THERMAL DECOMPOSITION OF METHYL ACETATE ($\mathrm{CH_3COOCH_3}$) IN A FLASH-PYROLYSIS MICROREACTOR

JESSICA P PORTERFIELD, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA; DAVID H. BROSS, Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, USA; BRANKO RUSCIC, Computation Institute, The University of Chicago, Chicago, IL, USA; JAMES H. THORPE, THANH LAM NGUYEN, Department of Chemistry, The University of Texas, Austin, TX, USA; JOSHUA H BARABAN, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA; JOHN F. STANTON, Department of Chemistry, The University of Texas, Austin, TX, USA; JOHN W DAILY, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; BARNEY ELLISON, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.

The thermal decomposition of methyl acetate (CH_3COOCH_3) has been studied in a set of flash pyrolysis microreactors. Samples were diluted to (0.06-0.13%) in carrier gases (He, Ar) and subjected to temperatures of 300 - 1600 K at roughly 20 Torr. After residence times of approximately $25-150~\mu seconds$, the unimolecular pyrolysis products were detected by vacuum ultraviolet photoionization mass spectrometry at 10.487~eV (118.2~nm). Complementary product identification was provided by matrix isolation infrared spectroscopy. Decomposition began at 1000~K with the observation of (CH_2 =C=O, CH_3OH), products of a four centered rearrangement with a $\Delta_{rxn}H_{298}=39.1\pm0.2~k$ cal mol^{-1} . As the micro-reactor was heated to 1300~K, a mixture of (CH_2 =C=O, CH_3OH , CH_3 , CH_2 =O, H, CO, CO_2) appeared. A new novel pathway is calculated in which both methyl groups leave behind CO_2 simultaneously, $\Delta_{rxn}H_{298}=74.5\pm0.4~k$ cal mol^{-1} . This pathway is in contrast to step-wise loss of methyl radical, which can go in two ways: $\Delta_{rxn}H_{298}$ ($CH_3COOCH_3 \rightarrow CH_3 + COOCH_3$) = $95.4\pm0.4~k$ cal mol^{-1} , $\Delta_{rxn}H_{298}$ ($CH_3COOCH_3 \rightarrow CH_3COO+CH_3$) = $88.0\pm0.3~k$ cal mol^{-1} .