THE GIGAHERTZ AND TERAHERTZ SPECTRUM of MONO-DEUTERATED OXIRANE (c-C₂H₃DO)

SIEGHARD ALBERT, ZIQIU CHEN, KAREN KEPPLER, Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland; PHILIPPE LERCH, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland; MARTIN QUACK, Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland; VOLKER SCHURIG, Institute of Organic Chemistry, University of Tubingen, Tubingen, Germany; OLIVER TRAPP, Department of Chemistry, Ludwig Maximilians University, Munich, Germany.

The rotational spectrum of the chiral mono-deuterated oxirane $c-C_2H_3DO$, an isotopomer of oxirane (ethylenoxide), of which the normal isotopomer has already been detected in interstellar clouds, was measured in the ranges 78 to 108 GHz and 25 to 70 cm⁻¹. Thus one can expect that $c-C_2H_3DO$ will be detectable in space in the future given the current accurate laboratory data. $c-C_2H_3DO$ is also of interest as a simple prototypical molecule for isotopic chirality and parity violation. a,b,c,d , The Zurich GHz spectrometer and a high resolution FTIR interferometer using synchrotron radiation was used for the THz spectrum. d,e,f Previous laboratory work on the rotational spectrum of deuterated oxirane extended only to the frequency of 45 GHz. A total of 119 transitions have been newly assigned in the GHz range (extended to 119 GHz) up to J=18 and 900 transitions in the THz region at most to J=70. The analyses of the rotational spectra shall be discussed in detail in relation to their astrophysical importance.

^aM. Quack, Angew. Chem. Int. Ed. 28, 571-586 (1989).

^bM. Quack, Fundamental Symmetries and Symmetry Violations from High-resolution Spectroscopy, Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds., John Wiley & Sons Ltd, Chichester, New York, 2001, vol. 1, ch. 18, pp. 659-722.

^cR. Berger, G. Laubender, M. Quack, A. Sieben, J. Stohner and M. Willeke, Angew. Chem. Int. Ed. 44, 3623-3626 (2005).

^dS. Albert, I. Bolotova, Z. Chen, C. Fábri, L. Horný, M. Quack, G. Seyfang and D. Zindel, *Phys. Chem. Chem. Phys.* 18, 21976-21993 (2016).

^eS. Albert, I. Bolotova, Z. Chen, C. Fábri, L. Horný, M. Quack, G. Seyfang and D. Zindel, Proceedings of the 20th Symposium on Atomic, Cluster and Surface Physics (SASP 2016), Innsbruck University Press, 2016, pp. 127-130, ISBN:978-3-903122-04-8. and to be published.

^fS. Albert, F. Arn, I. Bolotova, Z. Chen, C. Fábri, G. Grassi, Ph. Lerch, M. Quack, G. Seyfang, A. Wokaun and D. Zindel, *J.Phys.Chem.Lett*, 7, 3847-3853 (2016).