THE EFFECT OF TORSION - VIBRATION COUPLINGS ON THE ν_9 AND ν_1 BANDS IN THE CH₃OO· RADICAL

MENG HUANG, TERRY A. MILLER, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA; ANNE B McCOY, Department of Chemistry, University of Washington, Seattle, WA, USA.

There are three CH stretch modes in the CH_3OO , namely the totally symmetric stretch, ν_2 , the out-of-phase symmetric stretch, ν_1 , and the antisymmetric stretch, ν_9 . However, only two strong partially rotationally resolved vibrational transitions are observed in the CH stretch region of the infrared spectrum of CH₃OO·. Moreover, the Q-branches of both bands are significantly broader than the simulations using an asymmetric rigid rotor model. Previously, the rotational contour of the ν_2 band in the experimental spectrum has been simulated by considering the fundamental as well as sequence band transitions involving torsionally excited levels populated at room temperature^a. Using a four dimension Hamiltonian that involves the three CH stretches and the CH₃ torsion, the torsional sequence bands of the ν_2 stretch were calculated to be slightly shifted from the origin band as a result of the couplings between the CH stretches and CH3 torsion which are particularly large due to an accidental degeneracy between the combination level involving the ν_2 stretch and n quanta in the CH₃ torsion and the combination level involving the ν_1 or ν_9 stretch and n-1 quanta in the CH₃ torsion. In this study we focus on the part of CH₃OO· vibrational spectrum containing the ν_1 and ν_9 bands. Along with the 4-dimensional Hamiltonian which was used to simulate the spectra in the ν_2 region, we analyze the effect of torsion-stretch couplings on the ν_1 and ν_9 bands based on the model developed by Hougen^b to describe methanol. To account for the accidental degeneracies in CH₃OO, we extend the previous model to include the combination levels involving the ν_2 stretch and the CH_3 torsion. Unlike the torsional sequence bands and fundamental of ν_2 , the tunneling splittings of the torsional sequence bands and fundamentals of ν_1 and ν_9 have different signs, which results in the weak intensity of ν_1 fundamental and broadening in the rotational contour of the torsional sequence bands of ν_9 . The simulation of the ν_9 and ν_1 bands including the torsional sequence bands using the parameters which are consistent with the ones used in the simulation of the ν_2 band is in good agreement with the experimental spectrum.

^aK.-H. Hsu, Y.-H. Huang, Y.-P. Lee, M. Huang, T. A. Miller and A. B. McCoy J. Phys. Chem. A, 2016, 120 (27), 4827

^bJ.-T. Hougen J. Mol. Spec., 2001, 207, 60