SPECTROSCOPIC CHARACTERIZATION OF N2O5 HALIDE CLUSTERS AND THE FORMATION OF HNO3

JOANNA K. DENTON, PATRICK J KELLEHER, FABIAN MENGES, MARK JOHNSON, Department of Chemistry, Yale University, New Haven, CT, USA.

 N_2O_5 is an atmospheric species which serves as night-time sink for NO_x species. Its reconversion to NO_x products occurs through solvation in atmospheric aerosols. Detection of N_2O_5 and NO_3^- fragmentation products in such aerosols has previously utilized chemical ionization featuring halides (of which chlorine is ubiquitous in sea-spray aerosols). We examine the solvation behavior of N_2O_5 and the critical number of water molecules to form HNO_3 from N_2O_5 and water. We have been able to generate and spectroscopically characterize N_2O_5 -halide ions formed from halide-water clusters. We observe $X^-N_2O_5$ species whose spectra best correspond to a calculated $(O_2NX)(ONO_2^-)$ species.

^aFunding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.