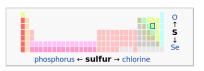
An Updated Gas/Grain Sulfur Network for Astrochemical Models

Jacob Laas & Paola Caselli

CAS@MPE (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics) Introduction Model Details Model Results Fina


Chemistry of Sulfur

ullet Sulfur is heavy, and many important rates $\propto \sqrt{1/\mathit{mass}}$

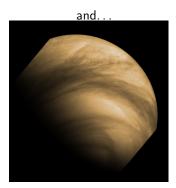
- Gas-phase velocity
- Condensed-phase mobility (migration/reaction/desorption)
- Not quite like oxygen
 - Higher valency → sulfur enjoys company
 - $\bullet \ \ \mathsf{Lower} \ \mathsf{electronegativity} \ \to \ \mathsf{bonds} \ \mathsf{are} \ \mathsf{weaker}$
 - Many possible oxidation states: **6**, 5, **4**, 3, **2**, 1, -1, -**2**
 - Not a popular laboratory target
- Sulfur has a (relatively) low ionization potential:

Element	Ion. Pot. (eV)
N	14.5
0	13.618
Н	13.598
C	11.3
P	10.5
S	10.4

Introduction Model Details Model Results Finale

Extraterrestrial Sulfur

Species	First Obs.	ISM	Cometary
SH	2012	*	
SH ⁺	2011	*	
H ₂ S	1972	*	*
H ₂ S+	1984		*
н ₂ s+ н ₃ s+	1990		*
cš	1971	*	*
HCS ⁺	1981	*	
H ₂ CS	1973	*	*
NS	1975	*	*
SO	1973	*	*
so ⁺	1992	*	
SO ₂	1975	*	*
ocs	1971	*	*
S ₂	1983		*
S ₂ S ₃ S ₄	2016		*
S ₄	2016		*
c ₂ s c ₃ s cs ₂	1987	*	
c ₃ s	1987	*	
cš ₂	2004		*
CH ₃ SH	1979	*	*
CH ₃ CH ₂ SH	2014	* (?)	*
HNCS	1979	*	
HSCN	2009	*	



Introduction Model Details Model Results Final

Extraterrestrial Sulfur

Species	First Obs.	ISM	Cometary
SH	2012	*	
SH ⁺	2011	*	
H ₂ S	1972	*	*
H ₂ S+	1984		*
н ₂ s+ н ₃ s+	1990		*
cš	1971	*	*
HCS ⁺	1981	*	
H ₂ CS	1973	*	*
NS	1975	*	*
SO	1973	*	*
so ⁺	1992	*	
SO ₂	1975	*	*
ocs	1971	*	*
S ₂	1983		*
S ₃	2016		*
S ₂ S ₃ S ₄ C ₂ S C ₃ S	2016		*
C ₂ S	1987	*	
c ₃ s	1987	*	
cš ₂	2004		*
CH ₃ SH	1979	*	*
CH ₃ CH ₂ SH	2014	* (?)	*
HNCS	1979	*	
HSCN	2009	*	

Sulfuric acid (H_2SO_4) on Venus. Source: ESA/MPS/DLR/IDA

troduction Model Details Model Results Fin

Chemical Network - Basics

- Network core is based on Garrod et al. 2008 (i.e. the "OSU gas/grain network")
- E_{binding} for O & NH₃ modified
- Minor updates to thermochemistry via recent ab initio calcs
- Important updates/additions to photochemistry for low-A_v
 - Photodesorption (Öberg et al. 2009; Hollenbach et al. 2009)
 - Photodissociation/photoionization cross sections (Heays et al. 2017)

Modeling Interstellar Sulfur

ntroduction Model Details Model Results Final

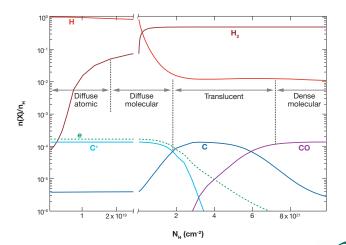
Chemical Network - Sulfur

- Sulfur network greatly updated/expanded via literature
- All interstellar species are now included, except CH₃CH₂SH
- Thermochemistry for allotropes rearranged
- Expanded oxidation routes on grain

Sulfur species*

SH	SH ⁺		
H_2S	H ₂ S ⁺	$H_2S(H^+)$	
H_2S_2	H ₂ S ₂ +	$H_{2}^{-}S_{2}(H^{+})$	
CS	cs+	HCS	CS(H ⁺)
H ₂ CS	H ₂ CS ⁺	$H_2CS(H^+)$	
c ₂ s	c ₂ s+	HC ₂ S	C ₂ S(H ⁺)
C ₃ S	c ₃ s ⁺	HC ₃ S	$C_3^-S(H^+)$
C ₄ S	c ₄ s ⁺	C ₄ S(H ⁺)	-
CH ₃ SH	CH ₃ SH(H ⁺)	CH ₂ SH	CH ₃ S
cs ₂	cs ₂ +	CS ₂ H	$CS_2(H^+)$
HCSSH	нсssн+	HCSSH(H ⁺)	_
NS	NS ⁺	NS(H ⁺)	
HNCS	HNCS(H ⁺)	(H ⁺)HNCS	NH ₂ CS
HSCN	HSCN(H ⁺)		_
HCNS	HCNS(H ⁺)	(H ⁺)HCNS	
NH ₂ CHS	$NH_2CHS(H^+)$	NH2CH2SH	NH3CH2SH+
so	so∓	HSO	SO(H ⁺)
SO ₂	so ₂ +	SO ₂ (H ⁺)	SO ₂ (H ⁺)
ocs	ocs+	OCS(H ⁺)	HOCS(H ⁺)
S ₂₋₈	S ₂ H	S ₂ (H ⁺)	
SiS	sis+	SiS(H ⁺)	

^{*}bold entries are new to OSU gas/grain network

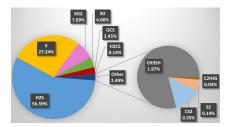

Modeling Interstellar Sulfur Jacob Laas & Paola Caseli

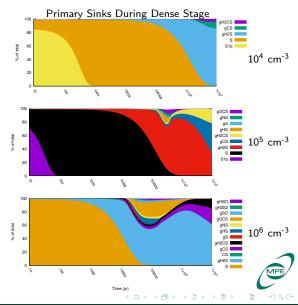
troduction Model Details Model Results Fina

Physical Model

- 3 stages trace cloud history
- Physical conditions are based on Snow & McCall, Annu. Rev. Astro. Astrophys., 2006

	Stage 1	Stage 2	Stage 3
Classification Density (cm ⁻³)	Diffuse	Translucent	Dark/Dense 10 ⁴ — 10 ⁶
A _v	0.5	1.6	10 – 10
T _{gas} (K)	100	25	10
T _{dust} (K)	15	15	10
$f_0^n(H_2)$	0.01%	98%	99%
Init. Abund. (K)	Cosmic		
Time (yr)	107	10 ⁶	10 ⁶

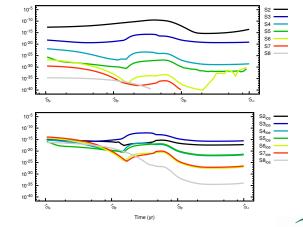



troduction Model Details **Model Results** Fina

Primary Sulfur Budget

- Sulfur depletes out of gas phase near free-fall time limit and at high densities
- Majority of the sulfur budget is trapped in ices
- The usual suspects remain top sinks: CS, H₂S, OCS, SO, SO₂

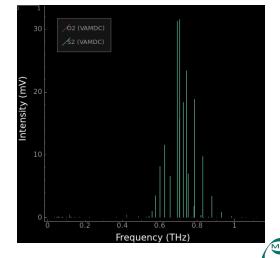
Sulfur budget on comet 67P/Churyumov–Gerasimenko via *Rosetta*/ROSINA. (Calmonte et al. 2016)



troduction Model Details **Model Results** Fin

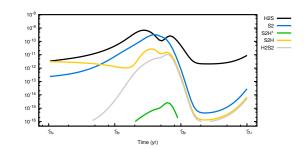
Sulfur Allotropes (pure chains/rings)

- \bullet $\,S_{2\text{--}4}$ form much faster than $S_{5\text{--}8}$
- $E_{bind} \propto S_n$ \rightarrow unfavorable grain rates at 10 K
- Under interstellar conditions, S₂ dominates
 → opposite to terrestrial behavior
- S₂ has magnetic dipole moment



Model Results Model Details

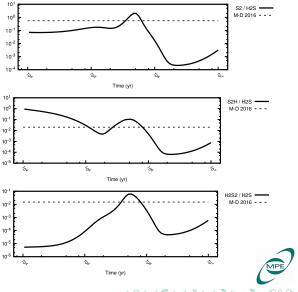
Sulfur Allotropes (pure chains/rings)


- $S_{2,4}$ form much faster than $S_{5,8}$
- $E_{bind} \propto S_n$ \rightarrow unfavorable grain rates at 10 K
- Under interstellar conditions, S₂ dominates \rightarrow opposite to terrestrial behavior
- S₂ has magnetic dipole moment

roduction Model Details **Model Results** Fir

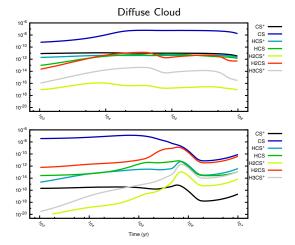
Hydrogenated Species

- Gas-phase abundances are not predicted to be significant
- Upper limits toward IRAS 16293-2422 suggested by Martín-Doménech et al. (2016) are within reasonable agreement



troduction Model Details **Model Results** Fin

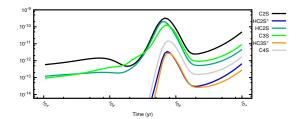
Hydrogenated Species


- Gas-phase abundances are not predicted to be significant
- Upper limits toward IRAS 16293-2422 suggested by Martín-Doménech et al. (2016) are within reasonable agreement

troduction Model Details **Model Results** Fina

CS, H₂CS & company

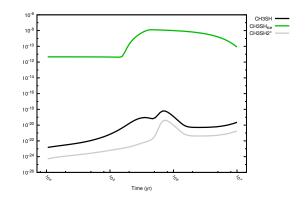
- CS has a significant abundances (ice & gas) in translucent & dense clouds
- HCS & H₂CS only become important in denser phase


Dense Cloud

oduction Model Details **Model Results** Fina

C_nS Chains

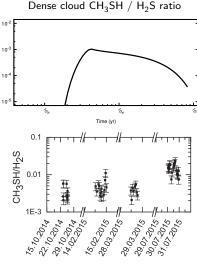
- C₂S & HC₂S⁺ reach non-negligible gas-phase abundances
- Hydrogenated species are good targets for lab + obs (even the cations)



troduction Model Details **Model Results** Fi

CH₃SH

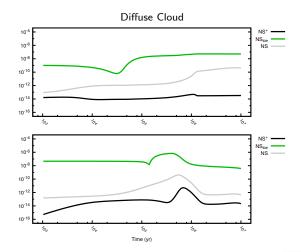
- Formation routes are similar to methanol (CH₃OH)
 - gas-phase (ineffi105cient): $CH_3^+ + H_2S \longrightarrow CH_3SH(H^+) + h\nu$ $CH_3SH(H^+) + e^- \longrightarrow CH_3SH + H$
 - grain surface: $S + CH_3 \longrightarrow CH_3S$ $SH + CH_2 \longrightarrow CH_2SH$ $CH_3S/CH_2SH + H \longrightarrow CH_3SH$
- Gas-phase abundances are negligble
- Model predicts near-cometary abundances



troduction Model Details **Model Results** Fin

CH₃SH

- Formation routes are similar to methanol (CH₃OH)
 - gas-phase (ineffi105cient): $CH_3^+ + H_2S \longrightarrow CH_3SH(H^+) + h\nu$ $CH_3SH(H^+) + e^- \longrightarrow CH_3SH + H$
 - grain surface: $S + CH_3 \longrightarrow CH_3S$ $SH + CH_2 \longrightarrow CH_2SH$ $CH_3S/CH_2SH + H \longrightarrow CH_2SH$
- Gas-phase abundances are negligble
- Model predicts near-cometary abundances



troduction Model Details **Model Results** Fina

N-bearing Species

- NS_{ice} is nearly constant during/after translucent stage
- NS⁺ is closed-shell cation
 → good target for lab + obs
- HCNS isomeric family is not yet finished
- NH_xCH_yS do not reach appreciable abundances

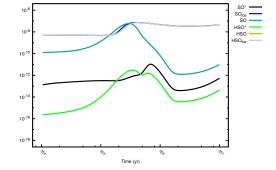
troduction Model Details **Model Results** Fin.

Oxygenated Species

- SO is important in both gas & ice, in translucent & dense clouds
- SO₂ is important in both phases in dense clouds

$$O + SO \longrightarrow SO_2 + hi$$

• grain:


$$O_2 + SO \longrightarrow O + SO_2$$

- OCS is most important O-bearing species in dense ice
 - gas-phase:

$$S + HCO \longrightarrow H + OCS$$

 $O + HCS \longrightarrow OCS + H$

• grain:

$$S + gCO \longrightarrow gOCS$$

 $CS + gO_2 \longrightarrow gOCS + gO$

troduction Model Details **Model Results** Fir

Oxygenated Species

- SO is important in both gas & ice, in translucent & dense clouds
- SO₂ is important in both phases in dense clouds
 - gas-phase: $O + SO \longrightarrow SO_2 + h\nu$
 - grain:

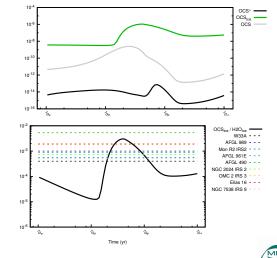
$${\rm O_2 + SO} \longrightarrow {\rm O + SO_2}$$

- OCS is most important O-bearing species in dense ice
 - gas-phase:

$$S + HCO \longrightarrow H + OCS$$

 $O + HCS \longrightarrow OCS + H$
 $OH + CS \longrightarrow H + OCS$

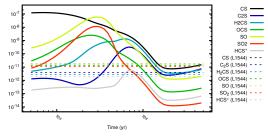
• grain:

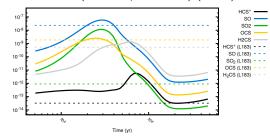

$$S + gCO \longrightarrow gOCS$$

 $CS + gO_2 \longrightarrow gOCS + gO$

duction Model Details **Model Results** Fina

Oxygenated Species


- SO is important in both gas & ice, in translucent & dense clouds
- \bullet SO_2 is important in both phases in dense clouds
 - gas-phase: $O + SO \longrightarrow SO_2 + h\nu$ • grain: $O_2 + SO \longrightarrow O + SO_2$
- OCS is most important O-bearing species in dense ice
 - gas-phase:
 S + HCO → H + OCS
 O + HCS → OCS + H
 OH + CS → H + OCS
 - grain: $S + gCO \longrightarrow gOCS$ $CS + gO_2 \longrightarrow gOCS + gO$


troduction Model Details **Model Results** Fin.

Is there hope?

L183 vs model (Lattanzi, priv. comm.) (WF06)

- Some environments are not consistent
- Modeling non-equilibrium chemistry proves challenging. . .

Modeling Interstellar Sulfur

troduction Model Details Model Results **Finale**

Acknowledgments

CAS@MPE:

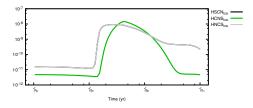
- Observers:
 Silvia Spezzano
 Valerio Lattanzi (WF06)
- Modeling: Wing-Fai Thi Anton Vasyunin
- Lab Spec: Domenico Prudenzano (TF04)

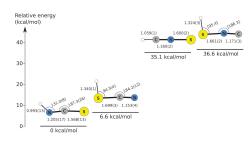
Mike McCarthy (CfA)

Maria Palumbo (INAF, Catania)

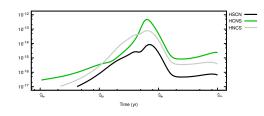
Modeling Interstellar Sulfur Jacob Laas & Paola Caselli

Thanks!





ntroduction Model Details Model Results **Finale**


HCNS Isomeric Family

- Thermodynamic stabilities not sig. wrt. ice kinetics
 CH₂ + NS → HCNS + H
 N + HCS → HNCS/HSCN
- HSCN missing efficient gas formation $S + H_2CN \longrightarrow H + HCNS$ $NH_2 + CS \longrightarrow HNCS + H$ $H_2S^+ + HNC \longrightarrow HNCSH^+$ $HNCSH^+ + e^- \longrightarrow HSCN + H$

Relative energies of HNCS isomers. (McGuire et al. 2016)

