.89 0.35
5 0.00 MEPVT 0.49 0.031 0.87 8.65 11.53 0.42
5 0.25 MIC 0.50 0.044 0.87 8.95 13.22 0.35
5 0.25 MEPVT 0.49 0.029 0.87 8.87 12.19 0.42
5 0.50 MIC 0.47 0.035 0.88 8.74 11.65 0.31
5 0.50 MEPVT 0.47 0.028 0.89 8.67 11.61 0.38
5 0.75 MIC 0.42 0.030 0.91 8.56 10.84 0.27
5 0.75 MEPVT 0.42 0.018 0.91 8.40 19.29 0.30
10 0.00 MIC 0.37 0.036 0.93 19.21 26.03 0.34
10 0.00 MEPVT 0.36 0.029 0.93 18.87 26.07 0.38
10 0.25 MIC 0.36 0.035 0.93 18.51 24.80 0.34
10 0.25 MEPVT 0.36 0.024 0.93 18.07 23.38 0.38
10 0.50 MIC 0.35 0.028 0.94 17.72 22.22 0.32
10 0.50 MEPVT 0.35 0.025 0.94 17.28 20.76 0.36
10 0.75 MIC 0.32 0.020 0.95 16.93 18.46 0.29
10 0.75 MEPVT 0.33 0.020 0.95 16.64 19.10 0.32
20 0.00 MIC 0.27 0.021 0.96 38.82 53.50 0.35
20 0.00 MEPVT 0.27 0.018 0.96 37.84 50.89 0.37
20 0.25 MIC 0.27 0.017 0.96 36.79 45.90 0.35
20 0.25 MEPVT 0.27 0.014 0.96 36.18 47.65 0.37
20 0.50 MIC 0.26 0.019 0.96 35.11 42.58 0.34
20 0.50 MEPVT 0.26 0.012 0.97 34.25 39.55 0.36
20 0.75 MIC 0.25 0.016 0.97 33.52 37.92 0.32
20 0.75 MEPVT 0.25 0.016 0.97 33.14 36.61 0.35
30 0.00 MIC 0.23 0.014 0.97 58.71 84.45 0.36
30 0.00 MEPVT 0.23 0.015 0.97 57.10 75.04 0.37
30 0.25 MIC 0.23 0.014 0.97 53.99 67.16 0.36
30 0.25 MEPVT 0.23 0.015 0.97 54.06 69.63 0.37
30 0.50 MIC 0.23 0.012 0.97 52.34 60.52 0.36
30 0.50 MEPVT 0.23 0.012 0.97 52.12 59.42 0.37
30 0.75 MIC 0.22 0.010 0.98 50.79 58.57 0.34
30 0.75 MEPVT 0.22 0.012 0.98 50.08 56.74 0.36

Table 4.2: Results for Simulation 1 (MAP).

ability is lower and Cor(θ, θ̂) are higher. Bias is a little more complicated; for the shortest test

length (test length 5) when using MLE, bias for MEPVT is larger than MIC, whereas it is smaller

for all other conditions. These effects on estimation accuracy become increasingly small as test

length increases. Finally, MTT and STT are smaller for MEPVT, whereas the test overlap rate

is larger. For the test overlap rate, interestingly, as test length increases, the effect of selection

method choice lessens.
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4.4 Simulation 2: GMICT vs. PV-GMICT

4.4.1 Method

Simulation studies with a real item bank are carried out to determine how the MIC, GMICT,

MEPVT, and PV-GMICT compare with each other in item selection. Several factors are manipu-

lated. First, items are selected using either the MIC, GMICT, MEPVT, or PV-GMICT. Second,

for the GMICT and PV-GMICT methods, items are selected using several combinations of v (0 to

3 in 0.1 increments) and w (0.50, 0.75, or 1.00). Third, the tests have fixed lengths of either 10 or

30.

The item bank comes from a data set of a real high-stakes, large-scale standardized CAT. The

data consists of raw responses and RTs from about 2000 examinees with an item pool containing

about 500 multiple-choice items that were pre-calibrated according to 3PLM. The lognormal model

item parameters α and β were estimated using a modified version of van der Linden’s (2007) MCMC

routine that fixed the 3PLM item parameters to the pre-calibrated values, and the distribution of

τ was set to have a mean of 0. A check of trace plots showed that all parameters appeared to

converge using 10000 MCMC draws with a burn-in size of 5000.

To better reflect the population of test-takers from the real data set, examinee ability and

speededness parameters are simulated from a multivariate normal distribution with population

parameters of µθ, µτ , σθ, στ , and ρθτ . They are as follows: µθ = 0.5, µτ = 0, σθ = 1, στ = 0.16,

and ρθτ = 0.76. Examinees were simulated in ten replications of 1000 examinees each.

Bias, RMSE, and correlation are used to assess ability and speededness estimation. Furthermore,

test performance is assessed using mean overall test time across individuals (MTT), the standard

deviation of test times across individuals (STT), and the test overlap rate.

4.4.2 Results

As usual, increases in test length are consistent with increases in ability estimation accuracy, as

shown in Figures 4.1, 4.2, and 4.3 for RMSE, bias, and correlation, respectively. Specifically, RMSE

decreases, bias decreases, and correlation increases. Furthermore, the test overlap rate, MTT, and

STT all increase as well. These are shown in Figures 3.10, 3.11, and 3.12 for test overlap, MTT,
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and STT, respectively.

Investigation of the results with respect to selection method gives some surprising results. In

particular, PV-GMICT performs significantly worse than GMICT on estimation accuracy (RMSE

is larger and correlation is lower), and performs no better than GMICT on lowering mean test

times and variability in test times. The only areas that PV-GMICT improves upon GMICT is

with marginally smaller test overlap rates and smaller bias. Unfortunately, the improvement in

bias disappears with a longer test. In comparison with MIC and MEPVT, for lower values of v,

bias, MTT, and STT are lower for GMICT and PV-GMICT. Conversely, for high enough values

of v, test overlap rate is lower for GMICT and PV-GMICT. This means that reasonably chosen

values of v are necessary for using these methods to their best ability. One thing to note is that w

has very little effect on any of the outcome variables.

4.5 Discussion

This chapter proposed a new method for item selection using a generalization of the minimum

expected posterior variance selection method (van der Linden, 2007) using the hierarchical model

for response times and accuracies (van der Linden, 1998); this method is called MEPVT. It also

proposed a second method—called PV-GMICT—that weights MEPVT by response times in the

same way as the GMICT. These methods were introduced as methods for incorporating response

time information into item selection using a non-asymptotic variance, with the goal of capitalizing

on that information in short tests to improve estimation of ability.

In a similar argument given in the previous chapter, a smaller RMSE can be a result of three

different possibilities: smaller bias, smaller variance, or smaller bias and smaller variance. It is clear

that in many conditions, bias has decreased, so the question becomes “did variance decrease as

well?” Simple calculation shows that in most cases, yes, it did. Of course, as test length increases,

the differences between the selection methods vanish.

While MEPVT is minimally successful at this goal, it comes at the expense of a higher test

overlap rate. Whether a higher test overlap is an expense that the test developer is willing to

spend will depend on the overall goals of the test developer. One possibility for longer tests is

to use MEPVT at the beginning of a test (maybe for just the first 5 or 10 items), when there is
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less certainty in the estimate, and switch to MIC later on. That said, unless the test is only 5 to

10 items in length, the gain may be so small that by the end of the test, the effect on estimation

accuracy of using MEPVT would probably be a wash. While it does decrease time spent on a test,

that decrease is not much considering that other methods do a much better job at this.

When comparing PV-GMICT with GMICT, the decrease in estimation accuracy is surprising;

PV-GMICT does much worse in terms of RMSE and correlation, though it does have a smaller

bias. Unfortunately, the scale of bias is small, so the gain due to bias is incredibly slight. While

PV-GMICT does make the test overlap rate decrease marginally, it does no better than GMICT

on mean and standard deviation of test times. By all appearances, it seems that PV-GMICT is

not particularly well-suited for its job, especially when GMICT already does it so well, but one

possibility that was not considered before is that the w parameter may simply be too high for PV-

GMICT, giving too much weight to controlling time. This seems to be corroborated by the fact that

the three values of w are barely distinguished between each other, meaning that the chosen values

of w may be toward the extreme side of the balance between choosing items according to posterior

variance and the deviation of expected response times from v. This needs to be investigated further,

but at this time it seems that if suitable values of w are able to be determined, that gains compared

to GMICT may be minimal, just as they are for MEPVT over MIC.
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Figure 4.1: Plot of bias of ability estimates for Simulation 2.
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Figure 4.2: Plot of RMSE of ability estimates for Simulation 2.
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Figure 4.3: Plot of correlation of ability estimates with true values for Simulation 2.
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Figure 4.4: Plot of test overlap rate for Simulation 2.
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Figure 4.5: Plot of mean test time for Simulation 2.
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Figure 4.6: Plot of SD of test time for Simulation 2.

79



Chapter 5

Response-time Weighted
Kullback-Leibler Information

5.1 Introduction

The most common technique for selecting items in an adaptive testing system is using the

maximum information criterion (MIC). Essentially, in an adaptive test, the MIC chooses the next

item to administer such that the item Fisher information

Ii(θj) = −E

[
∂2

∂θ2j
ln(Pi(θj))|θj

]

is maximized over all items in the item bank. It has been argued that the value of the item

information function at θ is local information, and that the MIC as an item selection criterion

works best when the estimate of ability θ̂ is close to the real ability level θ (Chang & Ying, 1996).

When not close, the chosen item is less optimal than desired; this is especially true early on in an

adaptive test.

An alternative is to use a global information technique, such as the Kullback-Leibler (K-L)

information criterion proposed by Chang and Ying (1996). They argued that the log-likelihood

ratio can best quantify global information, and, thus, proposed the use of the K-L information (or

K-L distance) function, as it is a distance function—or, more correctly, a deviance function—of the

log-likelihood. K-L information is defined as

Ki(θ‖θ0) = E

[
log

(
Li(θ0|Xi)

Li(θ|Xi)

)]
= Pi(θ0) log

(
Pi(θ0)

Pi(θ)

)
+Qi(θ0) log

(
Qi(θ0)

Qi(θ)

)
,

where θ0 is the true ability, θ is an estimate of θ0, and Li is the likelihood of the ith item.

Since we do not actually know the person’s true ability, an index is necessary. One simple index

is the area under the curve K around an appropriate interval about our estimate of ability θ̂n. This
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is given as

Ki(θ̂n) =

∫ θ̂n+δn

θ̂−δn
Ki(θ‖θ̂n) dθ, (5.1)

where δn is a control to determine the interval size around our current estimate of ability θ̂n. A

natural choice for δn is

δn =
1√
n

so that as the test length increases, the interval around θ̂n will decrease accordingly, signifying less

uncertainty around our ability estimate. With the K-L index as an item selection criterion, items

are chosen such that the K-L index is maximized over all items in the item bank.

In keeping with the theme of this dissertation, it would be interesting to see how a modified

version of the K-L index using response times performs in item selection. Here, it is proposed to

replace the item Fisher information Ii(θ) in the numerator of (1.35) with the K-L index Ki(θ) in

(5.1). Specifically, according to the K-L modified GMICT (KL-GMICT), the item with the largest

value of

ITKL
i =

Ki(θ̂)

|E(Ti|τ̂)− v|w
(5.2)

will be chosen. This method has the advantage from using the K-L index is two-fold. First, a wider

array of items will be considered at any given stage of the test, which could potentially even out

the item exposure rate of the items in the item pool. As the GMICT already does this, the hope

is that using the KL-GMICT the item exposure rate will even out above and beyond the GMICT.

Second, the K-L index takes into account the inherent uncertainty of θ-estimates, particularly

at the beginning of the test, so more overall informative items should be chosen earlier. Thus,

especially for shorter tests, we should get better estimates of examinee ability θ. To understand

the differences between these methods, MIC, GMICT, and KL-GMICT will be compared via two

simulation studies, one using a simulated item bank and another using a real item bank.
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5.2 Simulation 1: Simulated Item Bank and Examinee

Populations

5.2.1 Method

Simulation studies are carried out to compare the MIC, GMICT, and KL-GMICT. Several

factors are manipulated to determine the differences between the methods. First, the person

parameters are simulated as θ
τ

 ∼ N2


0

0

 ,

 1 ρθτ

ρθτ 1


 ,

where ρθτ is either 0, .25, .50, or .75. In the CAT, ability and speededness are estimated using the

joint MAP. Tests have fixed lengths of either 10, 20, or 30 items. Finally, items are selected using

several combinations of v and w in GMICT selection procedure; here v ranges from 0 to 3 in 0.1

increments and w is either 0.50, 0.75, or 1.00. For each factor combination, ten replications of 2000

examinees are simulated.

A 500-item bank is simulated with the item parameters a, b, c, α, and β as defined earlier.

Parameters are generated as follows:

• (a∗, b, β) ∼ N3




0.3

0.0

0.0

 ,


0.10 0.16 0.00

0.16 1.00 0.25

0.00 0.25 0.25




where a∗ = log a;

• c ∼ beta(2, 10);

• α ∼ unif(1, 4).

The choices of distributions here were chosen to simulate items that are commonly found in stan-

dardized testing. Because it is known that there is often a relationship between item difficulty and

discrimination parameters, the covariance matrix has a non-zero relationship between a∗ and b.

Furthermore, the covariance between the item difficulty and time intensity parameters is chosen

because it is believed there is a moderate association between these parameters; often harder items
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take longer to complete. Ability estimation is assessed using bias, RMSE, and correlation. To

further assess the effectiveness of the test, mean test time (MTT), standard deviation of test time

(STT), and the test overlap rate.

5.2.2 Results

The results of the simulation on estimation bias, RMSE, and correlation of ability are given in

Figures 5.1, 5.2, and 5.3, respectively. Several conclusions can be made. First, it is clear that when

choosing items using KL-GMICT with all combinations of w and v, absolute bias increases, RMSE

increases, and the correlation between estimated θ and true θ decreases compared to choosing items

using MIC; that is, using KL-GMICT makes the accuracy of estimating ability worse. On the other

hand, the test overlap, MTT, and STT all decrease for KL-GMICT compared to MIC for most

values of v. Simulation results on test overlap rate, MTT, and STT are given in Figures 5.4, 5.5,

and 5.6, respectively. The magnitude of the trend of using KL-GMICT over MIC is moderated

by the choice of values of w. These broad observations of the effect that choosing items using

KL-GMICT has in comparison to MIC are in the same as those using GMICT in comparison to

MIC, but to a different extent. Surprisingly, KL-GMICT has a higher bias, higher RMSE, and

lower correlation than GMICT. Conversely, the test overlap rate, MTT, and STT are all lower for

KL-GMICT than GMICT.

For varying levels of ρθτ and varying test lengths, the direction of the effect of selection method

is constant, though the magnitudes of the effects are moderated. For instance, as test length

and ρθτ increase, the differences in ability estimation between the selection methods lessen. Also,

as test length increases, MTT and STT increase, as expected, while an increase in ρθτ seems to

very slightly decrease MTT and STT. Test overlap rate, on the other hand, is not affected by the

strength of the relationship between ability and speededness, while it only very slightly increases

test overlap. None of these effects are unexpected.
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5.3 Simulation 2: Real Item Bank and Examinee Population

5.3.1 Method

Simulation studies with a real item bank are carried out to determine how the MIC, GMICT, and

KL-GMICT compare with each other in item selection in an operational testing situation; several

factors are manipulated. First, items are selected using either the MIC, GMICT, KL-GMICT.

Second, for the GMICT and KL-GMICT methods, items are selected using several combinations

of v (0 to 3 in 0.1 increments) and w (0.50, 0.75, or 1.00). Third, the tests have fixed lengths of

either 10 or 30.

The item bank comes from a data set of a real high-stakes, large-scale standardized CAT. The

data consists of raw responses and RTs from about 2000 examinees with an item pool containing

about 500 multiple-choice items that were pre-calibrated according to 3PLM. The lognormal model

item parameters α and β were estimated using a modified version of van der Linden’s (2007) MCMC

routine that fixed the 3PLM item parameters to the pre-calibrated values, and the distribution of

τ was set to have a mean of 0. A check of trace plots showed that all parameters appeared to

converge using 10000 MCMC draws with a burn-in size of 5000.

Examinee ability and speededness parameters are simulated from a multivariate normal distri-

bution with population parameters reflecting the population of test-takers from the real data set.

The population parameters are as follows: µθ = 0.5, µτ = 0, σθ = 1, στ = 0.16, and ρθτ = 0.76.

This simulation had ten replications each with 1000 examinees for every factor combination.

Bias, RMSE, and correlation are used to assess ability estimation. Furthermore, test perfor-

mance is assessed using mean overall test time across individuals (MTT), the standard deviation

of test times across individuals (STT), and the test overlap rate.

5.3.2 Results

The results in this simulation show a few differences from the Simulation 1. The first difference

shows in the bias. In Simulation 1 KL-GMICT has a larger bias than GMICT, but in the current

simulation, the bias looks to be about the same for the two methods. The other differences manifests

in the mean test times and variability in test times; formerly the results showed that MTT and STT
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were smaller for KL-GMICT, but the current simulation shows that MTT and STT are similar.

All other results conform to the previous results. The results of the simulation on estimation bias,

RMSE, and correlation of ability are given in Figures 5.7, 5.8, and 5.9, respectively. Simulation

results for test overlap rate, MTT and STT are shown in Figures 5.10, 5.11, and 5.12.

5.4 Discussion

In this chapter, a new method combining the Kullback-Leibler index (Chang & Ying, 1996)

with the GMICT was proposed, called the KL-GMICT. In much the same way as the GMICT, it

seeks to balance out the competing goals of choosing items that best measure a given examinee’s

ability level, while minimizing the amount of time that said person needs to spend on that item.

The competing interest of trying to maintain a balanced usage across the items of item bank is also

taken into account. Taken together, KL-GMICT manages to succeed in balancing these interests

against each other.

In a rather unfortunate manner, the KL-GMICT does not seem to balance the interests any

better than GMICT does. In the current simulations, it seems that KL-GMICT has worse ability

estimation accuracy than GMICT, while it better minimizes the mean and standard deviation of

test times. Of course, just as in GMICT, changing the value of w in KL-GMICT affects that

balance. In particular, as w increases, MTT and STT decrease, while bias and RMSE increase;

this trend, of course, reverses with decreasing w. Thus, it seems that for any value of w used

in KL-GMICT that a corresponding value of w used in GMICT should be able to be found that

makes the outcomes of the methods close. Furthermore, KL-GMICT requires the computation of an

intractable integral, which slows down the item selection process considerably. Taken together, this

suggests that KL-GMICT as an item selection technique can be done just as easily with GMICT

on its own.

On the other hand, this does not take into account the structure of the item bank itself. In

Simulation 1, item parameters are simulated such that the population correlation matrix of the
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item parameters is

Σ
(1)
Ψ

=



1.00 0.51 0.00 0.00 0.00

0.51 1.00 0.00 0.00 0.50

0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.50 0.00 0.00 1.00


,

where Ψ = (a∗, b, c, α∗, β), a∗ ≡ ln a, and α∗ ≡ lnα, whereas in Simulation 2, the sample correlation

matrix of the parameters in the real item bank is

Σ
(2)
Ψ

=



1.00 0.32 −0.03 0.04 0.09

0.32 1.00 −0.08 0.20 0.45

−0.03 −0.08 1.00 −0.03 −0.06

0.04 0.20 −0.03 1.00 0.53

0.09 0.45 −0.06 0.53 1.00


.

This difference between the simulated bank and the real item bank suggests two things. First, a

small relationship between b and α∗ may exist. Second, and perhaps more importantly, there is

a rather large relationship between α∗ and β. The strengths of these relationships may have an

effect on the outcomes of the selection methods.
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Figure 5.1: Plot of bias of ability estimates for Simulation 1.
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Figure 5.2: Plot of RMSE of ability estimates for Simulation 1.
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Figure 5.3: Plot of correlation of ability estimates with true values for Simulation 1.
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Figure 5.4: Plot of test overlap rate for Simulation 1.
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Figure 5.5: Plot of mean test time for Simulation 1.
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Figure 5.6: Plot of SD of test time for Simulation 1.
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Figure 5.7: Plot of bias of ability estimates for Simulation 2.
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Figure 5.8: Plot of RMSE of ability estimates for Simulation 2.

10 30

0 1 2 3 0 1 2 3
0.75

0.80

0.85

0.90

0.95

Centering Value (v)

E
st

im
at

io
n 

C
or

re
la

tio
n 

of
 A

bi
lit

y w

0

0.5

0.75

1

Method

MIC

GMICT

KL−GMICT

Figure 5.9: Plot of correlation of ability estimates with true values for Simulation 2.
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Figure 5.10: Plot of test overlap rate for Simulation 2.
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Figure 5.11: Plot of mean test time for Simulation 2.
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Figure 5.12: Plot of SD of test time for Simulation 2.
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Chapter 6

Concluding Remarks

In this dissertation, I have examined several methods for incorporating response times into se-

lection and estimation in adaptive testing. In Chapter 2, I introduced a joint maximum a posteriori

estimator for the joint estimation of ability and speededness parameters. It improves estimation

accuracy over the standard MLE, and if used in conjunction with the maximum information per

time unit (MICT) approach, also makes test times decrease slightly over using MLE with MICT. In

Chapter 3, I investigated the effect of using the MAP estimator in conjunction with the generalized

MICT (GMICT; Choe & Kern, 2014) item selection method. This method successfully improves

estimation accuracy compared to MLE with GMICT, while maintaining a low mean and standard

deviation of test times. The only compromise is with respect to the test overlap rate, which, with

an appropriate level of v is still much lower than using MIC to select items. In Chapters 4 and 5,

new selection methods—minimum expected posterior variance using RTs (MEPVT), time-weighted

MEPVT (PV-GMICT), and time-weighted K-L index (KL-GMICT)—were developed in hopes of

further improving the inherent trade-off between estimation accuracy, minimum test times, and

test overlap. Unfortunately, the selection methods that were proposed did not seem to have much

of an effect on outcomes over and above simply using the earlier proposed GMICT approach.

In examining the PV-GMICT and KL-GMICT, I have come to two conclusions. First, methods

in this class of item selection procedures (which also includes GMICT) are sensitive to the choice

of the weighting parameter w. This makes sense. A higher w places more weight, ultimately, on

choosing items that take less time to complete, whereas a lower w places places more weight on

choosing items that best determine the location of an examinee on the ability scale. The choice of

w can range from 0 to ∞. Interestingly, the specific choice of w does not seem to have a uniform

effect over the methods; a value of w that is high for one method, is not necessarily high for another.

This comes to a head when looking at PV-GMICT. In simulation results, it appears that the effect
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of using PV-GMICT on each of the outcome measures is not sensitive to w. However, in truth,

it must be that w is simply near to point where the method is choosing items purely for shorter

times, and that a choice of w between 0 and 0.5 would put PV-GMICT closer to GMICT. This is

also the case for KL-GMICT, but to a smaller extent. Which brings me to my second conclusion:

it seems likely to be able to choose a value for w such that GMICT, PV-GMICT, and KL-GMICT

have highly similar results. In other words, any effect that a particular choice of w may have while

using PV-GMICT and KL-GMICT should be able to be closely replicated by simply using GMICT.

Thus, GMICT as a selection method is highly flexible.

Now, one possibility that has not been fully explored is the effect of the item bank on the

outcome values given the different selection methods. In particular, the real item bank has two

relationships not modeled in the simulated item bank: rb,α∗ = 0.20 and rα∗,β)=0.53. In particular,

the relationship between the difficulty parameters b and the time-discrimination parameters α in

interesting to consider. The less related the measurement model parameters and the RT model

parameters are, the more pronounced the effects of the item selection method should be. This

needs to be explored further in the future.

In the end, in reflecting on the results and what they mean, I have come to the conclusion that

this dissertation is primarily concerned with two things that psychometricians have been concerned

themselves with for well over a century: reliability and validity.

Reliability as a central concern of this dissertation should be fairly obvious; estimation accuracy,

by and large, is a direct measure of reliability. However, there is more to the issue of reliability

than that. As noted in Section 1.4.1, in the Classical Test Theory model, Gulliksen (1950) showed

that the total error scores E can be decomposed into two parts: the number of items W which the

examinee gives an incorrect answer, and the number of items U that the examinee does not reach.

In this viewpoint, N −X = W + U , so a pure speed test is one where P (W = 0) = 1, and a pure

power test is a test where P (U = 0) = 1. Thus, for all practical tests, the total error score is a

function of both U and W . A standard result of this viewpoint is that the reliability of the test is

artificially increased by the presence of speededness (Crocker & Algina, 1986). Unsurprisingly, it

seems that in real multiple-choice tests with time-limits, people simply start guessing at the end

of a test. This has the implication that the reliability decreases for multiple-choice tests in the

96



presence of time-limits (Attali, 2004). Unfortunately, time-limits are a fact of life in the testing

world, especially in multiple-choice testing regimes, so the best we can do in creating a testing

system is to either directly model the change in test-taking strategies that occur due to time-limits,

or to try to limit the effect that time-limits have on scores. What better way to limit the effect of

time-limits than to simply choose items in such a way that an examinee never reaches the time-

limit? The methods given here seek to minimize the amount of time that examinees spend on tests.

While the time-limit effect and the extent to which these methods minimize it are not examined

directly, indirect evidence that these methods would help is that not only do mean test times across

examinees lessen, but also the variability in those test times lessen. Thus, the distribution of test

times is more focused, with a smaller proportion of people exceeding a given time-limit. Future

studies should be done to actually study this time-limit effect.

While reliability is a given, validity as a concern in this dissertation may be less obvious, and

so may take some words to elucidate; those that follow are my attempt to do so. It has been

known for a long time that not only is the accuracy of an examinee related to their ability, but the

speededness of an examinee is as well. Van der Linden’s (2006) hierarchical model can, in another

light, be viewed as two-factor model with one factor θ for ability, and one factor τ for speededness.

If this model is correct, then there an important implication. Simply, response times do have a

relationship with ability, but that they are explained via a separable factor, and treating them as

simply related to an ability (as in a one-factor model with item accuracies and RTs loading onto it)

will bias the item parameters, which, in turn, will bias the estimates of ability. Of course, simply

discarding response times may remedy this, and arguably it would, but only if the item parameters

are truly independent. Unfortunately, it would seem that this should not be the case, since the

relationship between ability and speededness in the real item bank was high (ρθτ = 0.76). Rather

it should be that estimating item parameters in the presence of response times should affect the

values compared to estimating them without response times; this, in turn, would propagate the

error forward to the estimated abilities. This was not investigated in this dissertation, but it seems

worthy of some study going forward as the literature on misspecified models in IRT begins to widen

(Bolt, Beng, & Lee, 2014; Lautenschlager & Park, 1988; Sahin, Walker, & Gelbal, 2014; Sun, 2015;

Zhao & Hambleton, 2017). As such, including speededness in a model of test structure can be seen
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as an important and, arguably, essential component of the overall validity of the score. For what it

is worth, I believe that it is highly likely that two-factor model is not the best model for describing

the relationship between response times and accuracies in a test, because as George Box famously

said: “All models are wrong; some models are useful.” Simply put, the hierarchical model is useful,

if for no other reason than it has allowed for a fruitful conversation in the measurement world.
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Appendix A

Posterior Predictive Distribution

It can be shown that the posterior predictive distribution of the response and response time to

the ith item given τ and the responses/response times to the previous i− 1 items is

pi(Xi = xi, Ti = ti|x(−i), t(−i), τ) = pi(Xi = xi, Ti = ti|x(−i), τ)

=
f(ti|τ)

∫∞
−∞ f(xi|θ)

[∏i−1
k=1 Pk(θ)

xkQk(θ)
1−xk

]
f(θ|τ) dθ∫∞

−∞

[∏i−1
k=1 Pk(θ)

xkQk(θ)1−xk

]
f(θ|τ) dθ

.

Proof. By definition, we know that

f(xi,x(−i), ti, t(−i), τ) =

∫
f(xi,x(−i), ti, t(−i), θ, τ) dθ

=

∫
f(xi,x(−i), ti, t(−i)|θ, τ)f(θ, τ) dθ.

From the local independence assumption of the hierarchical model (van der Linden, 2007),

∫
f(xi,x(−i), ti, t(−i)|θ, τ)f(θ, τ) dθ =

∫
f(xi|θ)f(x(−i)|θ)f(ti|τ)f(t(−i)|τ)f(θ, τ) dθ

=

∫
f(xi|θ)f(ti|τ)f(x(−i), t(−i), θ, τ) dθ

=

∫
f(xi|θ)f(ti|τ)f(θ|x(−i), t(−i), τ)f(x(−i), t(−i), τ) dθ

= f(x(−i), t(−i), τ)f(ti|τ)

∫
f(xi|θ)f(θ|x(−i), t(−i), τ) dθ.

Therefore,

f(xi,x(−i), ti, t(−i), τ) = f(x(−i), t(−i), τ)f(ti|τ)

∫
f(xi|θ)f(θ|x(−i), t(−i), τ) dθ
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implies that

f(xi, ti|x(−i), t(−i), τ) ≡
f(xi,x(−i), ti, t(−i), τ)

f(x(−i), t(−i), τ)
= f(ti|τ)

∫
f(xi|θ)f(θ|x(−i), t(−i), τ) dθ. (A.1)

Now,

f(θ|x, t, τ) ∝ f(x|θ, t, τ)f(θ|t, τ)

and

f(x|θ, t, τ) =
f(x, θ, t, τ)

f(θ, t, τ)
.

By local independence,

f(x, θ, t, τ) = f(x, t|θ, τ)f(θ, τ) = f(x|θ)f(t|τ)f(θ|τ)f(τ),

and

f(θ, t, τ) = f(θ|t, τ)f(t, τ) = f(θ|t, τ)f(t|τ)f(τ).

Putting these together, we find that,

f(x|θ, t, τ) =
f(x|θ)f(t|τ)f(θ|τ)f(τ)

f(θ|t, τ)f(t|τ)f(τ)
=
f(x|θ)f(θ|τ)

f(θ|t, τ)
.

Therefore,

f(θ|x, t, τ) ∝ f(x|θ, t, τ)f(θ|t, τ)

=
f(x|θ)f(θ|τ)

f(θ|t, τ)
f(θ|t, τ)

= f(x|θ)f(θ|τ),

and thus,

f(θ|x(−i), t(−i), τ) =
f(x(−i)|θ)f(θ|τ)∫
f(x(−i)|θ)f(θ|τ) dθ

=

[∏i−1
k=1 Pk(θ)

xkQk(θ)
1−xk

]
f(θ|τ) dθ∫ [∏i−1

k=1 Pk(θ)
xkQk(θ)1−xk

]
f(θ|τ) dθ

(A.2)

Substituting (A.2) into (A.1) leads to the desired result.
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Appendix B

Posterior Variance

It can be shown that the posterior variance of θ given τ and the responses/response times to

the i items is

Var(θ|x(−i), Xi = xi,t(−i), Ti = ti, τ) = Var(θ|x(−i), Xi = xi, τ)

= E(θ2|x(−i), Xi = xi, τ)− E(θ|x(−i), Xi = xi, τ)2

=

∫
θ2f(xi|θ)f(x(−i)|θ)f(θ|τ) dθ∫
f(xi|θ)f(x(−i)|θ)f(θ|τ) dθ

−
[∫

θf(xi|θ)f(x(−i)|θ)f(θ|τ) dθ∫
f(xi|θ)f(x(−i)|θ)f(θ|τ) dθ

]2
(B.1)

Proof. By definition,

Var(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ)

= E(θ2|x(−i), Xi = xi, t(−i), Ti = ti, τ)− E(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ)2. (B.2)

Additionally, by definition,

E(θ2|x(−i), Xi = xi, t(−i), Ti = ti, τ) =

∫
θ2f(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ) dθ (B.3)

E(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ) =

∫
θf(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ) dθ. (B.4)

From (A.2), we know that

f(θ|x(−i), Xi = xi, t(−i), Ti = ti, τ) =
f(x(−i)|θ)f(xi|θ)f(θ|τ)∫
f(x(−i)|θ)f(xi|θ)f(θ|τ) dθ

(B.5)

(B.1) directly follows from (B.2), (B.3), (B.4), and (B.5).
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Appendix C

C++ Code

#include <RcppArmadillo.h>

#include <string>

#include <algorithm>

// [[Rcpp::depends(RcppArmadillo)]]

using namespace Rcpp;

// This computes P_i(theta_j) for the 3PL model.

// [[Rcpp::export]]

double threepl(double a, double b, double c, double theta){

double p = c + (1 - c) / (1 + exp(-a * (theta - b)));

return p;

}

// This generates a response matrix assuming a 3PL model.

// [[Rcpp::export]]

arma::mat genres(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &theta){

unsigned int n_items = a.n_elem;

unsigned int n_persons = theta.n_elem;

arma::mat response(n_persons, n_items);

for(unsigned int i = 0; i < n_items; i++){

for(unsigned int j = 0; j < n_persons; j++){

response(j, i) = 1 * (R::runif(0, 1) <= threepl(a(i), b(i), c(i),

102



theta(j)));

}

}

return(response);

}

// This generates a matrix log-times assuming the log-normal model of RTs.

// [[Rcpp::export]]

arma::mat genlogtime(arma::vec &alpha, arma::vec &beta, arma::vec &tau){

unsigned int n_items = alpha.n_elem;

unsigned int n_persons = tau.n_elem;

arma::mat logtime(n_persons, n_items);

for(unsigned int i = 0; i < n_items; i++){

for(unsigned int j = 0; j < n_persons; j++){

logtime(j, i) = R::rnorm(beta(i) - tau(j), 1 / alpha(i));

}

}

return(logtime);

}

// This computes Fisher information for a single item.

// [[Rcpp::export]]

double Fisher_info(double a, double b, double c, double theta){

double p = threepl(a, b, c, theta);

double FI = pow(a, 2.0) * ((1 - p)/p) * pow((p - c)/(1 - c), 2.0);

return FI;

}

// MIC: Maximum Information Criterion
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// This returns the index for the item that maximizes Fisher information.

// [[Rcpp::export]]

unsigned int MIC(arma::vec &a, arma::vec &b, arma::vec &c, double theta){

unsigned int n_items = a.n_elem;

arma::vec FI(n_items);

for(unsigned int i = 0; i < n_items; i++){

FI(i) = Fisher_info(a(i), b(i), c(i), theta);

}

return arma::index_max(FI);

}

// This computes the KL_index for a single item.

// [[Rcpp::export]]

double KL_index(double a, double b, double c, double theta, double delta = 1,

unsigned int n_quad = 30){

arma::vec p(n_quad);

arma::vec quad_pts = arma::linspace<arma::vec>(theta - delta, theta + delta,

n_quad);

double width = 2 * delta / (n_quad - 1);

for(unsigned int i = 0; i < n_quad; i++){

p(i) = threepl(a, b, c, quad_pts(i));

}

double p_theta = threepl(a, b, c, theta);

double integral1 = width * arma::sum(log(p));

double integral2 = width * arma::sum(log(1 - p));

return 2 * delta * (p_theta * log(p_theta) + (1 - p_theta) *
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log(1 - p_theta)) - (p_theta * integral1 + (1 - p_theta) * integral2);

}

// KLI: Kullback-Leibler Index

// This returns the index for the item that maximizes the K-L index.

// [[Rcpp::export]]

unsigned int KLI(arma::vec &a, arma::vec &b, arma::vec &c, double theta,

double delta = 1, unsigned int n_quad = 30){

unsigned int n_items = a.n_elem;

arma::vec KI(n_items);

for(unsigned int i = 0; i < n_items; i++){

KI(i) = KL_index(a(i), b(i), c(i), theta, delta, n_quad);

}

return arma::index_max(KI);

}

// GMICT: Generalized Time-weighted Maximum Information Criterion,

// MICT (v = 0, w = 1)

// This returns the index for the item that maximizes the time-weighted

// Fisher information.

// [[Rcpp::export]]

unsigned int GMICT(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &alpha,

arma::vec &beta, double theta, double tau, double v = 0,

double w = 1){

unsigned int n_items = a.n_elem;

arma::vec GMI(n_items);

arma::vec denom(n_items);

for(unsigned int i = 0; i < n_items; i++){

double expected_RT = exp(beta(i) - tau + 1/(2 * pow(alpha(i), 2)));
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denom(i) = pow(std::abs(expected_RT - v), w);

GMI(i) = Fisher_info(a(i), b(i), c(i), theta);

}

GMI = GMI / denom;

return arma::index_max(GMI);

}

// KLIT: KL-GMICT

// This returns the index for item that maximizes the time-weighted K-L index.

// [[Rcpp::export]]

unsigned int KL_GMICT(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &alpha,

arma::vec &beta, double theta, double tau, double delta,

double v = 0, double w = 1, unsigned int n_quad = 30){

unsigned int n_items = a.n_elem;

arma::vec KI(n_items);

arma::vec denom(n_items);

for(unsigned int i = 0; i < n_items; i++){

double expected_RT = exp(beta(i) - tau + 1/(2 * pow(alpha(i), 2)));

denom(i) = pow(std::abs(expected_RT - v), w);

KI(i) = KL_index(a(i), b(i), c(i), theta, delta, n_quad);

}

KI = KI / denom;

return arma::index_max(KI);

}

// This is a light-weight helper function that performs the task of computing

// the likelihood across a set of quadrature points for a single item.

// [[Rcpp::export]]

Rcpp::List posterior_var_index_list(double tau, double a, double b, double c,
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arma::vec &fx, arma::vec &fxi, double mu_th = 0, double mu_tau = 0,

double var_th = 1, double var_tau = 1, double covar = 0.5,

double lower_th = -4, double upper_th = 4,

unsigned int n_quad = 11){

arma::vec quad_pts = arma::linspace<arma::vec>(lower_th, upper_th, n_quad);

arma::vec quad_pts2 = quad_pts % quad_pts;

double mu_th_given_tau = mu_th + (covar / var_tau) * (tau - mu_tau);

double var_th_given_tau = var_th - covar * sqrt(var_th / var_tau);

arma::vec f_th_given_tau(n_quad);

arma::vec p_new(n_quad);

for(unsigned int i = 0; i < n_quad; i++){

f_th_given_tau(i) = R::dnorm(quad_pts(i), mu_th_given_tau,

sqrt(var_th_given_tau), 0);

p_new(i) = threepl(a, b, c, quad_pts(i));

}

arma::vec fx_new = fx % fxi;

return Rcpp::List::create(Rcpp::Named("fx", fx_new),

Rcpp::Named("fxi0", 1 - p_new),

Rcpp::Named("fxi1", p_new));

}

// This function fully computes the posterior variance for a single item.

// [[Rcpp::export]]

double posterior_var_index(double tau, double a, double b, double c,

arma::vec &fx, arma::vec &fxi, double mu_th = 0, double mu_tau = 0,

double var_th = 1, double var_tau = 1, double covar = 0.5,

double lower_th = -4, double upper_th = 4, unsigned int n_quad = 11){

double integ1_0, integ1_1, integ2_0, integ2_1, integ3_0, integ3_1;

arma::vec quad_pts = arma::linspace<arma::vec>(lower_th, upper_th, n_quad);
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arma::vec quad_pts2 = quad_pts % quad_pts;

double delta_th = (upper_th - lower_th) / (n_quad - 1);

double mu_th_given_tau = mu_th + (covar / var_tau) * (tau - mu_tau);

double var_th_given_tau = var_th - covar * sqrt(var_th / var_tau);

arma::vec f_th_given_tau(n_quad);

arma::vec p_new(n_quad);

for(unsigned int i = 0; i < n_quad; i++){

f_th_given_tau(i) = R::dnorm(quad_pts(i), mu_th_given_tau,

sqrt(var_th_given_tau), 0);

p_new(i) = threepl(a, b, c, quad_pts(i));

}

arma::vec fx_new = fx % fxi;

arma::vec part0 = fx_new % f_th_given_tau;

arma::vec part1 = p_new % part0;

part0 = (1 - p_new) % part0;

integ1_0 = delta_th * arma::sum(quad_pts2 % part0);

integ1_1 = delta_th * arma::sum(quad_pts2 % part1);

integ2_0 = delta_th * arma::sum(quad_pts % part0);

integ2_1 = delta_th * arma::sum(quad_pts % part1);

integ3_0 = delta_th * arma::sum(part0);

integ3_1 = delta_th * arma::sum(part1);

double out = (integ1_0 - pow(integ2_0, 2.0) / integ3_0) +

(integ1_1 - pow(integ2_1, 2.0) / integ3_1);

return out;

}

// MEPV: Minimum Time-weighted Expected Posterior Variance Criterion

// This function returns the index of the item that minimizes the posterior

// variance.
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// [[Rcpp::export]]

Rcpp::List MEPV(double tau, arma::vec &a, arma::vec &b, arma::vec &c,

arma::vec &fx, arma::vec &fxi, double mu_th = 0,

double mu_tau = 0, double var_th = 1, double var_tau = 1,

double covar = 0.5, double lower_th = -4, double upper_th = 4,

unsigned int n_quad = 11){

unsigned int N = a.n_elem;

arma::vec pvars(N);

for(unsigned int i = 0; i < N; i++){

pvars(i) = posterior_var_index(tau, a(i), b(i), c(i), fx, fxi, mu_th, mu_tau,

var_th, var_tau, covar, lower_th, upper_th, n_quad);

}

unsigned int chosen = arma::index_min(pvars);

Rcpp::List out = posterior_var_index_list(tau, a(chosen), b(chosen), c(chosen),

fx, fxi, mu_th, mu_tau, var_th, var_tau, covar,

lower_th, upper_th, n_quad);

return Rcpp::List::create(Rcpp::Named("choice", chosen),

Rcpp::Named("fx", out(0)),

Rcpp::Named("fxi0", out(1)),

Rcpp::Named("fxi1", out(2)));

}

// MEPVT: PV-GMICT

// This function returns the index of the item that minimizes the time-weighted

// posterior variance.

// [[Rcpp::export]]

Rcpp::List PV_GMICT(double tau, arma::vec &a, arma::vec &b, arma::vec &c,

arma::vec &alpha, arma::vec &beta, arma::vec &fx, arma::vec &fxi,

double v = 0, double w = 1, double mu_th = 0, double mu_tau = 0,
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double var_th = 1, double var_tau = 1, double covar = 0.5,

double lower_th = -4, double upper_th = 4,

unsigned int n_quad = 11){

unsigned int N = a.n_elem;

arma::vec pvars(N);

arma::vec denom(N);

for(unsigned int i = 0; i < N; i++){

double expected_RT = exp(beta(i) - tau + 1/(2 * pow(alpha(i), 2)));

denom(i) = pow(std::abs(expected_RT - v), w);

pvars(i) = posterior_var_index(tau, a(i), b(i), c(i), fx, fxi, mu_th, mu_tau,

var_th, var_tau, covar, lower_th, upper_th, n_quad);

}

unsigned int chosen = arma::index_min(pvars % denom);

Rcpp::List out = posterior_var_index_list(tau, a(chosen), b(chosen), c(chosen),

fx, fxi, mu_th, mu_tau, var_th, var_tau, covar, lower_th,

upper_th, n_quad);

return Rcpp::List::create(Rcpp::Named("choice", chosen),

Rcpp::Named("fx", out(0)),

Rcpp::Named("fxi0", out(1)),

Rcpp::Named("fxi1", out(2)));

}

// This function compute the log-likelihood of the 3PL model at a single theta

// value.

// [[Rcpp::export]]

double threepl_likelihood(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &x,

double theta){

unsigned int n_items = x.n_elem;

double log_likelihood = 0;
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for(unsigned int i = 0; i < n_items; i++){

if(x(i) == 0){

log_likelihood += log(1 - threepl(a(i), b(i), c(i), theta));

}else{

log_likelihood += log(threepl(a(i), b(i), c(i), theta));

}

}

return exp(log_likelihood);

}

// This function computes the first derivative of the log-likelihood

// of the 3PL model at a single theta value.

// [[Rcpp::export]]

double dlogfth(arma::vec &x, double theta, arma::vec &a, arma::vec &b,

arma::vec &c){

unsigned int n_items = x.n_elem;

arma::vec p(n_items);

for(unsigned int i = 0; i < n_items; i++){

p(i) = threepl(a(i), b(i), c(i), theta);

}

arma::vec part = (a % (p - c)) / ((1 - c) % p);

double dlog = arma::conv_to< double >::from(part.t() * (x - p));

return dlog;

}

// This function computes the first and second derivatives of the

// log-likelihood of the 3PL model at a single theta value.

// [[Rcpp::export]]

arma::vec dlogfth_vec(arma::vec &x, double theta, arma::vec &a, arma::vec &b,
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arma::vec &c){

unsigned int n_items = x.n_elem;

arma::vec p(n_items);

for(unsigned int i = 0; i < n_items; i++){

p(i) = threepl(a(i), b(i), c(i), theta);

}

arma::vec part1 = (1 - c) % p;

arma::vec part2 = a % (p - c) / part1;

arma::vec dlog(2);

dlog(0) = arma::sum(part2 % (x - p));

dlog(1) = arma::sum(part2 % a % (1 - p) % (x % c - p % p) / part1);

return dlog;

}

// This function gives the EAP estimate of theta.

// [[Rcpp::export]]

double EAPcpp(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &x,

double th_mu = 0., double th_var = 1., double lower_th = -4.,

double upper_th = 4., unsigned int n_points = 21){

arma::vec quad_pts = arma::linspace(lower_th, upper_th, n_points);

double numerator = 0;

double denominator = 0;

for(unsigned int i = 0; i < n_points; i++){

double value = R::dnorm(quad_pts(i), th_mu, sqrt(th_var), 0) *

threepl_likelihood(a, b, c, x, quad_pts(i));

denominator += value;

numerator += value * quad_pts(i);

}

return numerator / denominator;
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}

// This function gives the ML estimate of tau.

// [[Rcpp::export]]

double MLE_tau(arma::vec &alpha, arma::vec &beta, arma::vec &lnt){

arma::vec alp2 = alpha % alpha;

double out = arma::sum(alp2 % (beta - lnt)) / arma::sum(alp2);

return out;

}

// This function gives the ML estimate of theta if possible. If the

// MLE is not finite, then it automatically gives the EAP estimate instead.

// [[Rcpp::export]]

double MLE_EAP(arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &x,

double th_mu = 0., double th_var = 1., double lower_lim = -4.,

double upper_lim = 4., unsigned int n_points = 21,

double tol = .00000001){

unsigned int n_items = x.n_elem;

if((sum(x) == 0)|(sum(x) == n_items)){

return EAPcpp(a, b, c, x, th_mu, th_var, lower_lim, upper_lim, n_points);

}else{

double low = -1;

double high = 1;

double f_low = dlogfth(x, low, a, b, c);

double f_high = dlogfth(x, high, a, b, c);

while(((f_low > 0) - (f_low < 0)) == ((f_high > 0) - (f_high < 0))){

low += -1;

high += 1;

f_low = dlogfth(x, low, a, b, c);
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f_high = dlogfth(x, high, a, b, c);

if((((f_low > 0) - (f_low < 0)) == 0) |

(((f_high > 0) - (f_high < 0)) == 0) | (low == lower_lim)){

return EAPcpp(a, b, c, x, th_mu, th_var, lower_lim, upper_lim, n_points);

}

}

lower_lim = low;

upper_lim = high;

double th_new = R::runif(lower_lim, upper_lim);

double change = 1000;

unsigned int iter = 0;

while(change > tol){

++iter;

double th_old = th_new;

arma::vec d = dlogfth_vec(x, th_old, a, b, c);

double z = th_old - d(0) / d(1);

if((z > lower_lim) & (z < upper_lim) & (iter <= 30)){

th_new = z;

}else{

iter = 0;

double m = lower_lim + (upper_lim - lower_lim)/2;

f_low = dlogfth(x, lower_lim, a, b, c);

double f_m = dlogfth(x, m, a, b, c);

if(((f_low > 0) - (f_low < 0)) == ((f_m > 0) - (f_m < 0))){

lower_lim = m;

}else{

upper_lim = m;

}

th_new = R::runif(lower_lim, upper_lim);
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}

change = std::abs(th_new - th_old);

}

return th_new;

}

}

// This function computes the first and second derivatives of posterior of

// theta and tau under van der Linden’s model.

// [[Rcpp::export]]

arma::vec dlogfth_tau(arma::vec &x, arma::vec &lnt, double theta, double tau,

arma::vec &a, arma::vec &b, arma::vec &c, arma::vec &alpha,

arma::vec &beta, double mu_th = 0, double mu_tau = 0,

double var_th = 1, double var_tau = 1, double covar = .5){

unsigned int n_items = x.n_elem;

arma::vec p(n_items);

for(unsigned int i = 0; i < n_items; i++){

p(i) = threepl(a(i), b(i), c(i), theta);

}

arma::vec part1 = (1 - c) % p;

arma::vec part2 = a % (p - c) / part1;

double det_sig = var_th * var_tau - pow(covar, 2.0);

arma::vec alp2 = alpha % alpha;

arma::vec dlogf(5);

// dlogf_dth

dlogf(0) = arma::sum(part2 % (x - p)) -

(var_tau * (theta - mu_th) - covar * (tau - mu_tau)) / det_sig;

// dlogf_dtau
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dlogf(1) = -arma::sum(alp2 % (lnt - (beta - tau))) -

(var_th * (tau - mu_tau) - covar * (theta - mu_th)) / det_sig;

// d2logf_dth2

dlogf(2) = arma::sum(part2 % a % (1 - p) % (x % c - p % p) / part1) -

(var_tau / det_sig);

// d2logf_dtau2

dlogf(3) = -arma::sum(alp2) - var_th / det_sig;

// d2logf_dthdtau

dlogf(4) = covar / det_sig;

return dlogf;

}

// This function computes the MAP estimates of theta and tau under

// van der Linden’s model.

// [[Rcpp::export]]

arma::vec MAP_th_tau(arma::vec &x, arma::vec &lnt, arma::vec &a, arma::vec &b,

arma::vec &c, arma::vec &alpha, arma::vec &beta, double mu_th = 0,

double mu_tau = 0, double var_th = 1, double var_tau = 1,

double covar = 0.5, double tol = 0.00001, double start_th = NA_REAL,

double start_tau = NA_REAL){

arma::vec alp2 = alpha % alpha;

double th_start;

double tau_start;

if(NumericVector::is_na(start_th)){

th_start = R::rnorm(0, 1);

}else{

th_start = start_th;

}

if(NumericVector::is_na(start_tau)){
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tau_start = sum(alp2 % (lnt - beta)) / sum(alp2);

}else{

tau_start = start_tau;

}

double change = 1000;

unsigned int i = 0;

double th_new = th_start;

double tau_new = tau_start;

while( change > tol ){

++i;

double th_old = th_new;

double tau_old = tau_new;

arma::vec d = dlogfth_tau(x, lnt, th_old, tau_old, a, b, c, alpha, beta,

mu_th, mu_tau, var_th, var_tau, covar);

double detA = d(2) * d(3) - pow(d(4), 2.0);

double change_th = (d(0) * d(3) - d(1) * d(4))/detA;

double change_tau = (d(1) * d(2) - d(0) * d(4))/detA;

th_new = th_old - change_th;

tau_new = tau_old - change_tau;

change = pow(change_th, 2.0) + pow(change_tau, 2.0);

if((i == 40) | (NumericVector::is_na(change)) |

any(is_infinite(NumericVector::create(change)))){

i = 0;

th_new = R::rnorm(0, 1);

tau_new = tau_start;

change = 1000;

}

}

arma::vec out(2);
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out(0) = th_new;

out(1) = tau_new;

return out;

}
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Appendix D

R Code

#-----#

# CAT #

#-----#

# This is a full CAT simulation. It incorporates all of the selection methods

# described in this dissertation. Several options are described below, as well

# as the input values.

#

# examinees: examinee parameters (in order of theta,tau) specified as n x 2

# matrix

# items: item parameters (in order of a,b,c,A,B) specified as m x 5 matrix

# test.length: test length (50 by default)

# n.start.items: number of random items to start (1 by default)

# method: item selection criterion (MIC, MICT, GMICT, KLI, KLIT, MEPV, MEPVT)

# w: exponent values for GMICT/KLIT/MEPVT (scalar or vector)

# v: centering values for GMICT/KLIT/MEPVT (scalar or vector)

# seed: set seed value for direct replications (NULL by default)

# width: a constant governing the range of integration for KLI and KLIT (3 by

# default)

# weighted: either bias, MSE, and correlation are computed by weighting by

# f(theta) or not (F by default)

# conditional: either conditional bias and conditional MSE are computed or not

# (T by default)
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# MAP: either use joint MAP or not. If not, use MLE instead. (F by default)

# n.quad1: number of quadrature points for KLI and KLIT (250 by default)

# n.quad2: number of quadrature points for MEPV and MEPVT (21 by default)

CAT.cond <- function(examinees, items, test.length=50, n.start.items=1, th.mu=0,

th.var=1, tau.mu = 0, tau.var = 1, covar = .5, method=’MIC’,

v = 0, w = 1, width = 3, seed=NA, weighted = T,

conditional = T, MAP = F, n.quad1 = 30, n.quad2 = 25){

if(!is.na(seed)){

set.seed(seed)

}

n.persons <- nrow(examinees)

n.items <- nrow(items)

theta <- examinees[,1]

tau <- examinees[,2]

a <- items[,1]

b <- items[,2]

c <- items[,3]

A <- items[,4]

B <- items[,5]

responses <- genres(a, b, c, theta)

log.times <- genlogtime(A, B, tau)

if(any(method == c(’MIC’, ’MICT’, ’MEPV’, ’KLI’))){

w <- 1; v <- 0;

results <- data.frame(matrix(0, 1, 9))

names(results) <- c(’MSE.the’, ’MSE.tau’, ’bias.the’, ’bias.tau’, ’cor.the’,

’cor.tau’, ’MTT’, ’STT’, ’Chi2’)

}

if(any(method == c(’GMICT’, ’MEPVT’, ’KLIT’))){
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results <- data.frame(matrix(0, length(w)*length(v), 11))

names(results) <- c(’w’, ’v’, ’MSE.the’, ’MSE.tau’, ’bias.the’, ’bias.tau’,

’cor.the’, ’cor.tau’, ’MTT’, ’STT’, ’Chi2’)

}

if(conditional){

results2 <- list()

}

q <- 0

for(w.ind in w){

for(v.ind in v){

if(!is.na(seed)){

seed <- seed + 1

set.seed(seed)

}

if(any(method == c(’GMICT’, ’MEPVT’, ’KLIT’))){

cat(paste(’w = ’, w.ind, ’, v = ’, v.ind, sep = ’’),’\n’)

flush.console()

}

q <- q + 1

ec.MIC <- rep(0, n.items)

theta.MIC <- rep(0, n.persons)

tau.MIC <- rep(0, n.persons)

test.time <- rep(0, n.persons)

for(i in 1:n.persons){

it <- c(rep(0, test.length), n.items + 1)

u <- rep(2, test.length)

lnt <- rep(0, test.length)

if(i %% 1000 == 0){

print(paste(’On’, ’Person’, i))
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flush.console()

}

if(n.start.items > 0){

it[1:n.start.items] <- sample(n.items, n.start.items)

ec.MIC[it[1:n.start.items]] <- ec.MIC[it[1:n.start.items]] + 1

u[1:n.start.items] <- responses[i, it[1:n.start.items]]

lnt[1:n.start.items] <- log.times[i, it[1:n.start.items]]

if(MAP == T){

temp <- MAP_th_tau(u[1:n.start.items], lnt[1:n.start.items],

a[it[1:n.start.items]], b[it[1:n.start.items]],

c[it[1:n.start.items]], A[it[1:n.start.items]],

B[it[1:n.start.items]], th.mu, tau.mu,

th.var, tau.var, covar)

th.est <- temp[1]

tau.est <- temp[2]

}else{

th.est <- MLE_EAP(a[it[1:n.start.items]], b[it[1:n.start.items]],

c[it[1:n.start.items]], u[1:n.start.items],

th.mu, th.var)

tau.est <- MLE_tau(A[it[1:n.start.items]], B[it[1:n.start.items]],

lnt[1:n.start.items])

}

}

if(n.start.items == 0){

th.est <- tau.est <- 0

}

if(method == ’MEPV’ | method == ’MEPVT’){

xx <- seq(-4, 4, len = n.quad2)

fx <- numeric(n.quad2)
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for(quad.point in 1:n.quad2){

fx[quad.point] <-

threepl_likelihood(a[it[1:n.start.items]], b[it[1:n.start.items]],

c[it[1:n.start.items]], u[1:n.start.items],

xx[quad.point])

}

fxi <- numeric(n.quad2) + 1

}

for(j in (n.start.items + 1):test.length) {

if(method==’MIC’){

it[j] <- (1:n.items)[-it][MIC(a[-it], b[-it], c[-it], th.est) + 1]

}

if(any(method==c(’MICT’,’GMICT’))){

it[j] <- (1:n.items)[-it][GMICT(a[-it], b[-it], c[-it], A[-it],

B[-it], th.est, tau.est, v.ind,

w.ind) + 1]

}

if(method == ’MEPV’){

temp1 <- MEPV(tau.est, a[-it], b[-it], c[-it], fx, fxi, th.mu,

tau.mu, th.var, tau.var, covar, -4, 4, n.quad2)

fx <- temp1$fx

it[j] <- (1:n.items)[-it][temp1$choice + 1]

}

if(method == ’MEPVT’){

temp1 <- PV_GMICT(tau.est, a[-it], b[-it], c[-it], A[-it], B[-it],

fx, fxi, v.ind, w.ind, th.mu, tau.mu, th.var,

tau.var, covar, -4, 4, n.quad2)

fx <- temp1$fx

it[j] <- (1:n.items)[-it][temp1$choice + 1]
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}

if(method == ’KLI’){

#quads <- ceiling(n.quad1 * sqrt(2 / j))

delta <- width/sqrt(j)

it[j] <- (1:n.items)[-it][KLI(a[-it], b[-it], c[-it], th.est, delta,

n.quad1) + 1]

}

if(method == ’KLIT’){

#quads <- ceiling(n.quad1 * sqrt(2 / j))

delta <- width/sqrt(j)

it[j] <- (1:n.items)[-it][KL_GMICT(a[-it], b[-it], c[-it], A[-it],

B[-it], th.est, tau.est, delta,

v.ind, w.ind, n.quad1) + 1]

}

ec.MIC[it[j]] <- ec.MIC[it[j]] + 1

u[j] <- responses[i, it[j]]

if(method == ’MEPV’ | method == ’MEPVT’){

if(u[j] == 0){

fxi <- temp1$fxi0

}else{

fxi <- temp1$fxi1

}

}

lnt[j] <- log.times[i, it[j]]

if(MAP == T){

temp <- MAP_th_tau(u[1:j], lnt[1:j], a[it[1:j]], b[it[1:j]],

c[it[1:j]], A[it[1:j]], B[it[1:j]], th.mu,

tau.mu, th.var, tau.var, covar)

th.est <- temp[1]
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tau.est <- temp[2]

}else{

th.est <- MLE_EAP(a[it[1:j]], b[it[1:j]], c[it[1:j]], u[1:j],

th.mu, th.var)

tau.est <- MLE_tau(A[it[1:j]], B[it[1:j]], lnt[1:j])

}

}

theta.MIC[i] <- th.est

tau.MIC[i] <- tau.est

test.time[i] <- sum(exp(lnt))

}

if(weighted){

wvarthe1 <- sum(dnorm(theta, th.mu, sqrt(th.var)) *

(theta.MIC - mean(theta.MIC))^2) /

sum(dnorm(theta, th.mu, sqrt(th.var)))

wvarthe2 <- sum(dnorm(theta, th.mu, sqrt(th.var)) *

(theta - mean(theta))^2) /

sum(dnorm(theta, th.mu, sqrt(th.var)))

wcovthe <- sum(dnorm(theta, th.mu, sqrt(th.var)) *

(theta.MIC - mean(theta.MIC)) * (theta - mean(theta))) /

sum(dnorm(theta, th.mu, sqrt(th.var)))

wvartau1 <- sum(dnorm(tau, tau.mu, sqrt(tau.var)) *

(tau.MIC - mean(tau.MIC))^2) /

sum(dnorm(tau, tau.mu, sqrt(tau.var)))

wvartau2 <- sum(dnorm(tau, tau.mu, sqrt(tau.var)) *

(tau - mean(tau))^2) /

sum(dnorm(tau, tau.mu, sqrt(tau.var)))

wcovtau <- sum(dnorm(tau, tau.mu, sqrt(tau.var)) *

(tau.MIC - mean(tau.MIC)) * (tau - mean(tau))) /
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sum(dnorm(tau, tau.mu, sqrt(tau.var)))

MSE.the <- sum(dnorm(theta, th.mu, sqrt(th.var)) *

(theta.MIC - theta)^2) /

sum(dnorm(theta, th.mu, sqrt(th.var)))

MSE.tau <- sum(dnorm(tau, tau.mu, sqrt(tau.var)) *

(tau.MIC - tau)^2) /

sum(dnorm(tau, tau.mu, sqrt(tau.var)))

bias.the <- sum(dnorm(theta, th.mu, sqrt(th.var)) *

(theta.MIC - theta)) /

sum(dnorm(theta, th.mu, sqrt(th.var)))

bias.tau <- sum(dnorm(tau, tau.mu, sqrt(tau.var)) *

(tau.MIC - tau)) /

sum(dnorm(tau, tau.mu, sqrt(tau.var)))

cor.the <- wcovthe / sqrt(wvarthe1 * wvarthe2)

cor.tau <- wcovtau / sqrt(wvartau1 * wvartau2)

}else{

MSE.the <- sum((theta.MIC - theta)^2) / n.persons

MSE.tau <- sum((tau.MIC - tau)^2) / n.persons

bias.the <- sum((theta.MIC - theta)) / n.persons

bias.tau <- sum((tau.MIC - tau)) / n.persons

cor.the <- cor(theta.MIC, theta)

cor.tau <- cor(tau.MIC, tau)

}

if(conditional){

uni.the <- unique(theta)

cond.bias.the <- numeric(length(uni.the))

cond.mse.the <- numeric(length(uni.the))

for(i in 1:length(uni.the)){
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temp.the <- theta[theta == uni.the[i]]

temp.est <- theta.MIC[theta == uni.the[i]]

temp.n <- length(temp.the)

cond.bias.the[i] <- sum(temp.est - temp.the) / temp.n

cond.mse.the[i] <- sum((temp.est - temp.the)^2) / temp.n

}

if(any(method == c(’MIC’, ’MICT’, ’MEPV’, ’KLI’))){

results2[[q]] <- data.frame(theta = uni.the, cond.bias = cond.bias.the,

cond.mse = cond.mse.the)

}

if(any(method == c(’GMICT’, ’MEPVT’, ’KLIT’))){

results2[[q]] <- data.frame(w = w.ind, v = v.ind, theta = uni.the,

cond.bias = cond.bias.the,

cond.mse = cond.mse.the)

}

}

MTT <- mean(test.time)

STT <- sd(test.time)

Chi2 <- sum((ec.MIC/n.persons - test.length/n.items)^2) /

(test.length/n.items)

if(any(method == c(’MIC’, ’MICT’, ’MEPV’, ’KLI’))){

results[q,] <- c(MSE.the, MSE.tau, bias.the, bias.tau, cor.the, cor.tau,

MTT, STT, Chi2)

}

if(any(method == c(’GMICT’, ’MEPVT’, ’KLIT’))){

results[q,] <- c(w.ind, v.ind, MSE.the, MSE.tau, bias.the, bias.tau,

cor.the, cor.tau, MTT, STT, Chi2)

}
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}

}

if(conditional){

output = list(results = results, results2 = results2)

}else{

output = list(results = results)

}

return(output)

}
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