IMPACT OF INSERTION REACTION OF ${\cal O}(^1D)$ INTO THE CARBONIC ACID MOLECULE IN THE ATMOSPHERE OF EARTH AND MARS

<u>SOURAV GHOSHAL</u>^a, MONTU K. HAZRA^b, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.

In this talk, we present the energetics and kinetics of the insertion reaction of the $O(^1D)$ into the H_2CO_3 molecule that finally produces the percarbonic acid $[H_2C(O)O_3]$ molecule $(H_2CO_3 + O(^1D) \rightarrow H_2C(O)O_3)$. The rate constants have been calculated by the Variable-Reaction-Coordinate Variational Transition State Theory (VRC - VTST). From our results, we show that the rate constants of the insertion reaction are significantly higher than the rate constants associated with the H_2O -assisted H_2CO_3 decomposition $(H_2CO_3 + H_2O \rightarrow CO_2 + 2H_2O)$, acetic acid (AA)-assisted H_2CO_3 decomposition $(H_2CO_3 + AA \rightarrow CO_2 + H_2O + AA)$ and OH radical-initiated H_2CO_3 degradation reaction ($H_2CO_3 + OH \rightarrow HCO_3 + H_2O$) —which are currently assumed to be the potentially important reaction channels to interpret the atmospheric loss of the H_2CO_3 molecule in the Earth. Finally, we also discuss the potential impact of the H_2O -assisted H_2CO_3 decomposition reaction, OH radical-initiated H_2CO_3 degradation reaction and the above-mentioned insertion reaction on equal footing toward the loss of H_2CO_3 molecule, especially, in the surface of Mars.

^aPrivate Communication

^bPrivate Communication. (Financial support from the BARD project, Department of Atomic Energy, Government of India, is gratefully acknowledged.)