ANALYSIS OF SOME NEW ELECTRONIC TRANSITIONS OBSERVED USING INTRACAVITY LASER SPECTROSCOPY (ILS): POSSIBLE IDENTIFICATION OF HCuN

JACK C HARMS, ETHAN M GRAMES, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA; LEAH C O'BRIEN, Department of Chemistry, Southern Illinois University, Edwardsville, IL, USA; JAMES J O'BRIEN, Chemistry and Biochemistry, University of Missouri, St. Louis, MO, USA.

Four new electronic transitions with blue-degraded bandheads were observed in the orange-red region of the visible spectrum. The transitions were observed in the plasma discharge of a hollow copper cathode placed within the cavity of a tunable dye laser system, allowing molecular absorbance to be enhanced upon laser amplification. To produce the molecules, the surface of the copper cathode was soaked in a dilute ammonia solution prior to installation, and 1 torr of H_2 was used as the sputter gas in the dc plasma discharge. The bandheads were observed at $16,560~\mathrm{cm}^{-1}$, $16,485~\mathrm{cm}^{-1}$, $16,027~\mathrm{cm}^{-1}$, and $15,960~\mathrm{cm}^{-1}$. Using 1.5 torr of D_2 as the sputter gas resulted in a -3 cm⁻¹shift in origin for the bands in the $16,000~\mathrm{cm}^{-1}$ region. Four rotational branches have been identified in each transition, and the transitions have been fit to independent $^2\Sigma$ - $^2\Pi$ transitions using PGOPHER, with spin-orbit splittings in the Hund's case (a) Π -states of -71.2 cm⁻¹and -65.4 cm⁻¹. The transitions have tentatively been assigned to HCuN. Results of this analysis will be presented.