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Abstract 

Circadian rhythms are endogenous rhythms governing behavior and physiology. 

Circadian disruption is an environmental factor that impacts cognition and increases the 

risk of neurodegenerative disease by altering the circadian clock at a molecular level. 

Conventional sources of circadian disruption in human populations include working 

beyond the regular hours of ‘9 to 5’ (shift work) and untimely exposure to light (light-at-

night, LAN). Our study investigated the effects of 2 models of circadian disruption on 

response inhibition, which has previously been unaddressed, and attention using a 5-

choice serial reaction time task (5-CSRTT). Adult Long-Evans rats of both sexes were 

maintained on a 12h:12h light:dark cycle and tested under 3 conditions: 4 h into the 

dark phase with no exposure to ambient light at the time of testing (control), 4 h into the 

dark phase with exposure to ambient light during testing (a model of LAN), and 4 h into 

the light phase (a model of shift work). Our hypothesis that rats tested under both 

models of circadian disruption would have reduced response inhibition and attention 

versus controls was confirmed. We also established that changes in expression occur in 

Per2 in light phase models of circadian disruption. Chat and Drd1 showed rhythmic 

expression with peak expression during the dark phase.  

Because acetylcholine (ACh) governs circadian rhythms and attention, and DA 

modulates response inhibition, we performed drug challenges to examine for an 

interaction between the 2 neurotransmitter systems in our models. We combined an 

ACh agonist (nicotine) with antagonists for DA receptor 1 (SCH 23390) and DA receptor 

2 (eticlopride) under the 3 circadian conditions to identify differential drug responses 

between treatment groups. The 2 circadian disruption models showed increased 
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sensitivity to nicotine compared to control. SCH 23390 ameliorated the effect of nicotine 

in both models. This response to the combination of drugs confirms an interaction 

between cholinergic and dopaminergic neurotransmitters and identifies novel effects of 

circadian disruption on response to drugs. These results could potentially hold the key 

to better understanding altered cognitive functioning in real-world scenarios caused by 

conventional sources of circadian disruption. 
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Chapter 1 Behavior 

1.1 Five Choice Serial Reaction Time Task  

The 5-choice serial reaction time task (5-CSRTT) has become one of the standard 

methods to quantify attention and impulsive behavior. There are various versions of this 

task that have been developed as per the needs of the lab and the endpoints that are 

being analyzed (Beaudin et al., 2017; Robbins, 2002; Spinelli et al., 2006). Carli et al. 

adapted the 5-CSRTT in 1983 (Carli et al., 1983) from a task that was used to test 

attention in human subjects. In addition to attention, this test can also measure 

impulsivity (van Gaalen et al., 2006; Hahn et al., 2002; Robbins, 2002). This task is 

used to test pharmacological responses to drugs and toxicants and neurological 

manipulations. It also measures attention deficits caused by chronic drug exposure 

(Dalley et al., 2005a, 2005b), and effects of discrete brain lesions and neurotransmitter 

depletions (Chudasama et al., 2003; Harrison et al., 1997). When coupled with 

microdialysis the 5-CSRTT can measure changes in neurotransmitter release or 

metabolic activity during the task (Dalley et al., 2001). With all the different parameters 

that can be measured by one test, the 5-CSRTT is valuable for understanding disrupted 

mechanisms in preclinical models of conditions such as ADHD (Puumala et al., 1996), 

Alzheimer’s, Parkinson’s (Carli et al., 1985), and schizophrenia (Amitai et al., 2007).  

In this task, the rat needs to sustain spatial attention across the 5 cue holes over 

many trials. The rat faces 5 horizontal openings on a wall of the test chamber and on 

the opposite side is the port for receiving positive reinforcement, i.e., food pellets as 

shown in Figure 1.1. Since the rats are on a restricted diet, food serves as motivation to 

perform the tasks. There is also a house light and a light above the food magazine that 

illuminates when the pellet is dispensed. The rat triggers a trial by taking the food 



2 
 

already dispensed in the food tray. After the rat initiates the trial, it has a few seconds to 

turn around and face the 5 cue lights. This time duration is referred to as the cue delay 

and often serves as a parameter that can be changed to alter the difficulty of the task. 

The cue light in one of the 5 ports illuminates at this point, and the rat is supposed to 

nose poke in the illuminated cue port for it to register as a correct response. If this 

happens then the palatable food reinforcer is delivered. If the rat pokes in an incorrect 

hole, then it is registered as an incorrect response and gets a timeout, where all lights 

are switched off for a period. If the rat does not respond in the stipulated time (limited 

hold) allotted for it make a response, then the trial is considered as omitted. Here again, 

the rat gets a timeout identical to that of the incorrect response. If it responds before the 

cue illuminates, it is deemed a premature response and also results in a timeout for 5 s 

(Bari et al., 2008; P.J and Strupp). Reinforcers are delivered only for correct responses.  

A task like this can test both sustained attention (vigilance) and select attention 

(alertness). The rat needs to be vigilant to see which cue hole is illuminated and must 

be alert enough to make a quick enough response to not miss the trial. The 5-CSRTT 

can be modified as per experimental requirements (Bushnell, 1998). The difficulty of this 

task can be easily altered by making a few variations such as changing the cue delay by 

either lengthening or shortening it, changing the duration of the stimulus (cue light), or 

by adding a distractor which would be an auditory input or an olfactory input. The 

automated data acquisition allows for accurate measurements of latencies to perform 

actions and reduces chances of errors that would occur with hand-scoring. The data 

points measured by the software can be used to calculate different measures. Percent 

accuracy, calculated based on percent correct and percent incorrect responses, is a 
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direct measure of attention. Causes for percent omissions include a subject omitting 

trials because of inattentiveness, lack of motivation or motor deficits. A premature 

response reflects deficits in inhibitory control processes of response preparation, thus 

indicating impulsive behavior. Perseverative responses are repeated nose pokes in the 

cue hole after receiving reinforcement, and are an indicator of a lack of response control 

or a compulsive action (Robbins, 2002). This chapter will focus on attention and 

response inhibition aspects of behavior in association with this task. 

1.2 Attention 

Attention is a multidimensional construct, which is broadly defined as the facilitated 

processing of one piece of information over others (Stefanatos and Baron, 2007). 

Attention is comprised of several components, of which sustained attention and select 

attention are the two most quantifiable aspects. Sustained attention or vigilance is the 

ability to maintain attention on a task for a period of time. Select attention or alertness is 

the ability to enter the state of focusing rapidly on additional information or stimuli while 

ignoring extraneous information. This is often measured as the time or latency taken to 

respond to a stimulus (Nigg and Nikolas, 2008). Attention often works in conjunction 

with executive functions like working memory, response inhibition, and cognitive 

flexibility. The prefrontal cortex is heavily implicated in higher order executive functions 

which include attention (Euston et al., 2012; Miller and Cohen, 2001). It has been 

previously established that the medial region of the PFC (mPFC) is important for 

working memory and attention (Euston et al., 2012; Muir et al., 1996; Passetti et al., 

2002) in rodents. The mPFC roughly corresponds to the dorsolateral PFC in primates 

and humans (Farovik et al., 2008; Uylings et al., 2010; Vertes, 2004, 2006). Lesions of 
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the mPFC give rise to severe attentional deficits (Kahn et al., 2012; Muir et al., 1996; 

Passetti et al., 2003).  Neuroimaging and electrophysiological studies have also 

implicated the mPFC in tasks requiring sustained attention (Bentley et al., 2011; Gill et 

al., 2000; Totah et al., 2009). An increase in attentional load is often associated with 

increases in neuronal activity in the mPFC (Gill et al., 2000). Even though the mPFC 

receives innervation from different neurotransmitters, acetylcholine (ACh) is crucial for 

optimal attention.  

1.3 Cholinergic Neurotransmission   

Animal studies have helped establish neuroanatomical circuitry underlying attention. 

The PFC is densely innervated by cholinergic neurons which play a crucial role in PFC 

functioning (Bloem et al., 2014). Acetylcholine (ACh) is a neurotransmitter produced by 

a relatively small number of neurons but which affects the entire brain (Woolf and 

Butcher, 2011).  The basal forebrain cholinergic system includes the medial septum, 

substantia inominata, and the nucleus basalis as shown in Figure 1.2. The neurons from 

the nucleus basalis of Maynert (NBM) project to the cerebral cortex and amygdala 

(Woolf and Butcher, 2011). The neurons from the medial septum project to the 

hippocampus and cingulate cortex. Acetylcholine is also produced in the midbrain 

region, pedunculopontine nucleus and laterodorsal tegmental area (Mesulam et al., 

1983), and exerts its effects via receptors present on different neurons and glial cells 

(Picciotto et al., 2012; Van der Zee and Keijser, 2011). This section outlines the 

evidence for cholinergic modulation of attentional systems in animals, focusing primarily 

on rodent behavioral neuropharmacology assessed with the 5-CSRTT (Robbins, 2002). 
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The role of cholinergic neurotransmitters in sustained attention is vital to the 

accuracy of responding in the 5-CSRTT and is highly contingent on cortical ACh levels. 

Involvement of ACh in attention was established by performing local cholinergic 

lesioning using specific immunotoxin 192 immunoglobulin G (IgG)-saporin, which 

resulted in severely compromised performance in sustained attention tasks 

(Chudasama et al., 2004; Dalley, 2004; Gill et al., 2000). Gill et al. also showed that the 

neuronal activity associated with attention is absent after cholinergic lesions (Gill et al., 

2000). Microdialysis studies have shown that ACh efflux is more significant during tasks 

involving sustained attention like the 5-CSRTT (Passetti F. et al., 2008). The efflux 

increases with increasing demands of the tasks implicating ACh in the maintenance of 

optimal attention (Dalley et al., 2001; Himmelheber et al., 2001). Acetylcholine has also 

been implicated in stimulus detection and response selection (Milstein et al., 2005). 

Recent studies have shown that there is both tonic and phasic cholinergic release of 

ACh in the mPFC, where the phasic release of ACh in the mPFC is caused by attended 

cues, and tonic increases in cholinergic activity are correlated with higher cue detection 

rate (Parikh et al., 2007).  

 

Types of Cholinergic Receptors 

There are two types of cholinergic receptors, muscarinic ACh receptors and nicotinic 

ACh receptors, that allow ACh to change the electrical activity of the target cells and to 

affect other processes through intracellular signaling cascades. Despite that both these 

receptors initiate post synaptic signaling cascades, they work in fundamentally different 

pathways.  



6 
 

1. Muscarinic Acetylcholine Receptors (mAChRs) are G-protein coupled receptors 

and function through an intracellular signaling cascade (Bubser et al., 2012). 

There are 5 different types of mAChRs, where M1, M3, and M5 interact with Gq 

protein whereas M2 and M4 interact with Gi/o proteins (Brown, 2010).  M1, M2, 

and M4 are present in the cortex with a higher expression of M1 and M2 than M4 

(Levey et al., 1991). The conductance of ion channels, mainly potassium and 

calcium channels, is altered by these receptors via a variety of intracellular 

signaling cascades (Thiele, 2013). Acetylcholine and muscarine are examples of 

agonists that can be used to stimulate these receptors.   

2. Nicotinic Acetylcholine Receptors (nAChRs) are ionotropic receptors constituted 

predominantly of α (α2- α10) and β (β2 - β4) subunits in the brain (Gotti et al., 

2006). There are two main subfamilies of nAChRs, homopentameric receptors 

formed by 5 α subunits and heteropentameric receptors constituted of both α and 

β subunits (Alkondon and Albuquerque, 2004). In the cerebral cortex, there are 

only two main types of nAChRs present, a homopentamer of α7 subunits and 

heteromeric receptors with two α4, two β2 and a fifth subunit that could be α4, α5 

or β2 (Albuquerque et al., 2009). These receptors are selective cationic 

channels, permitting flow of Na+, K+, or Ca2+ thereby depolarizing the membrane. 

Nicotine acts as an agonist at these receptors, thus the name nicotinic receptors. 

Antagonists like mecamylamine and dihydro-β-erythroidine (DHBE) bind to the 

receptor and inhibit the action of ACh. The work described in this dissertation 

focuses on the effects of nAChRs.  
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Role of Nicotinic Receptors in Attention 

During attention tasks, there is a release of ACh in the mPFC that is linked to attention 

and cue detection (Parikh et al., 2007; Passetti F. et al., 2008). Mice lacking β2 nAChR 

subunits were tested on 5-CSRTT. These subunits in the prelimbic cortex were 

essential to respond to the cue lights that were presented, and re-expression of the β2 

subunits was able to rescue the behavior (Guillem et al., 2011). Another study failed to 

see the same effects with β2 subunits but reported that α7 subunit knock-out mice had 

attentional deficits shown by a decrease in accuracy and an increase in omissions on 

the 5-CSRTT (Hoyle et al., 2006; Young et al., 2004, 2007). Systemic administration 

and local infusion of nicotine into mPFC showed an increase in attention on the 5-

CSRTT (Hahn et al., 2003; Stolerman et al., 2000). Mecamylamine, a non-specific 

nAChR antagonist, reduced accuracy and increased omissions (Grottick and Higgins, 

2000). To further investigate the roles of heteromeric and homomeric nAChRs in the 

effects of nicotine on 5-CSRTT, Hahn et al. administered the β2* subunit-specific 

antagonist DHBE and the α7 subunit-specific antagonist, methyllycaconitine (MLA) 

(Hahn et al., 2011). They established that effects of nicotine are mediated via α7 

nAChRs. Young et al. on the other hand showed that effects of nicotine are mediated 

via β2* subunits instead of α7 subunits (Young and Geyer, 2013). These are a few of 

the studies identifying the role nAChRs play in modulating attention. The difference in 

the effects of β2* subunits instead of α7 subunits of nAChRs in these studies could be 

due to the use of different species and strains. Guillem et al. and Young et al. used a 

mouse model in their study while Hahn et al. used a rat model. While ACh may not 

exclusively modulate attention, it is activated by behavioral situations that tax the 
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attentional capabilities in an animal. Disruption in the cholinergic system is seen with an 

array of neurodegenerative disorders like Alzheimer’s (Ferreira-Vieira et al., 2016; 

Mufson et al., 2008) and neuropsychiatric disorders like attention deficit hyperactivity 

disorder (ADHD) and schizophrenia (English et al., 2009). Cholinergic 

neurotransmission is critical for attention in healthy individuals, while alterations to this 

neurotransmission are a component of many neuropsychiatric disorders. 

1.4 Response Inhibition  

Impulsivity is caused by disruption of the inhibitory control of behavior and is a complex 

behavioral construct. Impulsive responses include decisions and actions that are poorly 

conceived, prematurely expressed, and may involve increased risk-taking or the inability 

to accept delayed gratification (Robbins, 2002; Winstanley et al., 2006). Such a 

behavioral pattern is a component of numerous psychiatric disorders, including 

addiction disorders, and may also result from exposure to environmental contaminants. 

Animal and human studies have helped elucidate the neuroanatomy and neurobiology 

that give rise to such behavior (Dalley et al., 2011). Two commonly used behavioral 

paradigms to analyze impulsivity are the 5-CSRTT and the delay discounting task 

(Robbins, 2002; Winstanley et al., 2006). As previously discussed, 5-CSRTT measures 

visuospatial attention. Over the course of the task, the subjects also learn to inhibit their 

responses until the next visual cue is presented. Any response made before the visual 

cue illuminates is regarded as a premature response and is a measure of impulsivity 

(Robbins, 2002). In the delay discounting paradigm, individuals who tend to be more 

impulsive choose options associated with smaller rewards delivered more quickly, 

indicating intolerance to waiting for gratification (Winstanley et al., 2006). This task can 
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be operant-based or questionnaire-based depending on the species being tested. Our 

study uses premature responding on 5-CSRTT as a measure of impulsive behavior.  

1.5 Dopaminergic Neurotransmission 

Animal studies have helped map the neuroanatomical circuitry involved in impulsivity. 

The critical regions involved in response inhibition are PFC, the nucleus accumbens 

(NAc) and the striatum. Damage to the PFC results in deficits in the ability to inhibit an 

inappropriate response (Brass, 2002; Dove et al., 2000). Human patients with damage 

to ventromedial frontal cortex, which includes the orbitofrontal cortex, have exhibited 

deficits in decision making and impulsive social behavior as determined by the Iowa 

gambling task (Bechara et al., 1994). Lesions to the orbitofrontal cortex in rodent brains 

cause the rats to choose less impulsively, i.e., they prefer larger and more delayed 

rewards. Even though the human and rodent studies seem to contradict each other, 

both species are choosing the response associated with the larger reward regardless of 

the unfavorable consequences, i.e., the monetary loss in the human studies and longer 

delay in the rodent study (Bechara et al., 1994; Winstanley et al., 2006). These studies 

indicate that the orbitofrontal cortex plays a crucial role in modulating impulsive choice 

on delay discounting. Lesions to the anterior cingulate cortex in rats caused an increase 

in premature responses on 5-CSRTT, and the rats chose smaller, more immediate 

rewards on delay discounting paradigms.  

The frontal cortex, hippocampus, and amygdala project to the NAc, which then 

projects to caudate putamen. Excitotoxic lesions to the core of the NAc increased 

impulsive action on the 5-CSRTT and impulsive choice on the delay discounting 

paradigm (Christakou, 2004). The NAc has two distinct parts, core, and shell, with 
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different innervations. Excitotoxic lesions to the amygdala also increase impulsive 

responses via the connection to NAc (Winstanley et al., 2004). There is evidence that 

the infralimbic (IL) cortex is involved in modulating impulsive action. Excitotoxic 

lesioning the IL, which is a part of the PFC, induced premature responding on 5-CSRTT 

(Chudasama et al., 2003).  

Dopamine (DA) plays a crucial role in maintaining optimal response inhibition 

(Colzato et al., 2009). Figure 1.3 shows the dopaminergic projections in the rodent 

brain. The mesolimbic pathway transmits DA from the ventral tegmental area (VTA) in 

the midbrain to the NAc; the mesocortical pathway transmits DA from VTA to PFC; and 

the nigrostriatal pathway transmits DA from the substantia nigra pars compacta to the 

dorsal striatum (Dahlström and Fuxe, 1964). The mesolimbic and mesocortical 

pathways are jointly termed as the mesocorticolimbic projections. Changes in the levels 

of DA lead to altered behavioral responses, including altered response inhibition. 

Dopamine neurons from the substantia nigra and the VTA project to the forebrain, a 

region associated with response inhibition (Robbins, 2002). Changes in the optimal 

levels of DA neurotransmission correlate with an increase in impulsive behavior 

(Arnsten and Pliszka, 2011; Cools and D’Esposito, 2011; D’Amour-Horvat and Leyton, 

2014). Studies show that manipulating the dopaminergic system has severe 

consequences on the performance of the 5-CSRTT. Studies also used various 

dopaminergic agonists and antagonists to observe the effects on the 5-CSRTT. Drugs 

like amphetamine and GBR12909 that increased the levels of synaptic DA enhanced 

impulsive behavior on 5-CSRTT, whereas DA antagonists predominantly decreased 

premature responding (Baarendse and Vanderschuren, 2012; van Gaalen et al., 2006). 



11 
 

Dopamine depletions in the medial PFC affected the accuracy when the cue delays are 

made unpredictable (Granon et al., 2000). Dopamine receptors (DRs) play an important 

modulatory role in the expression of impulsive behavior. SCH 23390, a DR1 antagonist, 

blocks impulsive responses caused by amphetamine or by chemical lesions using 5,7-

DHT creatinine sulphate (van Gaalen et al., 2006; Harrison et al., 1997). These studies 

demonstrated that blocking DR1 receptors affected premature responding by preventing 

DA from binding to the receptor and eliciting a signaling cascade. Antagonists of D2/3s 

block the impulsive response caused by amphetamine when infused in the core of NAc 

(Pattij et al., 2007).  

The literature indicates that there is an optimal amount of DA needed for appropriate 

behavioral responses, and this amount is affected by genetic polymorphisms and 

environmental factors. Polymorphisms in the DR2 receptor gene (Drd2) in humans 

caused individuals to perform less impulsively after being exposed to amphetamine 

(Hamidovic et al., 2009). Abnormal transmission at D2/D3 receptors also appear to be 

an underlying factor for impulsivity in a study by Lee et al. Lower D2/D3 receptor 

availability in the striatal area of methamphetamine-dependent subjects correlated with 

an increase in impulsive behavior (Lee et al., 2009). There are other neurotransmitters 

like serotonin and noradrenaline that play crucial roles in impulsive behavior, but often 

dopaminergic neurotransmission is concurrently involved in modulating this impulsivity 

(Pattij and Vanderschuren, 2008). 
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1.6 Figures  

Bari et al. 2008 

Figure 1.1. Schematic of the test chamber where the 5 nose-poke holes are on one wall 
and the food magazine is on the opposite wall (Bari et al., 2008).  
 

Woolf et al. 2011 

Figure 1.2. Cholinergic projections from the nucleus basalis of Maynert (bas) project to 
the prefrontal cortex (Woolf and Butcher, 2011). 
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 Björklund et al. 2007 

Figure 1.3. Sagittal section of an adult rat brain showing dopamine neurons localized in 
9 cell groups. Dahlström and Fuxe introduced the numbering of the cell groups, from A8 
to A16 in 1964 (Fuxe, 1964), which are still valid at present. 
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Chapter 2 Circadian Rhythms 

2.1 Circadian Rhythms 

Circadian rhythms are 24-hour endogenous rhythms that span the daily light-dark cycle 

and govern both behavior and physiology (Reppert and Weaver, 2002; Vitaterna et al., 

2001). The suprachiasmatic nucleus (SCN), the master clock, is in the anterior 

hypothalamus directly above the optic chiasm on either side of the third ventricle. The 

SCN has two anatomic subdivisions: a ventral “core” which is adjacent to the optic 

chiasm and receives retinal input and a dorsal “shell” that envelopes the core and 

receives dense projections from the core (Abrahamson and Moore, 2001; Leak et al., 

1999).  Neurons in the core and shell regions have different neurochemistry. The 

neuronal cells in the core contain vasoactive intestinal polypeptide (VIP), calretinin, 

neurotensin (NT), and gastrin releasing peptide (GRP), and the neurons in shell region 

contain arginine vasopressin (AVP), angiotensin II, and met-enkephalin (Welsh et al., 

2010).  

The neurons in the SCN generate endogenous rhythms that readily align to the light-

dark (LD) cycles in the environment (entrainment), establishing that the neurons in the 

SCN can sense environmental timing cues (Bernard et al., 2007). These environmental 

cues are called zeitgebers (“timegiver,” ZT) (Aschoff, 1960; Golombek and Rosenstein, 

2010). These rhythms entrain both external and internal zeitgebers. Examples of 

internal cues are hormones (Rawashdeh and Maronde, 2012) while external cues 

include light (Duffy and Wright, 2005), food (Stephan, 2002), social cues (Ehlers et al., 

1988) and cognitively-demanding tasks (Gritton et al., 2013a). All animals under normal 

circadian conditions have their behavior and feeding entrained to their sleep-wake 

cycles. These rhythms govern rhythmicity in body temperature, blood pressure, 
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circulating hormones and metabolism within an organism (Aschoff, 1960; Buhr and 

Takahashi, 2013; Eckel-Mahan and Storm, 2009; Green et al., 2008). 

In addition to the master clock in the brain there are clocks present in the peripheral 

organs which also demonstrate rhythms (Mohawk et al., 2012; Yoo et al., 2004). Like 

the SCN, these peripheral clocks also align to zeitgebers like light and food. Albrecht et 

al. developed a model for the relationship between the master clock and the peripheral 

clock called the ‘orchestra model.’ In this model, the central clock coordinates with each 

of the peripheral clocks and the peripheral clocks can adapt to their own perceived 

external stimuli. The liver and kidney may entrain to feeding cues, but they are also 

aligned with the light-dark cues perceived by the SCN in the brain (Dibner et al., 2010). 

Recent studies have provided a better understanding of the role of peripheral clocks in 

circadian physiology (Mohawk et al., 2012; Richards and Gumz, 2012). 

Food also acts as a potent zeitgeber for both master clock and peripheral clocks 

(Challet et al., 2009; Richards and Gumz, 2012). In nocturnal rodents, food restriction to 

one or two meals during the light phase results in increased locomotor activity in 

anticipation of the meal. (Mistlberger, 1994; Stephan, 2002). The rhythms in the 

peripheral clocks also align with the mealtime (Boulos and Terman, 1980). The 

increased locomotor activity persists even if the food is withheld for several days 

(Coleman et al., 1982). This activity displayed in anticipation of food is known as food-

anticipatory activity, and food-entrainable oscillators located outside the SCN drive this 

activity (Verwey and Amir, 2009). 
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2.2 Components of the Circadian Clock 

The molecular clock mechanism is a transcriptional feedback loop involving the 

following genes: Clock gene, three period genes (Per1, Per2, Per3), 2 cryptochrome 

genes (Cry1, Cry2), Bmal1, and Rev-erba, all of which are expressed in the SCN 

(Rosenwasser and Turek, 2015). Clock and Bmal1 genes form the positive end of the 

transcriptional loop which heterodimerizes and binds to specific DNA elements, E-boxes 

(5’- CACGTG-3’) and (5’-CACGTT-3’) in the promoter regions of the target genes 

(Gekakis et al., 1998; Ohno et al., 2007). These targets include other clock genes 

including period (Per1, Per2, Per3) and cryptochrome (Cry1, Cry2), which form the 

negative limb of the feedback loop. PER and CRY proteins dimerize and translocate 

through the nucleus where they inhibit transcription of CLOCK/BMAL1 (Buhr and 

Takahashi, 2013; Gekakis et al., 1998). The negative limb of this loop, PER and CRY, 

must be degraded to terminate the repression and start a new cycle of transcription. 

The stability of these proteins is crucial for establishing the period of circadian rhythms 

(Buhr and Takahashi, 2013). Studies have shown that there is rhythmic histone 

acetylation that aids chromatin remodeling, giving rise to cyclic transcription 

(Etchegaray et al., 2003). Doi et al. established that CLOCK by itself has histone 

acetyltransferase (HAT) activity (Doi et al., 2006). CLOCK/BMAL1 complex enhances 

the HAT function that facilitates transcriptional activity whereas Per1 recruits histone 

deacetylase (HDAC) to the DNA that has the CLOCK/BMAL1 complex to initiate 

deacetylation (Duong et al., 2011). The rhythmic deacetylation of histone at the 

promoter region in this gene is further regulated by SIRT1 which is sensitive to the 

NAD+ levels (Asher et al., 2008; Nakahata et al., 2008). NAD+/NADH ratio has been 

shown to regulate the ability of CLOCK/BMAL1 to bind DNA in vitro (Rutter et al., 2001). 
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This ratio of NAD+/NADH indicates that cellular metabolism is crucial in regulating the 

transcription of these genes thus having a direct effect on the clock gene (Buhr and 

Takahashi, 2013). Additionally, CLOCK/BMAL1 also drive the transcription of the 

orphan nuclear receptors REV-ERB and ROR. REV-ERB and ROR factors, in turn, 

inhibit and activate the transcription of Bmal1 respectively (Guillaumond et al., 2005; 

Preitner et al., 2002).  

Mutations or deletions in any of these genes manifests as a modification in the 

circadian phenotype. Mice with Bmal1 knockout show no rhythms in the absence of an 

external light stimulus (Allada et al., 2001; Ko and Takahashi, 2006). A mutation in 

Clock increases the free-running period and leads to a gradual loss of rhythms under 

long term free-running conditions (Allada et al., 2001; Ko and Takahashi, 2006). Clock-

null mice, on the other hand, express normal circadian rhythms with a slight shortening 

of the circadian period (DeBruyne et al., 2006). DeBruyne et al. eventually provided 

evidence to show that NPAS2, a transcription factor, can substitute for CLOCK as a 

dimerization partner in the SCN, thus helping maintain the rhythms (DeBruyne et al., 

2007). Disruption of Per1 and Per2 genes shortens the circadian period and reduces 

the free-running rhythms (Shearman et al., 1997; Zheng et al., 2001). Cry mutants also 

express alterations in free-running, but Cry1/Cry2 double mutants are arrhythmic (Horst 

et al., 1999; Miyamoto and Sancar, 1999). Some clock gene mutations also have a 

significant effect on sleep-wake homeostasis, cognition and locomotor behavior 

indicating a potential molecular link between circadian and motivational systems in the 

brain (Naylor et al., 2000; Rosenwasser, 2010; Tafti and Franken, 2002). 
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2.3 Pathways and Neurotransmitters in Circadian Rhythms  

Light input to SCN 

Photic input from the retina is relayed to the SCN by the retinohypothalamic tract (RHT) 

(Ebling, 1996; Reghunandanan and Reghunandanan, 2006). The RHT is crucial for 

entrainment as Johnson et al. showed that in a light-dark cycle, the RHT-lesioned 

animals exhibited free-running rhythms (Johnson et al., 1988). The primary 

neurotransmitters involved in relaying photic cues from the retina to the SCN are 

glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). Stimulation 

by light causes direct secretion of glutamate by the neurons from RHT that project to the 

SCN (Mikkelsen et al., 1995). Gannon et al. showed that there was high mRNA 

expression for the AMPA subunits GluR1, GluR2, and GluR4, and the NMDA receptor 

subtype NMDAR1 in the SCN and surrounding areas (Gannon and Rea, 1994). PACAP 

is co-localized in a sub-population of glutamate-containing retinal ganglion cells which 

are also involved in transmitting the photic cues. Thus, PACAP can potentiate the action 

of glutamate on the SCN. Studies have shown that at low doses PACAP can reset the 

clock in the photic pattern during the subjective night (Harrington et al., 1999; Minami et 

al., 2002).   

 

Acetylcholine (ACh) 

Cholinergic projections from the nucleus basalis magnocellularis (NBM) project both to 

the prefrontal cortex (PFC) (Robbins, 2002), which regulates attention, and to the SCN 

(Gritton et al., 2013b). A study by Bina et al. located the cholinergic neurons that project 

to the suprachiasmatic nucleus by retrograde and anterograde tract-tracing and 

immunohistochemistry for choline acetyltransferase in the rat (Bina et al., 1993). They 
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identified the absence of cholinergic neuronal bodies in the SCN, and that the 

cholinergic terminals in the SCN are afferents from the basal forebrain and mesopontine 

tegmentum, a region where cholinergic neuronal cell bodies are located (Bina et al., 

1993). Earnest et al. established that carbachol, a choline carbamate that stimulates 

both muscarinic and nicotinic receptors, induced a phase-dependent shift in free-

running activity resembling one caused by brief exposure to light. This study suggests a 

role for ACh in the mechanism by which light regulates circadian rhythms (Earnest and 

Turek, 1985). It appears that ACh only modulates the photic information that reaches 

the SCN instead of being involved in the light-input pathway (Reghunandanan and 

Reghunandanan, 2006). Van der Zee et al. showed that muscarinic and nicotinic 

receptors are co-localized in the SCN area. The endogenous neurotransmitter ACh is 

an agonist to both receptors that are co-localized and differentially contributes to the 

SCN time-keeping system (van der Zee et al., 1991). Evidence for this includes that 

mecamylamine, a general nicotinic antagonist, blocks light-induced phase shifts in 

circadian activity rhythm in the golden hamster (Keefe et al., 1987) and intravenous 

administration of nicotine has an excitatory effect on SCN cells (Brownstein et al., 

1975). Also, Yamakawa et al. applied electrical stimulation in the basal forebrain to 

demonstrate that cholinergic input from the basal forebrain is both necessary and 

sufficient for eliciting this arousal-induced resetting of the circadian clock. These results 

establish the crucial connection between the forebrain arousal center and the circadian 

system (Yamakawa et al., 2016). Shibata et al. demonstrated that ACh excited 7% but 

inhibited 26% of SCN neurons in both immature and adult rats, thus establishing that 

ACh regulates circadian rhythms through a direct effect on SCN neuronal activity 
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(Shibata et al., 1983). Gritton et al. established that cholinergic projections in the basal 

forebrain provide signaling for cognitive entrainment in light-phase trained rats (Gritton 

et al., 2013a).  

 

Dopamine 

In addition to playing a pivotal role in optimal response inhibition (Harrison et al., 1997; 

Pattij and Vanderschuren, 2008), dopamine (DA) neurotransmission also plays a role in 

behaviors that have periodic rhythms such as locomotion and wakefulness (Mendoza 

and Challet, 2014). Dopaminergic signaling is known to have a rhythmic expression in 

the striatum and varies across the 24 h cycle (Hood et al., 2010). Mutations in clock 

genes can produce phenotypes that have deficits in normal dopaminergic signaling or a 

higher inclination to drug addiction or psychiatric phenotypes (Hampp et al., 2008; 

McClung et al., 2005; Roybal et al., 2007).  Rev-erbα mutant mice had higher 

production of the protein tyrosine hydroxylase (i.e., TH, the rate-limiting enzyme for DA 

synthesis). The results from this study reveal that clock gene expression can modulate 

behavior through the rhythmic regulation of molecular components involved in DA 

neurotransmission (Jager et al., 2014).  

The SCN projects to different regions of the brain to regulate the sleep-wake cycle, 

and it innervates the paraventricular thalamus, which in turn projects to the cortex, 

striatum and the midbrain (Abrahamson and Moore, 2001; Moga et al., 1995). 

Alternatively, SCN projections to the lateral habenula (LHb) in the mid-posterior 

thalamus and the orexinergic (ORX) system in the lateral hypothalamus could also 

indirectly modulate extracellular DA levels (Bourdy and Barrot, 2012; Moorman and 
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Aston-Jones, 2010). Studies have shown that DA links the maternal SCN to the fetus 

and D1 dopamine receptor (Drd1) plays a crucial role in this process (Reppert and 

Weaver, 2002; Viswanathan and Davis, 1997).   

Extracellular DA levels and behaviors that can affect DA levels also have a feedback 

effect on the circadian activity of the master clock (Mendoza and Challet, 2014). Per2  

mutant mice are more sensitive to cocaine injections (Abarca et al., 2002) and Clock 

mutant mice have been shown to be hyperdopaminergic and have increased behavioral 

responses to cocaine and sucrose administration (McClung et al., 2005; Roybal et al., 

2007). Also, the genes involved in dopaminergic neurotransmission are clock-controlled 

as they have E-boxes in their promoter region which are bound by CLOCK and BMAL1 

(Hampp et al., 2008; Sleipness et al., 2007). Studies have shown that there are diurnal 

variations in VTA in the expression of DA receptors, tyrosine hydroxylase, and 

monoamine oxidase. Alterations to circadian machinery could potentially affect the 

dopaminergic neurotransmission, in turn affecting behavior and decreasing inhibitory 

control (Parekh et al., 2015; Sleipness et al., 2007; Sleipness Evan P. et al., 2008) 

Additionally, psychostimulants like methamphetamine, which increase DA signaling, 

are incredibly disruptive to circadian rhythms (Honma et al., 1986) and affect daily 

rhythms of animals in constant dark conditions (Honma et al., 1989). Reward stimuli 

elicited in response to methamphetamine cause phase shifts in rhythms of behavior in 

hamsters (Cain et al., 2004). These psychostimulant drugs alter the expression of 

genes in the striatum and other brain regions implicated in DA neurotransmission 

(Lynch et al., 2008). In addition to the food-entrainable oscillators discussed earlier in 

the chapter, there is also a methamphetamine-sensitive circadian oscillator that restores 
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circadian rhythms in the absence of the master clock when methamphetamine is 

available (Honma and Honma, 2009). Clock gene expression has been shown to be 

altered in animals who are exposed to methamphetamine in drinking water; they 

showed desynchrony in locomotor rhythms and reversal in the phase of clock gene 

expression in the striatum but not the SCN (Masubuchi et al., 2000). Methamphetamine 

has also been shown to shift the rhythms of Per2 in the striatum (Natsubori et al., 2013). 

Thus, drugs that potently alter DA signaling are also capable of exerting strong effects 

on circadian rhythmicity. 

Dopamine receptors are expressed in the SCN throughout adulthood and play a 

crucial role in inducing phase shifts (Grippo et al., 2017). Grippo et al. identified a direct 

neuronal connection from DA neurons of the VTA to the SCN. Activation of these 

midbrain DA neurons accelerated the entrainment to light cycle shift. They also showed 

that D1 dopamine receptor (Drd1) knockout mice exhibit a slower rate of entrainment in 

response to a shift in light cycle. Their study establishes that Drd1-dependent DA 

signaling within the SCN governs the rate at which endogenous rhythms synchronize 

with environmental conditions (Grippo et al., 2017).  

2.4 Circadian Disruption 

Circadian rhythms are the 24-hour daily rhythms seen in all organisms that regulate 

both physiology and behavior and align to a variety of factors including light, food, and 

social cues (Arendt, 2010). When these innate rhythms are perturbed either due to 

internal or external factors, the disruption can give rise to numerous behavioral 

disorders and disease states. Misalignment of the rhythms can be caused by working 

beyond the hours of ‘9 to 5’ or by being exposed to light when there is supposed to be 
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none (Evans and Davidson, 2013). The literature suggests that there is a connection 

between altered states of circadian rhythms and impacts on cognition as seen in 

numerous disease states including attention deficit hyperactivity disorder (ADHD), 

schizophrenia, depressive and bipolar disorders, and Alzheimer’s (Coogan et al., 2013; 

Landgraf et al., 2014). Additionally, disruptions in sleep and circadian patterns are seen 

in neurobehavioral disorders like ADHD and autism (Coogan et al., 2016; Singh and 

Zimmerman, 2015). Two models of circadian disruption that are used in this study are  

1. Shift Work- Working beyond the regular hours of ‘9-5’ is termed shift work. 

According to the Bureau of Labor nearly 15% of workers in the U.S work on shifts 

beyond the traditional daytime hours. There a disconnect between the 

endogenous rhythms and perceived external cues with shift work, which can 

cause detrimental effects on both behavior and physiology (Costa, 2010). This 

type of disruption has detrimental effects on the gastrointestinal system 

(Knutsson and Bøggild, 2010; Segawa et al., 1987; Zober et al., 1998) and 

increases risks of metabolic disorders like high blood pressure and cholesterol 

and obesity (Eckel et al., 2005). It also increases the risk of coronary diseases 

(Axelsson et al., 2006; Virkkunen et al., 2006). A large number of studies have 

shown detrimental effects of shift work on reproductive function (Axelsson et al., 

2005; Nurminen, 1998). Shift work also has detrimental effects on cognition. A 

study done by Marquié et al. shows that the association between shift work and 

deficits in cognition increased with the duration of how long people performed 

shift work (Marquié et al., 2015). Selvi et al. also showed that shift workers had 

greater deficits in attention and increased impulsivity compared to daytime 
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workers (Selvi et al., 2015). This type of circadian disruption also increases risks 

to neurodegenerative diseases like Alzheimer’s and Parkinson’s (Abbott and 

Videnovic, 2016). 

2. Light at Night (LAN)- Untimely exposure to light can impair the endogenous 

circadian rhythms necessary for maintaining optimal biological function, including 

cognition, endocrine and immune function (Cissé et al., 2017; Fonken and 

Nelson, 2014). Fonken et al. established that LAN disrupts the timing of food 

intake and other metabolic signals leading to weight gain in a mouse model 

(Fonken et al., 2010). LAN is also known to have detrimental effects on the 

immune system (Bedrosian et al., 2011). LeGates showed that a LAN model of 

disruption caused an increase in depression-like behavior and impaired 

hippocampal potentiation and learning (LeGates et al., 2014). Exposure to 

chronic low levels of light at night altered circadian clock genes in both the SCN 

and in peripheral tissues (Fonken et al., 2013; Shuboni and Yan, 2010). Wright et 

al. studied the exposure of electric light on the human circadian system and 

compared that to natural lighting (outdoor camping). They showed that people 

exposed to natural light were more accurately synchronized to solar time, and 

showed lower variability in melatonin and sleep rhythms (Wright et al., 2012). 

There is a need for addressing the effects of LAN on other aspects of cognition 

like attention and response inhibition. 

2.5 Impact of Circadian Disruption on Cognition  

 Similar to the findings from human studies of circadian disruption, animal studies also 

have shown that disruption to circadian rhythms affects cognition mainly in terms of 
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memory formation (Gerstner and Yin, 2010) and sustained attention (Bruce, 1960). 

However, in our preliminary studies, we determined that circadian disruption was 

affecting impulsive behavior as well. Response inhibition is defined as the suppression 

of unwanted action that may interfere with goal-driven behavior (Mostofsky and 

Simmonds, 2008). Deficient response inhibition causes impulsive behavior, which is 

defined as the inability to prevent detrimental actions that would interfere with achieving 

goals. Impulsive responding includes actions that are inappropriately timed and can 

involve poor decision making, increased risk taking, and the inability to delay 

gratification (Dalley et al., 2011). Impulsive behavior is seen in association with various 

neurobehavioral disorders like ADHD (Winstanley et al., 2006) and can also be a result 

of exposure to xenobiotics and neurotoxicants (Eubig et al., 2010). These risk factors for 

impulsive behavior have received much focus and have been studied to identify 

mechanisms (Aguiar et al., 2010; Dingemans et al., 2011; Stewart et al., 2006). 

However, the effects of environmental factors such as circadian disruption on impulsive 

behavior have been largely unaddressed. By seeking to understand how the 

environmental factor of circadian disruption results in impulsive behavior, we can, in 

turn, better define the relationship between circadian rhythmicity and impulse control, 

and the roles of the endogenous neurotransmitters involved in both maintaining 

circadian rhythms and response inhibition. The cholinergic neurotransmitter system 

plays a crucial role in modulating circadian rhythms and attention, and can indirectly 

regulate impulsive behavior (Faure et al., 2014; Landgraf et al., 2014; Robbins, 2002). 

The prefrontal cortex (PFC) is important for optimal performance on the 5-choice serial 

reaction time task (5-CSRTT), which is regulated by dopaminergic and cholinergic 
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neurotransmitter systems (Bloem et al., 2014; Dalley et al., 2004). Dopamine neurons in 

the PFC, have an abundance of α4β2* nicotinic ACh receptors (nAChRs) on their 

synaptic terminals (Faure et al., 2014) and any increase in ACh or its agonists in this 

region can increase the basal levels of dopamine, thus modulating impulsive behavior. 

Since circadian rhythms are also regulated by the cholinergic neurotransmitter system 

(Hut and Van der Zee, 2011), any alterations in those rhythms can lead to changes in 

the basal levels of DA expression (Sleipness et al., 2007). Additionally, it has been 

shown that the circadian clock also has direct control over genes that are pertinent to 

DA synthesis and degradation (Huang et al., 2015). Based on all these factors it can be 

concluded that DA expression in PFC can potentially be influenced directly, or via 

interactions with cholinergic agonists, when the innate circadian rhythms are disrupted. 

2.6 Gaps in Knowledge  

Many people who are subject to circadian disruption are often staff in health and 

protective services where is no room for an erroneous decision (Alterman et al., 2013; 

Park and Kim, 2013). Previous studies have largely focused on attention, a cognitive 

aspect that is affected due to circadian disruption (Gritton et al., 2012, 2013b) but there 

are no studies that investigate the effects of these disruptions on impulsive behavior. 

Additionally, there are no studies that identify the effect of a light at night model of 

circadian disruption on behavior. By understanding how the disruption of circadian 

rhythms affects cognition, behavior and the underlying neurochemistry, we ultimately 

may be able to better understand which individuals would be more at risk for detrimental 

effects from circadian disruption, and possibly develop interventions which could 
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improve the quality of life in those affected by either circadian disruption or disorders of 

which circadian disruption is a component.     

To address these gaps in knowledge, we designed experiments that aim at studying 

the effects of two different models of circadian disruption on attention and response 

inhibition and the changes associated with the underlying neurochemistry. We hope to 

learn more about the interactions between the underlying dopaminergic and cholinergic 

neurotransmitter systems that alter behavior under conditions of circadian disruption. 

Chapter III details these aims. 
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Chapter 3 Specific Aims 

To address the gaps in knowledge detailed in Chapter II, I developed two main 

hypotheses: 

Specific Aim 1: Circadian disruption will give rise to deficits in attention and 

response inhibition and will also alter the underlying neurochemistry that 

governs these two aspects of behavior.  

We tested rats on the 5-CSRTT, a task used to assess attention and impulsive 

behavior, under two different models of circadian disruption 

1. Light at Night model (LAN): Rats were tested in the dark-phase with exposure to 

ambient light in the room, 4 h after the lights were switched off. 

2. Shift work model: Rats were tested in their light-phase (rest phase) 4 h after the 

lights were switched on.  

In the control condition the rats were tested in their dark-phase testing with no ambient 

light exposure. Once asymptotic performance was reached, the brains from the rats in 

all 3 light conditions were harvested at 4 different time points to study the mRNA 

transcripts of cholinergic and dopaminergic proteins in brain regions relevant to 

attention and impulsive behavior on the 5-CSRTT. I isolated tissue from the infralimbic 

cortex (IL) and dorsomedial striatum (DmSTR) as these regions are important for 

impulsive behavior and attention. The genes examined in these regions included 

choline acetyltransferase (ChAT) Chat, β2 subunit of nicotinic acetylcholine receptors 

(β2 nAChR) Chrnb2, dopamine transporter (DAT) Slc6a3, norepinephrine transporter 

(NET) Slc6a2, tyrosine hydroxylase Th, dopamine 1 receptor (DR1) Drd1, and 

dopamine 2 receptor (DR2) drd2, which code for cholinergic and dopaminergic synaptic 
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proteins. Additionally, I also examined the expression of Period 2 Per2 in DmSTR as the 

literature supports a bidirectional relationship between expression of Per2 and 

dopaminergic proteins. I wanted to test if there was an effect of the two models of 

circadian disruption used in this study on the expression of Per2. For my dissertation 

project, I analyzed the expression of these genes at two-time points of ZT 4 (4 h after 

lights on) and ZT 16 (4 h after lights off).  

I saw significant deficits with respect to attention and response inhibition in both 

models of circadian disruption compared to the control group. Per2 expression in 

DmSTR in the light phase group was altered compared to the expression in LAN and 

control group, which showed a rhythmic expression. Chat and Drd1 expression in 

DmSTR showed a rhythmic expression. I did not see any change in expression in any of 

the genes in IL. Taken together these results provide evidence that distinct types of 

circadian disruption affect attention and impulsive behavior and the underlying 

neurochemical systems.  

Specific Aim 2: Pharmacological challenges used to understand the interaction 

between cholinergic and dopaminergic neurotransmitters will have differential 

responses in both models of circadian disruption. 

To examine this potential interaction, we used cholinergic and dopaminergic agonists 

and antagonists, alone and in combination with each other, to study their effects on 

impulsive behavior on 5-CSRTT under the two conditions of circadian disruption. I 

predicted that in both cases of circadian disruption there would be increased impulsivity 

compared to the control animals. In an initial study, I optimized doses of nicotine and 

dopaminergic antagonists to be used in our models of circadian disruption. All the 
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testing in this initial part of the project was conducted under the light at night condition 

where we had seen an effect on impulsive behavior in our preliminary studies. Important 

doses were identified for the cholinergic agonist nicotine (NIC), DR1 specific antagonist 

SCH 23390 (SCH), and DR2 specific antagonist eticlopride (ETI) on attention and 

impulsive behavior. I also studied the effect of these antagonists in combination with 

NIC and AMPH to understand the effects on attention and impulsive behavior. I found 

that NIC and AMPH increased impulsive behavior while the dopamine receptor 

antagonists decreased impulsive behavior. Both had minimal effects on attention. In 

combination the antagonists reduced the effects of NIC and AMPH, which established 

an interaction between cholinergic and dopaminergic neurotransmitters in our model.  

Then, I examined the effects of NIC, SCH and ETI on attention and impulsive 

behavior under conditions of circadian disruption previously established. I administered 

the drugs by themselves and the combined NIC with SCH and NIC with ETI. Light 

condition modulated drug response. Our most prominent finding was that nicotine 

increased impulsive behavior and the combination with antagonists decreased 

impulsive behavior in both models, but these drugs had minimal effect in the circadian 

control group. The pharmacological challenges in this aim established how each of 

these neurotransmitter systems, individually and in combination, affected impulsive 

behavior in an incremental or decremental manner, and were affected by circadian 

disruption.  
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Chapter 4 Effect of Two Models of Circadian Disruption on Attention and 
Response Inhibition and mRNA Expression of Cholinergic and Dopaminergic 

Proteins that Modulate Response Inhibition 

4.1 Abstract 

Circadian rhythms are endogenous rhythms that govern behavior and physiology. Like 

many toxicants, circadian disruption is an environmental factor that impacts cognition and 

increases the risk of neurodegenerative disease and other disorders by altering the 

circadian clock at a molecular level. Common sources of circadian disruption in human 

populations include working beyond the regular hours of ‘9 to 5’ (shift work) and untimely 

exposure to light (light-at-night, LAN). Previous studies have identified that circadian 

disruption affects attention and memory. Our study investigated the effect of 2 models of 

circadian disruption on response inhibition, which has previously been unaddressed, and 

attention using a 5-choice serial reaction time task (5-CSRTT). Adult Long-Evans rats of 

both sexes were maintained on a 12h:12h light: dark cycle and tested under 3 conditions: 4 

h into the dark phase with no exposure to ambient light at the time of testing (control), 4 h 

into the dark phase with exposure to ambient light during testing (a model of LAN), and 4 h 

into the light phase (a model of shift work). Our hypothesis that rats tested under the two 

models of circadian disruption would have reduced response inhibition and be less attentive 

than controls was confirmed. We also established that changes in expression occur in Per2 

in the light phase-tested model of circadian disruption. Choline acetyltransferase (Chat) and 

Dopamine receptor1 (Drd1) showed rhythmic expression with peak expression during dark 

phase. Our study is the first of its kind to identify the detrimental effects of both light at night 

and shiftwork models of circadian disruption on impulsive behavior. These results could 

potentially hold the key to better understanding altered cognitive functioning in real-world 

scenarios caused by conventional sources of circadian disruption. 
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4.2 Introduction 

Industrialization has led to the development of modern technology that has been 

beneficial to prosperity and health of the general population. This progress is 

accompanied by novel, unintended effects on human and wildlife behavior and 

physiology. The daily light-dark cycles produced by the rotation of the earth span 

approximately 24 hours and have major influence over both behavior and physiology of 

all organisms. Circadian rhythms are 24 hour-long endogenous rhythms that modulate 

behavior and physiology. These rhythms are governed by the suprachiasmatic nucleus 

(SCN), a master clock located in the hypothalamus, Environmental factors like light 

have a direct effect on SCN which in turn affects the modulation of behavior and 

physiology (Silver and Kriegsfeld, 2014). Untimely exposure to light, termed circadian 

disruption, can cause a conflict with intrinsically entrained rhythms and has detrimental 

effects on both behavior and physiology (Arble et al., 2010; Karatsoreos, 2012; Potter et 

al., 2016). There are two types of circadian disruption discussed in this chapter: 

1. Light phase group which mimics shift work, where work-time schedules fall 

beyond the regular working hours of ‘9 am – 5 pm’ and external cues conflict with 

the internal rhythms (Wright et al., 2013) and 

2. Light at night (LAN) which refers to untimely exposure to light at night (Dominoni 

et al., 2016; Fonken and Nelson, 2014) 

Under such circumstances, the sleep-wake cycle is disrupted and time-inappropriate 

cues such as exposure to light at night and eating during the normal sleep phase give 

further conflicting signals to the SCN. This misalignment of rhythms affects both 

behavior and physiology (Bedrosian et al., 2016; Golombek and Rosenstein, 2010; 

Gritton et al., 2009a, 2012, 2013; Russart and Nelson, 2017). This chapter focuses on 
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the neurobehavioral deficits that are caused by these two models of disruption. This 

desynchrony caused by circadian disruption has effects on aspects of cognition like 

attention, working memory, and cognitive flexibility (Frank and Ovens, 2002). Some 

studies have shown that attention is affected by disrupting these innate circadian 

rhythms (Gritton et al., 2009a) but very little has been done to establish the effects of 

circadian disruption on response inhibition. As stated earlier circadian disruption can be 

caused by factors such as working beyond the regular hours or by being exposed to 

light inappropriately (Evans and Davidson, 2013), and circadian disruption affects 

cognitive functioning (Gritton et al., 2012, 2013) making this an issue with extensive 

societal effects. The primary motivation for this study is to better understand how 

circadian disruption affects impulsive behavior and its underlying neurochemistry. 

People who are engaged in around-the-clock work include staff in protective and health 

services who have no room for erroneous decisions (Alterman et al., 2013; Park and 

Kim, 2013). By better understanding how circadian disruption affects cognition, behavior 

and the underlying neurochemistry, we ultimately will be able to better identify those at 

increased risk and develop interventions. Effective interventions could drastically 

improve the quality of life for those affected by circadian disruption, and for those who 

suffer from neurological disorders involving circadian disruption. 

Attention is a multidimensional construct, which is broadly defined as the prioritized 

processing of one piece of information over others (Stefanatos and Baron, 2007). 

Response inhibition is the suppression of unwanted actions that could interfere with 

goal-driven behavior (Mostofsky and Simmonds, 2008). Deficiency in response 

inhibition gives rise to impulsive behavior, the inability to prevent detrimental actions 
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that interfere with achieving goals. This kind of behavior includes inappropriately-timed 

actions, poor decision making, increased risk-taking and the inability to delay 

gratification (Dalley et al., 2011). Furthermore, lack of attention and impulsive behavior 

are often seen in conjunction with neurological disorders such as attention deficit 

hyperactivity disorder (ADHD), autism, schizophrenia, depressive and bipolar disorders, 

and Alzheimer’s disease (Coogan et al., 2013; Landgraf et al., 2014). In addition to 

attentional deficits and impulsive behavior, disorders like ADHD and autism are also 

associated with disrupted sleep and circadian patterns (Coogan et al., 2016; Singh and 

Zimmerman, 2015), and altered states of circadian rhythms are correlated with cognitive 

deficits in several neurological disorders. The altered behavior and disrupted circadian 

rhythms seen in these neurobehavioral disorders indicate a potential interaction 

between the two. 

The SCN regulates the circadian rhythms via acetylcholine (ACh) signaling (Wright 

et al., 2012). Studies have shown that there can be a bidirectional relationship between 

attention and circadian rhythms, both modulated by ACh (Gritton et al., 2012; Landgraf 

et al., 2014). Preliminary studies in our lab showed that animals subjected to untimely 

exposure to light (LAN) were more impulsive. Impulsive behavior is regulated by 

dopamine (DA) via binding to the dopamine-1 or -2 receptors (DR1s or DR2s) (Dalley 

and Roiser, 2012). In several brain regions including the prefrontal cortex (PFC), a brain 

region critical for both attention and impulsivity, and nucleus accumbens and striatum, 

cholinergic functioning interacts with dopaminergic signaling. In these regions, ACh 

release stimulates DA neurons to release DA via binding of nicotinic subtypes of ACh 
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receptors (nAChRs) by ACh (van Gaalen et al., 2006; Livingstone and Wonnacott, 

2009).  

To better understand the effects of circadian disruption on behavior and cognition, 

we used rodent models of two different types of circadian disruption. The rats were 

tested on the 5-choice serial reaction time task (5-CSRTT) which measures attention 

and increased impulsive behavior. We hypothesized that both models of circadian 

disruption would show poor attention and impulsive behavior compared to the control 

group. We also postulated that circadian disruption would affect the underlying 

neurochemistry which would manifest as altered behavioral responses. To address the 

changes in the underlying neurochemistry, we investigated the expression of both 

cholinergic and dopaminergic endpoints using qPCR in brain regions relevant to 

attention and impulsive behavior. We analyzed the expression of relevant genes in 

dorsomedial striatum and infralimbic cortex as these two brain regions play a crucial 

role in modulating attention and impulsive behavior (Christakou, 2004; Tsutsui-Kimura 

et al., 2016) 

The control group of rats were tested in their dark-phase, the active time for 

nocturnal rats, with no exposure to ambient light. The LAN group was also tested during 

dark-phase, but with exposure to ambient light in the testing room and chambers, which 

served as the untimely exposure to light. Lastly, we tested rats in their light phase, the 

rest phase for nocturnal animals, which modeled shift work. The data showed deficits in 

attention and impulsive behavior in both models, light phase and LAN group of rats, 

compared to control group. We also observed circadian disruption-associated changes 

in expression of Per2 in the dorsomedial striatum, and effects of zeitgeber time on Chat 
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and Drd1. We conclude from the data presented here that both models of circadian 

disruption influence behavior, and that the effect on light-phase tested rats is subtler 

than that on dark-phase tested rats. 

4.3 Materials and Methods 

Subjects 

Three cohorts of 40 Long-Evans rats, 20 of each sex (120 total rats), approximately 70 

days of age, were purchased from Envigo (Indianapolis, IN). Rats were single-housed in 

polycarbonate shoebox cages with wood-chip bedding (Beta Chip, Northeastern 

Products Corp., Warrensburg, NY) in a temperature- and humidity-controlled room 

(targeted 22o C, 40-55% humidity). 2020X Teklad Rodent Diet (Envigo) was fed to the 

rats. Food restriction was initiated after a one-week acclimation period to reduce rats’ 

body weights over 2 weeks to target weights of 85% of their free-feed body weights. 

After that, target weights were incrementally increased by 5-10 g every 2 weeks, with a 

maximum of 250 ± 10 g for female rats and 350 ± 10 g for male rats, to allow for growth. 

Food restriction was intended to maintain motivation for performing operant-based 

behavioral tasks. Tap water was provided ad libitum. TestDiet sucrose pellets (AIN-76A 

5TUL, 45 mg pellets, St. Louis, MO) were used for food-based reinforcement during 

behavior testing. At the time the food restriction began, the rats were randomly assigned 

to a treatment group and were housed in chambers where the light cycle was regulated. 

Figure 4.1 shows the schematic representation of the experimental plan. 

The two conditions of circadian disruption include LAN and light phase (shift work) 

groups. The rats in LAN were tested 4 h after the lights were switched off (zeitgeber 

time 16, ZT 16), during their active period. They were subjected to ambient light during 



51 
 

testing and transportation to the testing room. The light phase group of rats were tested 

4 h after the lights were switched on during their rest phase (ZT 4). The control group of 

rats was tested 4 h after the lights were switched off during their active phase (ZT 16) 

with no exposure to ambient light. Handling of the control group of rats during the daily 

testing period occurred under red lights exclusively. In the testing chambers, control rats 

were exposed to a red LED stimulus cue light as well as low-intensity, yellow LEDs from 

5 nose-poke holes. 

During the daily testing sessions for both circadian disruption groups, the overhead 

fluorescent, white lights were on in the testing room. Rats were exposed to the 

overhead lights in the testing room. While in the testing chambers, rats were exposed to 

the house light (2.8 watt bulb) in each chamber, as well as a 2.8 watt stimulus cue light 

above the pellet trough during behavior tasks. All rats performing the 5-CSRTT were 

also exposed to low-intensity, yellow LEDs from the 5 nose-poke holes. The light 

intensity in the cages ranged from 220 to 360 lux (average 290 lux) for the circadian 

disruption groups. Rats were behavior tested at the appropriate ZT 4 or 16. Timers that 

controlled the lights for the home cages were staggered to allow light-dark transitions for 

12 rats at a time, counterbalanced across sexes and treatment groups, to permit 

adequate time for daily testing of all rats. This schedule was maintained across cohorts.  

 

Apparatus and 5-Choice Serial Reaction Time Task (5-CSRTT) 

Behavioral testing began 3 weeks after the rats arrived when rats were approximately 

90 days of age. Training and testing sessions, 1 per day, were performed 6 days each 

week in 12 5-choice operant behavior-conditioning chambers housed in sound-insulated 
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and ventilated cubicles (Med Associates Inc., St. Albans, VT). Each chamber consisted 

of 5 evenly-spaced nose-poke cue holes (2.5 x 2.5 x 2.5 cm and 2 cm above the floor) 

on one wall. Each aperture had a yellow LED light centered in the back and an infrared 

photocell to detect head entries. The opposite wall had a pellet trough with a head-entry 

detector in the center panel, a stimulus cue light directly above it, and then a house light 

mounted 6 cm above the cue light. Experimental contingencies were programmed using 

MedState Notation programming language, and data acquisition was performed using 

MED-PC IV software (version 4.38, Med Associates). Behavioral-testing programs were 

modified from those used by Beaudin et al. (Beaudin et al., 2017). 

     During the seven initial training phases of the 5-CSRTT, rats learned to associate 

nose pokes in the pellet trough and the 5 nose-poke holes with food reinforcement. The 

house light remained on during all these phases. The criterion to advance from one 

phase to the next was 99 or 100 successful nose pokes. Each session during the 7 

initial phases lasted until 100 pellets were earned or 60 min elapsed. Rats took an 

average of 7.5 days, ranging from 7 to 12 days, to complete initial training. The next 

phase of training was Visual Discrimination 1, during which cue lights were introduced. 

Cue lights were illuminated for 15 s during each trial. Nose pokes in the illuminated cue 

hole resulted in reinforcer delivery. Poking in any other cue hole, or not poking during 

the 15 s period, resulted in a time-out (see next section). Rats were tested on this phase 

until criteria of making 75% or more correct responses for 2 out of 3 consecutive days 

were met within 15 sessions. All rats in this study met the criteria, taking an average of 

3.8 days, ranging from 3 to 7 days, to progress to next phase. In the next phase, Visual 

Discrimination 2, the duration of cue light illumination was shortened to 1 s, requiring 
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rats to be more attentive to optimize performance. Rats still had a 15 s limited-hold 

period to nose poke. Rats were tested on this phase for 5 days. 

 

Sustained Attention Task 

Following the training sessions, rats were tested on the Sustained Attention phase for 

21 days. During daily sessions in each phase, the yellow LED cue lights in the 5 nose-

poke holes would randomly illuminate in one hole per trial, in a counterbalanced 

manner, so that each hole was illuminated during an equal number of trials per session. 

The house light was illuminated except during time-out periods. Each trial began with a 

nose-poke in the pellet trough. If it was the first trial, or if the previous trial resulted in 

sucrose pellet delivery, the rat was given 3 s to consume the pellet (reinforcer duration). 

After the 3 s reinforcer duration, the rat was given a 3 s turn-around time to allow the rat 

time to orient toward the wall with the 5 nose-poke holes. If the previous trial had 

resulted in a time-out, there was no reinforcer duration after a nose poke in the trough. 

In this phase of the test, there were variable delays of 3, 5 or 7 s until a cue light would 

illuminate in a nose-poke hole. These delays consisted of the 3 s turn-around time plus 

an additional delay of 0, 2 or 4 s. The cue light in the nose-poke holes would illuminate 

for a maximum of 1 s and, concurrently, a 15 s limited-hold period would commence 

during which a nose poke could be registered.  

     One of 4 trial outcomes could result. A correct trial was when the rat poked in the 

hole in which the cue light was illuminated during the 15 s limited-hold period. An 

incorrect trial was when the rat poked in one of the other 4 holes. A premature trial 

was when the rat poked during the delay before the cue light illuminated. Premature 
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nose-pokes were not recorded during the 3 s turn-around time, so premature trials only 

occurred when the cue delay was 5 or 7 s. An omission occurred when the rat did not 

poke during the limited-hold period. Correct trials resulted in a food pellet being 

dispensed, the cue light over the feeder illuminating, and the beginning of a new trial 

when the rat retrieved it. If the rat continued to nose poke in any of the 5 cue holes after 

making a correct response, those nose pokes were recorded as a perseverative 

response but had no consequence. Perseverative responses were recorded only when 

there was a correct trial. Incorrect, premature, and omission responses triggered an 

immediate 5 s time-out, during which all cue lights and the house light extinguished. 

Poking in any of the 5 nose-poke holes during a time-out reset the time-out timer. When 

5 s elapsed without any nose pokes, the cue light above the pellet trough illuminated 

until the rat poked in the trough, thus beginning the next trial. Each daily session lasted 

until 150 trials or 60 min elapsed. For the control group of rats, the house light was 

turned off, and the cue light over the feeder was replaced with a red LED light.        

 

Tissue Collection 

After the completion of the Sustained Attention task, the rats within each group were 

randomly assigned to  a ZT, zeitgebers (“timegiver”). The four time points included ZT 4, 

ZT 8, ZT 16, and ZT 20 to collect brains to determine the effects of circadian disruption 

on the rhythmicity of various genes (N=4 of each sex per time point). Samples from ZT 

4 and ZT 16 only were analyzed for this chapter. Females were collected during the 

diestrus phase of their estrous cyclicity and for each female, a male was collected at the 

same ZT. The collection was done under red lights if they were being collected during 
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their dark phase, depending on the circadian disruption group to which they belonged. 

Rats were euthanized using carbon dioxide with a flow rate of 2.4-7.2 LPM. The brain 

was extracted, quickly frozen by immersion in liquid nitrogen, and stored at -80o C. 

Brains were sliced using a microtome and kept at -20o C until each region of interest 

was in the cutting plane. Coronal sections of the brains were then made using the 

microtome. Slices were made at bregma 3.20 mm for taking punches from the 

infralimbic cortex (IL) and bregma 1.70 mm for taking punches from dorsomedial 

striatum (Paxinos and Watson, 1998). Bilateral punches were taken from the infralimbic 

cortex (1.5 mm diameter) and the dorsomedial striatum (2 mm diameter) and stored in 

RNAlater (ThermoFisher) at -20 o C (See Figure 4.2).   

 

RNA extraction and Quantitative RT-PCR 

The tissue was removed from RNAlater, homogenized, and total RNA was isolated 

using RNeasy mini kits (Qiagen) following the manufacturer's protocol. RNA was eluted 

into 50 µl elution solutions. RNA concentrations and purity were determined using a 

NanoQuant spectrophotometer (Thermo Scientific, Waltham, MA USA), measuring 

absorbance at 260 nm and the ratio 260 nm/280 nm. RNA samples were used if the 

260/280 ratio was greater than 1.9. ABI High Capacity cDNA Reverse Transcription kit 

was used (Applied Biosystems) to convert 10 ng RNA to cDNA. 100 ng cDNA was 

further used to quantify the differential gene expression using the Power SYBR Green 

PCR Master Mix (ThermoFisher) to analyze the transcript levels of the genes in Table 1 

on a 96-well plate with a total volume 10 µl on Quantstudio 3 Real-Time PCR system. 

Gapdh was used as the housekeeping gene. Per2 was analyzed in the dorsomedial 
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striatum as previous literature had established that DA regulates the expression of clock 

proteins in the dorsal striatum in rodents (Hood et al., 2010). Norepinephrine transporter 

(NET) plays a crucial role in regulating extracellular DA in the medial prefrontal cortex 

so expression of NET was analyzed only in IL (Yamamoto and Novotney, 1998). While 

NET clears DA in IL, dopamine transporter (DAT) performs this function in the striatum 

(Hoffman et al., 1998). The genes and primers are listed in Table 4.1.  

 

Data Analysis 

R program for statistical computing and graphics (R Core Team, 2016) was used to 

calculate percent correct (number of correct responses/total trials *100), percent 

incorrect (number of incorrect responses/total trials *100), percent accuracy (percent 

correct/(percent correct + percent incorrect)), percent premature (number of premature 

responses/total trials *100), percent omissions (number of omitted responses/total 

trials *100), and average perseverative responses (sum of perseverative responses in 

all 5 nose-poke holes/number of correct responses). Average latency to correct 

responses (sum of latencies to all correct responses/number of correct responses), 

average latency to incorrect responses (sum of latencies to all incorrect 

responses/number of correct responses), and average latency to collect reinforcers 

(sum of latencies to collect reinforcers/number of correct responses) were also 

calculated. Percent accuracy indicates the ability of the subject to sustain attention. 

Percent premature responses indicate deficits in response inhibition. Percent omissions 

is a measure of inattentiveness, a lack of motivation, or both (Robbins, 2002b). Data are 

reported as mean ± SEM. 
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      All statistical analyses were conducted using SPSS for Windows (version 24, SPSS 

Inc., Chicago, IL). Mixed model ANOVAs were used to analyze all data, with statistical 

significance set at p ≤ 0.05. The data from the 21 days of Sustained Attention phase 

were evaluated to characterize learning of the 5-CSRTT. Experimental factors of block 

(7 3-day blocks) and cue delay (3 cue delays, except for 2 for percent premature) were 

within-subjects factors, and treatment (3 light conditions) and sex were between-

subjects factors. Post-hoc testing (Bonferroni) was performed when appropriate using 

SPSS. 

The data from quantitative RT-PCR were tested for normality. Multivariate ANOVA 

was used to analyze normal data where light condition, ZT, and sex were fixed factors 

and the gene expression was the dependent variable. Tukey test was used to perform 

the post-hoc analysis when appropriate. A non-parametric test, Kruskal-Wallis was used 

if the data were not normal. Differences with p ≤ 0.05 were considered statistically 

significant. 

4.4 Results 

All the data in detail here are included for the two primary measures of interest, 

accuracy and premature responding. Numerical data on all measures including average 

perseverative responses and latencies are indicated in Table 4.2.  

 

Experiment 1- Behavior Testing with Three Light Conditions 

Across the 7 blocks of testing, accuracy increased and premature responding 

decreased until asymptotic performance was reached by block 6 where performance did 

not differ significantly from block 7, for all 3 treatment groups. Figure 4.3 shows % 
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accuracy and Figure 4.4 shows data for % premature across the 7 blocks the rats were 

tested on sustained attention. Across the 7 blocks control group (F 2, 120 = 59.1, p < 

0.001) had significantly higher accuracy compared to both LAN and light phase groups 

(p< 0.001 for both). Cue delay had an effect (F 2, 2400 = 73.1, p < 0.001) where the rats 

showed better accuracy at the shorter cue delays of 3 s and 5 s (p < 0.001). The cue 

delay by block interaction was significant (F 12, 2400 = 2.4, p = 0.004) where the rats at 

the longer cue delays of 5 s (p = 0.036) and 7 s (p < 0.001) had lower % accuracy. 

Between the two longer cue delays the rats at the 7 s cue delay (p = 0.014) were less 

accurate than the rats at the 5 s delay. Similar effects were observed at block 2 where 

the rats performed poorly at the longest cue delay compared to the two shorter cue 

delays of 3 s (p < 0.001) and 5 s (p = 0.010). At block 7, rats performed poorly at 7 s 

cue delay compared to the longest cue delay 5 s (p = 0.002).  

Premature responding was affected by light condition (F 2, 120 = 22.1, p < 0.001) 

where across the 7 blocks the two circadian disruption conditions also showed higher 

premature responding (p < 0.001). The light condition by cue delay interaction was 

significant (F 2, 1560 = 108.9, p < 0.001). During both 5 s and 7 s cue delays, the control 

group of rats made fewer premature responses compared to the two conditions of 

disruption (5 s pLAN = 0.012 and plightphase = 0.017 versus controls; 7 s p < 0.001 for both 

versus controls). The effect of light condition (F 20, 808 = 33.8, p < 0.001) altered the 

premature responding from block 2 onward.  

Because the rats reached asymptotic performance by block 6 for both % accuracy 

and % premature, further statistical analysis focused on block 7 alone. Figure 4.5 shows 

the main effect of light condition (F 2, 114 = 77.1, p < 0.001) where the control group had 
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significantly higher % accuracy compared to both disruption groups of LAN and light 

phase testing (p < 0.001 for both). The main factor of cue delay also was significant (F 2, 

228 = 20.3, p < 0.001) with % accuracy at 7s decreased compared to 5 s (p < 0.001) and 

3 s (p < 0.001). There were no other significant measures or interactions for % 

accuracy.  

For % premature, main effects of light condition (F 2, 114 = 32.2, p < 0.001) and cue 

delay (F 1, 114 = 471.1, p < 0.001) were both significant as was the interaction between 

the two (F 2, 114 = 42.5, p < 0.001). These effects on premature responding are shown in 

Figure 4.6. Post hoc analysis revealed that at 5 s cue delay both light phase (p =0.002) 

and LAN (p = 0.003) made more premature responses than control. Comparable results 

were observed at 7 s cue delay (p < 0.001 for both versus control). The rats in each light 

condition group made more premature response at 7 s compared to 5 s (p < 0.001). 

There was an effect of sex on premature responding in block 7 (F 1, 114 = 4.0, p = 0.046) 

where males made more premature responses than females in all 3 light condition 

groups. This data is shown in Figure 4.7. 

Rats made more % omissions at 3 s (F 2, 228 = 13.9, p < 0.001) compared to both the 

longer cue delays of 5 s (p < 0.001) and 7s (p < 0.001) but the main factor of light 

condition was not significant. Females made more omissions compared to males (F 1, 

114 = 7.5, p < 0.007) (not shown). Rats in both LAN and light phase took longer to make 

a correct response to compared control group (F 2, 114 = 15.1, p < 0.001; post hoc for 

both compared to control p < 0.001). Rats also took longer to make a correct response 

at the shortest cue delay of 3 s (F 2, 228 = 14.7, p < 0.001) compared to 5 s (p < 0.001) 

and 7s (p < 0.001), but the light condition by cue delay interaction was not significant. 
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Rats were slower to make an incorrect response at the lowest cue delay of 3 s (F 2, 228 = 

14.7, p < 0.001) compared to 5 s (p < 0.001) and 7 s (p < 0.001). There were no other 

effects observed in this measure. There were no effects of light condition or cue delay 

seen in average perseverative responding or reinforcement latency. The dependent 

measures for all cue delays and light conditions are shown in Table 4.2 

 

Experiment 2- Effect of Circadian Disruption on Cholinergic and Dopaminergic Gene 

Expression in Dorsomedial Striatum and Infralimbic Cortex  

We analyzed the effects of light condition, time (ZT) and sex on the genes listed in 

Table 4.1 on infralimbic cortex (IL) and dorsomedial striatum (DmSTR). There was no 

effect of light condition, time (ZT) or sex on any gene in the IL. Per2 in the DmSTR 

showed a differential expression at ZT 4 and 16 (F 1, 40 = 22.8, p < 0.001) shown in 

Figure 4.8. There was a light condition and ZT interaction (F 2, 40 = 4.7, p = 0.038) with a 

higher expression at ZT 16 in both control (p = 0.002) and light at night (p = 0.004) 

groups compared to ZT 4. There was no significant difference between ZT 4 and ZT 16 

for the light phase rats. The expression of Per2 at ZT 16 in light phase trended towards 

showing a difference in expression compared to ZT 16 in control rats (p = 0.055). 

The expression of Chat in DmSTR was significantly affected by ZT (F 1, 43 = 4.3, p = 

0.043). Figure 4.9 shows that expression of Chat was greater at ZT 16 compared to ZT 

4. No other factors were significant for Chat. Expression of dopamine 1 receptor (Drd1) 

was also affected by ZT only (F 1, 56 = 5.1, p = 0.029). Figure 4.10 shows that expression 

of Drd1 was higher at ZT 16 compared to ZT 4.  
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4.5 Discussion 

The purpose of this study was to examine the effects of two models of circadian 

disruption on attention and impulsive action using % accuracy and % premature in the 

5-CSRTT as proxy measures (Robbins, 2002a). By analyzing gene expression, we 

aimed to identify the changes in the underlying neurochemistry brought about by both 

the models of circadian disruption. The overall results of the study indicate that both 

light at night (LAN) and shift work (light phase) models of circadian disruption were 

detrimental to cognition.  

In our first experiment, we showed that circadian disruption caused significant 

deficits in attention and response inhibition. Rats in all three treatment groups learned 

the task and demonstrated better attention and response inhibition as the task 

progressed, but throughout the 21 days of sustained attention phase there remained 

significant deficits in both behaviors for the treatment groups. The deficits on attention 

using other cognitively-demanding tasks have been previously shown by Gritton et al. 

(Gritton et al., 2009b, 2012, 2013), but this is the first time the 5-CSRTT has been used 

to establish deficits in attention caused by models of light at night and shiftwork. 

Cordova et al. used this task to study the attentional impairments caused by sleep 

deprivation, another model of circadian disruption (Córdova et al., 2006). Another 

unique aspect of this study is that we established effects of circadian disruption on 

response inhibition for the first time. This study also identified changes in the expression 

of Per2, Chat, and Drd1 in the dorsomedial striatum. 

Experiment 1 established that rats in both groups of circadian disruption, LAN and 

light phase, showed significant deficits in impulsive behavior, where all the rats started 

at approximately the same level of impulsive behavior, but as the task progressed the % 
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premature responses, a measure for impulsive action, made by the control group 

decreased to a greater extent compared to the corresponding decrease across blocks in 

the two circadian disruption groups. This effect of circadian disruption on impulsive 

behavior is unique and has been identified in this study for the first time. 

 Experiment 2 established that circadian disruption can cause differential alteration 

in gene expression at a molecular level. The lack of changes in expression of Per2 in 

the light phase group as compared to changes between ZT 4 and ZT 16 in the other two 

groups could potentially be one reason behind the observed behavioral deficits. Our 

results from this experiment demonstrated a regional difference in the expression of the 

cholinergic and dopaminergic genes. 

A study done by Gritton et al. showed that rats learned a task requiring attentional 

effort faster when trained during their dark phase (active phase) compared to rats 

trained in their light phase (rest phase) (Gritton et al., 2012). The dark phase testing 

conditions in the Gritton study were identical to ours, but the difference in light-phase 

dependent learning of the task was absent in our study between the rats tested at in the 

dark phase (LAN and control) and light phase (shift work). There was no difference in 

the time taken to reach criterion (Visual Discrimination 1 phase) between the 3 light 

condition groups. The differences in attention and response inhibition that manifested 

between the control and the two treatment groups could be because of effects circadian 

disruption exerted on the underlying neural networks that modulate these aspects of 

cognition. The 5-CSRTT requires focused attentional effort throughout the period of 

testing, resulting in increased synaptic ACh levels (Arnold et al., 2002; Kozak et al., 

2006; Peters et al., 2011). Based on the studies by Arnold et al., sustained attention 
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tasks increased the cortical ACh efflux by ~140% (Arnold et al., 2002). Kawamura et al. 

demonstrated that there is evidence that cortical ACh peaks during the dark phase, the 

active phase for the rats. This study by Kawamura established that there are innate 

rhythms for ACh release, and any disruption to these innate rhythms could have a direct 

ramification on attention (Jiménez-Capdeville and Dykes, 1993; Kametani and 

Kawamura, 1991). The light phase group, which mimics effects of shift work, show 

deficits in attention, potentially due to disruption in these cholinergic rhythms. Murakami 

et al. showed that there was spike in the levels of ACh 30-60 minutes after exposure to 

light (Murakami et al., 1984). It is possible that there is a similar spike in the levels of 

ACh above that already present during the dark phase in our model of LAN, where the 

rats are exposed to the ambient light during their dark phase for cognitive testing. This 

supra-normal spike in levels of ACh may have caused deficits in attention, as any 

deviation from optimal ACh levels can impair cognition (Newman and Gold, 2016).  

Both our models showed deficits in response inhibition, a behavior primarily 

governed by DA (Dalley and Roiser, 2012; Pattij and Vanderschuren, 2008; Robbins, 

2002a). Any changes in the innate levels of DA could potentially manifest as changes in 

behavior. Diurnal variations in dopaminergic transmission have been well established in 

the literature. Casteñada et al. showed an overall decrease in the levels of DA in rat 

brains when rats transitioned to the light phase and a subsequent increase in the levels 

of DA when they transitioned to the dark phase, indicating that DA levels are higher 

during the dark phase. These changes in DA levels were absent in their group that was 

exposed to 24 h of light continuously (Castañeda et al., 2004). Hampp et al. established 

that monoamine oxidase (Maoa), an enzyme that degrades DA, is also regulated by the 
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clock components (Hampp et al., 2008), which was not examined in our study. Core 

clock genes that govern these rhythms include Clock, Bmal1, Cry, and Per genes to 

name a few (Buhr and Takahashi, 2013; Takahashi, 2017). These genes have direct 

effects on dopaminergic neurotransmission (Hampp et al., 2008; Hood et al., 2010; 

Sleipness et al., 2007a; Verwey et al., 2016). Studies by Hampp and Sleipness indicate 

that the promoter regions for monoamine oxidase gene (Maoa) contain canonical E- box 

sites which serve as a binding region for heterodimers of CLOCK/BMAL1. These 

promoter regions are conserved across mouse, rat, and human species suggesting a 

comparable regulation (Hampp et al., 2008; Sleipness et al., 2007b). Despite the SCN 

being the master pacemaker, circadian genes and proteins are expressed throughout 

the brain which constitute SCN- independent pacemakers that entrain to both photic 

and non-photic stimuli, including food and drug administration (Iijima et al., 2005; 

Stephan, 1984).  

The literature establishes that there are diurnal variations in both cholinergic and 

dopaminergic neurotransmission. We can infer that the subjects in our study were also 

subject to same variations, where the control group of rats would follow normal 

variations in rhythmicity, thus enabling those rats to optimize attention and response 

inhibition. In both treatment groups with altered light conditions, LAN and light phase, 

there were deviations from the normal diurnal variation (Mahoney Lab manuscript in 

preparation), thus giving rise to the deficits in attention and response inhibition. This 

study is the first to identify deficits in response inhibition in both models of circadian 

disruption. Nelson et al. have identified physiological deficits in a LAN model of 

circadian disruption, such as disruption of circadian regulation and melatonin signaling, 
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metabolic dysregulation, increased frequency of cancer, and disruption of other 

hormonally-driven systems, but our study is the first to identify cognitive deficits in a 

LAN model (Russart and Nelson, 2017). 

Experiment 2 in this study was aimed at identifying changes at the molecular level 

caused by both models of circadian disruption. The results of this study indicate deficits 

in the expression of Per2 in the light phase group. The expression of Per2 in control and 

LAN group showed higher expression at ZT 16 compared to ZT 4, consistent with the 

literature (Hood et al., 2010). This difference was absent in light phase group of rats.  

Circadian clock genes expressed in DmSTR can modulate dopaminergic 

neurotransmission, and these daily rhythms in DA release could potentially influence 

attention and impulsive behavior (Verwey et al., 2016; Webb et al., 2015). While we did 

not find rhythmic differences in Drd2 or Th, previous studies indicate that Per2 mutant 

animals show reduced expression of the monoamine oxidase (Maoa) gene resulting in 

elevated levels of dopamine (Hampp et al., 2008). Expression of Maoa was not 

investigated in this study, but the deficits we observed in the expression of Per2 could 

be giving rise to similar effects. Alterations in the bidirectional relationship between DA 

and clock-component genes could also have contributed to the observed effects. The 

absence of difference in Per2 clock gene expression in the LAN model indicates a 

possibility of an alternative mechanistic pathway. Release of ACh is high during the 

active phase and is accompanied by high ChAT activity (Hut and Van der Zee, 2011) 

similar to our results. Drd1 also showed a higher expression during the active phase. It 

is possible that in both models of circadian disruption the higher expression of Drd1 

contributed to the increase in impulsive behavior. We hypothesize that DR1 is bound by 
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elevated DA levels in these rats, thus initiating a post-synaptic signalling cascade at a 

higher rate, causing an increase in impulsivity. 

Future studies will parse out more effects of these two models of circadian disruption 

by quantifying mRNA levels for Th, DAT and the DRs in the ventral tegmentum and 

substantia nigra, regions where the dopaminergic neuronal bodies that project to the IL 

and DmSTR are located. Additionally, quantifying the protein levels corresponding to 

the genes tested in this study in both IL and DmSTR could provide us more information 

regarding the underlying neurochemistry in both the models of circadian disruption. Our 

current experiment establishes that both models of circadian disruption have profound 

consequences on brain function regulated by cholinergic and dopaminergic 

neurotransmission. 
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4.6 Figures and Tables 

 

Figure 4.1. Schematic of the experimental plan that was followed for three cohorts of 40 rats each.  
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Figure 4.2. The circled area in the image identifies the brain regions the punches were taken from to 
isolate mRNA to further quantify gene expression from (Paxinos and Watson, 1998). 
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Gene of Interest 
Brain 

Regions 
Primer Sequence 

Accession 
number 

Choline 
Acetyltransferase 

STR, IL 
fwd chat CCTCGTCTGTGGAGTTTGCG 

NM_001170593.1 
rev chat AGATTGCTTGGCTTGGTTGG 

β2 nAChR STR, IL 
fwd chrnb2 TGCGAAGTGAGGATGATGAC 

NM_019297.1 
rev chrnb2 ACGGTCCCAAAGACACAGAC 

Dopamine 
Receptor 1 

STR, IL 
fwd drd1 GGCCCTTTGGGTCCTTTTGT 

NM_012546.3 
rev drd1 ATCACGCAGAGGTTCAGAATGG 

Dopamine 
Receptor 2 

STR, IL 
fwd drd2 AAGCGCCGAGTTACTGTCAT 

NM_012547.1 
rev drd2 GACCACAAAGGCAGGGTTG 

Tyrosine 
Hydroxylase 

STR, IL 
fwd th CCTTCCAGTACAAGCACGGT 

NM_012740.3 
rev th TGGGTAGCATAGAGGCCCTT 

Norepinephrine 
Transporter 

IL 
fwd net TAAGAAGTCAGGTCCAGCACC 

NM_031343.1 
rev net AGTAGAGCAAGGAAGGCACC 

Dopamine 
Transporter 

STR 
fwd dat TGCTGGTCATTGTTCTGCTC 

NM_012694.2 
rev dat GCTCCAGGAAGGGTAACTCC 

Period 2 STR 
fwd per2 CACCCTGAAAAGAAAGTGCGA 

NM_031678.1 
rev per2 CAACGCCAAGGAGCTCAAGT 

Glyceraldehyde 3-
phosphate 

dehydrogenase 
STR, IL 

fwd gapdh GGTGGACCTCATGGCCTACA 
NM_017008.4 

rev gapdh GGCCTCTCTCTTGCTCTCAGTATC 

Table 4.1: Genes that were analyzed using quantitative RT-PCR to understand how circadian disruption 
altered the expression in the dorsomedial striatum (STR) and the infralimbic cortex (IL). 
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        (a.)  

(b.)  

 
  

Figure 4.3. Percent accuracy, a measure of attention was siginificantly diminished in rats that had been 
subjected to circadian disruption. The grey line indicates that the control rats performed significantly 
better from block 1 compared to the treated groups (blue and red line). This difference was maintained 
through the 7 blocks of the task. The rats in all three light condition groups reached asymptotic 
performance by block 6. The effect of circadian disruption was consistent across 3 cue delays (a.) 3 s, (b.) 
5 s, (c.) 7 s. *** p < 0.001 compared to control.  
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(c.)  

 
Figure 4.3 (continued). Percent accuracy, a measure of attention was siginificantly diminished in rats that 
had been subjected to circadian disruption. The grey line indicates that the control rats performed 
significantly better from block 1 compared to the treated groups (blue and red line). This difference was 
maintained through the 7 blocks of the task. The rats in all three light condition groups reached 
asymptotic performance by block 6. The effect of circadian disruption was consistent across 3 cue delays 
(a.) 3 s, (b.) 5 s, (c.) 7 s. *** p < 0.001 compared to control.  
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(a.) 

 
(b.) 

 

Figure 4.4. Percent premature, a measure of impulsive behavior was significantly increased in rats that 
had been subjected to circadian disruption. Even though the difference in block 1 was not significant, the 
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Figure 4.4 (Continued) control rats, represented by the grey line began performing significantly better 
from block 2 onwards compared to the circadian disruption groups (red and blue lines). This difference 
was maintained through block 7 of the task. The rats in all three light condition groups reached asymptotic 
performance by block 6. The effect of circadian disruption was consistent across both cue delays (a.) 5 s, 
(b.) 7 s. *** p < 0.001 compared to control.  
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Figure 4.5. Percent accuracy in block 7 for the three light conditions Control (CON), Light at Night (LAN) 
and Light Phase (LP) showing deficits in both LAN and LP compared to control (*). The longer cue delay 
of 7 s also affected % accuracy (# compared to 7 s). ***/### p < 0.001 
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Figure 4.6. Percent premature in block 7 for the three light conditions Control (CON), Light at Night (LAN) 
and Light Phase (LP) showing increased impulsivity in both LAN and LP compared to control (*). The 
longer cue delay of 7 s also affected % premature (# compared to 7 s). ***/### p < 0.001, **/## p < 0.01. 
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Figure 4.7. Males made more premature responses in block 7 for all three light conditions Control (CON), 
Light at Night (LAN) and Light Phase (LP) at both cue delays. * p = 0.046 
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Dependent 
Measures 

Control LAN Light Phase 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

% Accuracy 
92.4 ± 

0.9 
 

92.6 ± 
0.7 
### 

90.6 ± 
1.3 
### 

76.6 ± 
1.7 
*** 

78.1 ± 
1.3 
*** 

 

72.9 ± 
1.4 
*** 
### 

74.1 ± 
1.5 
*** 
### 

74.8 ± 
1.3 
*** 

69.3 ± 
1.4 
*** 
### 

% Premature N/A 
7.3 ± 
1.8 
### 

14.8 ± 
2.3 
### 

N/A 

19.1 ± 
1.2 
*** 

 

44.3 ± 
2.4 
*** 
### 

N/A 

19.7 ± 
1.9 
*** 
### 

42.5 ± 
3 

*** 
### 

% Omission 5.9 ± 1 
4.2 ± 
0.8 
^^^ 

3.9 ± 
0.5 
^^^ 

3.6 ± 
0.8 

2.6 ± 
0.6 
^^^ 

2.1 ± 
0.5 
^^^ 

4.7 ± 1 
4.3 ± 
0.9 
^^^ 

4.2 ± 
0.8 
^^^ 

Average 
Perseverative 
Responses 

0.09 ± 
0.01 

0.07 ± 
0 

0.08 ± 
0.01 

0.15 ± 
0.1 

0.16 ± 
0.09 

0.15 ± 
0.09 

0.1 ± 
0.02 

0.08 ± 
0.02 

0.08 ± 
0.01 

Correct 
Response 
Latency 

0.85 ± 
0.03 

0.81 ± 
0.02 
^^^ 

0.81 ± 
0.03 
^^^ 

1.17 ± 
0.05 
*** 

0.97 ± 
0.04 
*** 
^^^ 

1.02 ± 
0.06 
*** 
^^^ 

1.21 ± 
0.05 
*** 

1.08 ± 
0.04 
*** 
^^^ 

1.09 ± 
0.04 
*** 
^^^ 

Incorrect 
Response 
Latency 

4.02 ± 
0.3 

3.24 ± 
0.35 
^^^ 

3.05 ± 
0.35 
^^^ 

4.36 ± 
0.23 

3.57 ± 
0.2 
^^^ 

3.2 ± 
0.2 
^^^ 

4.36 ± 
0.2 

3.61 ± 
0.18 
^^^ 

3.28 ± 
0.17 
^^^ 

Reinforcement 
latency 

1.64 ± 
0.1 

1.84 ± 
0.19 

1.95 ± 
0.3 

1.56 ± 
0.1 

1.57 ± 
0.09 

1.57 ± 
0.08 

1.6 ± 
0.07 

1.68 ± 
0.09 

1.7 ± 
0.1 

Table 4.2. Dependent measures from 5-CSRTT at each light condition and cue delay. * Compared to 
control group of rats. # Compared to 3 s and 5 s. ^ Compared to 3 s. ###/^^^/*** p < 0.001 ##/^^/** p < 0.01 
#/^/* p < 0.05. 
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Figure 4.8. Expression of Per2 is quantified at ZT 4 (4 hours after lights turn on, rest phase) and ZT 16 (4 
hours after light turn off, active phase) for control rats showing a significant increase at ZT 16 compared 
to ZT 4. The LAN group shows a similar pattern of expression despite deficits in attention and impulsive 
behavior. The expression of Per2 in light phase tested rats seems to have an inverted expression 
because of the circadian disruption. ** p < 0.01, # p = 0.055.  
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Figure 4.9. Chat showed a higher expression at ZT 16, active phase for the rats, across all light 
conditions compared to ZT 4. Control (CON), Light at Night (LAN) and Light Phase (LP). 
* p < 0.05 
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Figure 4.10. Drd1 expression was higher at ZT 16, active phase for the rats, across all light conditions 
compared to ZT 4 (*). Control (CON), Light at Night (LAN) and Light Phase (LP) * p < 0.05 
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Chapter 5 Cholinergic and Dopaminergic Interactions Alter Attention and 
Response Inhibition in Long-Evans Rats Performing the 5-Choice Serial 

Response Time Task (5-CSRTT) 

 

5.1 Abstract  

Acetylcholine (ACh) neurotransmission is important for attention, while dopamine (DA) 

signaling modulates impulsive behavior. Prior studies have established an existing 

relationship between ACh and DA that mediates dopamine release in the prefrontal 

cortex of the brain in rats performing the 5-choice serial response time task (5-CSRTT). 

This study is aimed to identify cholinergic and dopaminergic interactions that govern 

attention and impulsive behavior using adult Long-Evans rats of both sexes tested on 

the 5-CSRTT. In Experiment 1, the effects of single cholinergic and dopaminergic drugs 

on 5-CSRTT performance were evaluated. Drugs like nicotinic ACh receptor (nAChR) 

agonist nicotine, amphetamine, and GBR12909 that increase the synaptic levels of ACh 

and DA respectively increased impulsive behavior. Amphetamine and GBR12909 

decreased attention while there was no effect of nicotine. The antagonists 

mecamylamine, a general nAChR antagonist, flupenthixol a DA 1/2 receptor antagonist, 

and SCH 23390 a DA 1 receptor antagonist, decreased impulsive behavior. These 

antagonists had a mixed effect on attention. Dihydro-β-erythroidine hydrobromide 

(DHBE), an α4β2* subunit-specific nAChR antagonist, did not have significant effects on 

attention or impulsivity at the doses administered. Eticlopride, a DA 2 receptor 

antagonist, decreased attention at the shortest cue delay but did not affect impulsivity. 

The acetylcholinesterase inhibitor donepezil decreased both attention and impulsive 

behavior. Subsequently, effects of nicotine and amphetamine were tested after 

pretreatment with SCH 23390 and eticlopride. SCH 23390 attenuated the effects of 
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nicotine and amphetamine on impulsivity, while eticlopride only attenuated the effect of 

nicotine on impulsivity. Minimal effects on attention were seen in the combination trials. 

This data establishes that response inhibition, is enhanced by interactions between 

cholinergic and dopaminergic neurotransmission. Additionally, our study confirms that 

dopamine D1 receptor plays an essential role in modulation of response inhibition.  

5.2 Introduction 

Sustained attention is the ability to focus on a stimulus over a period of time and 

respond accordingly to a signal (P.J and Strupp). Response inhibition is the ability to 

withhold a prepotent response, with deficits in response inhibition being characteristic of 

impulsive behavior (Pattij et al., 2007). Attention and impulsive behavior are modulated 

by cholinergic and dopaminergic signaling in the prefrontal cortex (PFC) in rodents 

(Bloem et al., 2014; Granon et al., 2000; Muir et al., 1994; Robbins, 2002b). The PFC 

receives dense cholinergic and dopaminergic innervation involved in maintaining 

optimal cognitive performance in the 5-choice serial reaction time task (5-CSRTT), a 

versatile task used to measure both attention and impulsive behavior (Robbins, 2002b). 

While acetylcholine (ACh) neurotransmission modulates attention, there exists an 

interaction between the ACh and dopaminergic systems that plays a role in maintaining 

appropriate response inhibition (Livingstone and Wonnacott, 2009a; Wonnacott, 1997). 

Reward pathways which are stimulated by dopamine are also indirectly stimulated by 

acetylcholine (ACh) and exogenous cholinergic agonists such as nicotine (van Gaalen 

et al., 2006b; Gardner, 2011; Livingstone and Wonnacott, 2009a). The nicotinic 

acetylcholine receptors (nAChRs) that interact with dopamine are ligand-gated, 

pentameric cation channels comprised of α and β subunits. Different nAChR subtypes 
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give rise to differential sensitivities to nicotine and ACh. Dopaminergic pathways that 

arise in the midbrain and project to the PFC express nicotinic receptors on the 

membranes of presynaptic dopamine axonal terminals so that changes in the levels of 

endogenous ACh alter dopamine release (Faure et al., 2014; Wonnacott, 1997). Effects 

of dopamine on 5-CSRTT performance are mediated through binding of dopamine 

receptors 1 and 2 (DR 1, DR 2) at the synaptic cleft to elicit post-synaptic signal 

transduction (van Gaalen et al., 2006c; Pattij et al., 2007), but the functional role of DR 

2 is less clear (Floresco and Magyar, 2006). Evidence indicates a fast phasic release of 

ACh is involved in optimizing sustained attention on the 5-CSRTT (Bloem et al., 2014). 

However, the roles of ACh and dopamine neurotransmission in optimizing response 

inhibition have received less scrutiny. 

     The focus of this study was to examine the role of cholinergic neurotransmission, 

and its interaction with dopaminergic neurotransmission, in optimal response inhibition 

on the 5-CSRTT. Many studies have evaluated the effects of single cholinergic or 

dopaminergic drugs on 5-CSRTT performance, typically at a single cue delay until the 

signal(Baarendse and Vanderschuren, 2012; van Gaalen et al., 2006c; Hahn and 

Stolerman, 2002; Hahn et al., 2002a). There are very few studies that have evaluated 

combinations of drugs at a single cue delay, and showed that dopaminergic antagonists 

reduce the impulsive behavior induced by drugs like nicotine and amphetamine (van 

Gaalen et al., 2006c; Hahn et al., 2002a). Given our emphasis on impulsivity, we chose 

a version of the 5-CSRTT that appears to result in a robust difference in impulsive 

responding between cue delays, while also allowing attention to be evaluated (Beaudin 

et al., 2017). In Experiment 1, we evaluated the effects of single cholinergic or 
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dopaminergic drugs at different cue delays. In addition to evaluating the effects of 

nicotine and nAChR antagonists, we also explored the use of the acetylcholinesterase 

inhibitor donepezil to understand its effects on attention and response inhibition. 

Donepezil is approved for treatment of Alzheimer’s disease (Kosasa et al., 2000). In 

rodent models, acute exposure to donepezil enhances learning and memory by 

increasing cholinergic signaling (Cutuli et al., 2009; Kosasa et al., 2000). However, the 

effects of donepezil on 5-CSRTT performance in normal rats have not been reported; 

Alzheimer’s models typically employ hypocholinergic rats as controls in assessing the 

effects of drugs. We hypothesized that we would see an increase in attention and 

impulsive behavior with nicotine, an increase in attention and impulsive behavior with 

cholinergic antagonists, and an improvement in attention and decrease in impulsive 

behavior with donepezil. With respect to the dopaminergic drugs, we expected to 

observe deficits in attention and an increase in impulsive behavior with the 

administration of amphetamine and GBR 12909, both of which increase synaptic 

dopamine levels. Additionally, we hypothesized that dopamine antagonists would 

improve attention and reduce impulsive behavior.  

     After trials involving single drugs, we performed Experiment 2 on separate rats. We 

planned to administer nicotine or amphetamine to animals pre-treated with dopamine 

antagonists SCH 23390 or eticlopride to evaluate how the combined effects of these 

drugs altered attention and impulsive behavior. We hypothesized that the dopamine 

antagonists would attenuate the effects of nicotine or amphetamine on attention and 

response inhibition in rats performing the 5-CSRTT.  
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     The results showed that, in our experimental model, nicotine did not affect attention, 

and amphetamine and GBR 12909 decreased attention, whereas all 3 of these drugs 

increased impulsive behavior. In general, nAChR and DR antagonists decreased 

impulsive behavior but had minimal effects on attention. Donepezil decreased both 

attention and impulsive behavior. The combination drug studies demonstrated that DR 

antagonists ameliorated the detrimental effects of nicotine and amphetamine on 

impulsive behavior, although there were differences based on the specific DRs targeted 

by the different antagonists. Effects on attention were minimal in the combination 

studies. Our findings establish the modulatory role of nicotine on response inhibition, 

potentially via the nAChRs that are present in the presynaptic terminal in the PFC and 

the striatal regions (Livingstone and Wonnacott, 2009a). 

5.3 Materials and Methods 

Subjects  

Two separate cohorts of 28 Long-Evans rats, 14 of each sex, approximately 70 days of 

age, were purchased from Envigo (Indianapolis, IN.) Rats were single-housed in 

polycarbonate shoebox cages with wood-chip bedding (Beta Chip, Northeastern 

Products Corp., Warrensburg, NY) in a temperature- and humidity-controlled room 

(targeted 22o C, 40-55% humidity). 2020X Teklad Rodent Diet (Envigo) was fed to the 

rats. Food restriction was initiated after a one-week acclimation period to reduce rats’ 

body weights over 2 weeks to target weights of 85% of their free-feed body weights. 

After that, target weights were incrementally increased by 5-10 g every 2 weeks, with a 

maximum of 250 ± 10 g for female rats and 350 ± 10 g for male rats, to allow for growth. 

Food restriction was intended to maintain motivation for performing operant-based 
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behavioral tasks. Tap water was provided ad libitum. TestDiet sucrose pellets (AIN-76A 

5TUL, 45 mg pellets, St. Louis, MO) were used for food-based reinforcement during 

behavior testing.  

     Rats were maintained on a 12:12 h light:dark cycle and were tested 3 to 5 h after the 

onset of the dark phase. During the daily testing sessions, rats were exposed to 

overhead lights during transport and in the testing room. In the testing chambers, rats 

were exposed to 2.8-watt house light and a stimulus cue light as well as low-intensity, 

yellow LEDs from 5 nose-poke holes. 

 

Apparatus and 5-Choice Serial Reaction Time Task (5-CSRTT) 

Behavioral testing began 3 weeks after the rats arrived when rats were approximately 

90 days of age. Training and testing sessions, 1 per day, were performed 6 days each 

week in 12 5-choice operant behavior-conditioning chambers housed in sound-insulated 

and ventilated cubicles (Med Associates Inc., St. Albans, VT). Each chamber was 

configured with 5 evenly-spaced nose-poke cue holes (2.5 x 2.5 x 2.5 cm and 2 cm 

above the floor) on one wall. Each aperture had a yellow LED light centered in the back 

and an infrared photocell to detect head entries. The opposite wall had a pellet trough 

with a head-entry detector in the center panel, a stimulus cue light directly above it, and 

then a house light mounted 6 cm above the cue light.  Experimental contingencies were 

programmed using MedState Notation programming language, and data acquisition was 

performed using MED-PC IV software (version 4.38, Med Associates). Behavioral-

testing programs were modified from those used by Beaudin et al. (Beaudin et al., 

2017). 
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     During the 7 initial training phases of the 5-CSRTT, rats learned to associate nose 

pokes in the pellet trough and the 5 nose-poke holes with food reinforcement. The 

house light remained on during all of these phases. Criterion to advance from one 

phase to the next was 99 or 100 successful nose pokes. Each session during the 7 

initial phases lasted until 100 pellets were earned or 60 min elapsed. Rats took an 

average of 7.4 days, ranging from 7 to 12 days, to complete initial training. The next 

phase of training was Visual Discrimination 1, during which cue lights were introduced. 

One cue light was illuminated for 15 s during each trial. Nose pokes in the illuminated 

cue hole resulted in reinforcer delivery. Poking in any other cue hole, or not poking 

during the 15 s period, resulted in a time-out (see next section). See Supplemental 

Figure 1 and Supplemental Table 1 for a schematic and accompanying information for 

this and subsequent phases. Rats were tested on this phase until criteria of making 

75% or more correct responses for 2 out of three consecutive days were met within 15 

sessions. All rats in this study met the criteria, taking an average of 3.8 days, ranging 

from 3 to 7 days to progress to next phase. In the next phase, Visual Discrimination 2, 

the duration of cue light illumination was shortened to 1 s, requiring rats to be more 

attentive to optimize performance. Rats still had a 15 s limited-hold period to nose poke. 

Rats were tested on this phase for 5 days. 

 

Sustained Attention Task 

Following the training sessions, rats were tested on the Sustained Attention phase for 

21 days. During daily sessions in each phase, the yellow LED cue lights in the 5 nose-

pokes holes would randomly illuminate in one hole per trial, in a counterbalanced 
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manner, so that each hole was illuminated during an equal number of trials per session. 

The house light was illuminated except during time-out periods. Each trial began with a 

nose-poke in the pellet trough. If it was the first trial, or if the previous trial resulted in 

sucrose pellet delivery, the rat was given 3 s to consume the pellet (reinforcer duration). 

After the 3 s reinforcer duration, the rat was given a 3 s turn-around time to allow the rat 

time to orient toward the wall with the 5 nose-poke holes. If the previous trial had 

resulted in a time-out, there was no reinforcer duration after a nose poke in the trough. 

In this phase of the test, there were variable cue delays of 3, 5 or 7 s until a cue light 

would illuminate in a nose-poke hole. These delays consisted of the 3 s turn-around 

time plus an additional delay of 0, 2 or 4 s. The cue light in the nose-poke holes would 

illuminate for a maximum of 1 s and, concurrently, a 15 s limited-hold period would 

commence during which a nose poke could be registered.  

     One of 4 trial outcomes could result. A correct trial was when the rat poked in the 

hole in which the cue light was illuminated during the 15 s limited-hold period. An 

incorrect trial was when the rat poked in one of the other 4 holes. A premature trial 

was when the rat poked during the delay before the cue light illuminated. Premature 

nose-pokes were not recorded during the 3 s turn-around time, so premature trials only 

occurred when the cue delay was 5 or 7 s. An omission occurred when the rat did not 

poke during the limited-hold period. Correct trials resulted in a food pellet being 

dispensed, the cue light. If the rat continued to make nose poke in any of the 5 cue 

holes after making a correct response, those nose pokes were recorded as a 

perseverative response but had no consequence. Perseverative responses were 

recorded only when there was a correct trial. Incorrect, premature, and omission 
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responses triggered an immediate 5 s time-out, during which cue and house lights 

extinguished. Poking in any of the 5 nose-poke holes during a time-out reset the time-

out timer. When 5 s elapsed without any nose pokes, the cue light above the pellet 

trough illuminated until the rat poked in the trough, thus beginning the next trial. Each 

daily session lasted until 150 trials or 60 min elapsed. 

 

Drug Challenges 

After rats completed 21 sessions of Sustained Attention, they continued testing on that 

phase until all rats in the experiment completed 21 sessions. Subsequently, rats in 

Experiment 1 tested for an average of 28 extra days (range 24 to 29), and those in 

Experiment 2 tested for an average of 4 extra days (range 1 to 5), prior to drug 

challenges commencing. Rats in Experiment 1 tested longer due to a delay in 

implementing drug trials. Between the Sustained Attention phase and drug testing, rats 

were tested with only one cue delay of 5 s to maintain what was termed a baseline level 

of performance. Drug testing occurred daily Monday through Friday. Mondays and 

Wednesdays were baseline performance days with only the 5 s cue delay, Tuesdays 

and Fridays were drug administration days, and all rats received a saline injection on 

Thursdays. During drug and saline days, all 3 cue delays (3, 5 and 7 s) were present 

during testing sessions.  

     Rats in Experiment 1 were tested with a series of single drugs (see Table 5.1), while 

those in Experiment 2 received single and then paired drug combinations (see Table 

5.2). Drugs were administered in the order listed in each table. For each drug, all doses 

were administered using a Latin square design, with a minimum of 3 days between 
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each dose, before moving to the next drug. All of the drugs were dissolved in sterile 

0.9% normal saline (Baxter Healthcare Corp., Deerfield, IL) except GBR 12909, which 

did not dissolve well in saline and so was dissolved in 25% sterile DMSO (Tocris 

Bioscience, Minneapolis, MN). All drugs were administered intraperitoneally. 

Concentrations of each dosing solution were adjusted so that 1 μL/g body weight was 

always administered. The drugs used and times of administration before beginning 

testing sessions were (-)-nicotine ditartrate (NIC) 20 min (Tocris), donepezil 

hydrochloride 30 min (EMD Millipore Corp., Billerica, MA), mecamylamine hydrochloride 

(MEC) 30 min (USP, Rockville, MD), dihydro-β-erythroidine hydrobromide (DHBE) 20 

min (Tocris), d-amphetamine hemisulfate salt (AMPH) 10 min (Sigma-Aldrich, St. Louis, 

MO), GBR 12909 dihydrochloride 20 min (Sigma-Aldrich), cis-(Z)-flupenthixol 

dihydrochloride (FLU) 30 min (Sigma-Aldrich), SCH 23390 hydrochloride 30 min 

(Tocris), S-(-)-eticlopride hydrochloride 20 min (Sigma-Aldrich), and saline vehicle 20 

min, based on available pharmacokinetic information.  

 

Experiment 1: Single Drugs  

Rats (14 males, 14 females) were administered single drugs in the order listed in Table 

1. During the first week, all rats were administered 0.5 mg/kg NIC for 3 consecutive 

days to acclimate rats to the undesirable physiologic effects of NIC that might impair 

performance (Bizarro and Stolerman, 2003). One female died during the DHBE 

administration phase and thus was only included in analyses of drugs through that 

point. Testing lasted 18 weeks.  
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Experiment 2: Drug Combinations 

A new set of rats (14 males, 14 females) were administered single drugs followed by 

combinations in the order listed in Table 5.2. Results from Experiment 1 were used to 

select or modify doses for Experiment 2. Like Experiment 1, all rats were administered 

0.5 mg/kg NIC for 3 days during the first week. One female died during the NIC and 

SCH 23390 administration phase and thus was only included in analyses of drugs 

through that point. Testing lasted 12 weeks.  

 

Data Analysis 

R program for statistical computing and graphics (R Core Team, 2016) was used to 

calculate percent correct (number of correct responses/total trials *100), percent 

incorrect (number of incorrect responses/total trials *100), percent accuracy (percent 

correct/(percent correct + percent incorrect)), percent premature (number of premature 

responses/total trials *100), percent omissions (number of omitted responses/total 

trials *100), and average perseverative responses (sum of perseverative responses in 

all 5 nose-poke holes/ number of correct responses). Latency to correct responses 

(sum of latencies to all correct responses/number of correct responses), latency to 

incorrect responses (sum of latencies to all incorrect responses/number of correct 

responses), and latency to collect reinforcers (sum of latencies to collect 

reinforcers/number of correct responses) were also calculated. Percent accuracy 

indicates the ability of the subject to sustain attention; percent premature responses 

indicate a deficit in response inhibition; percent omissions is a measure of 
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inattentiveness, a lack of motivation, or both (Robbins, 2002b). Data are reported as 

mean ± SEM. 

     For some drugs, omissions increased as dose increased. If an individual rat had > 

50% omissions for a drug dose, the rat’s data for that dose were excluded from 

analysis. If, for any drug, a dose caused > 50% omissions in > 50% of rats, the entire 

dose was excluded from analysis. We omitted entire doses for the following drugs: 4 

mg/kg donepezil, and 0.04 and 0.06 mg/kg SCH 23390 in Experiment 1; 0.06 mg/kg 

eticlopride in the AMPH-eticlopride trials of Experiment 2.  

     All statistical analyses were conducted using SPSS for Windows (version 24, SPSS 

Inc., Chicago, IL). Mixed model ANOVAs were used to analyze all data, with statistical 

significance set at p ≤ 0.05. The data from the 21 days of Sustained Attention phase 

were evaluated to characterize learning of the 5-CSRTT before drug challenges. 

Experimental factors of block (7 3-day blocks) and cue delay (3 cue delays, except for 2 

for percent premature) were within-subjects factors, and sex was a between-subjects 

factor. Then data from the last 3 days of the Sustained Attention phase (block 7), when 

asymptotic performance had been reached, was evaluated with cue delay as a within-

subjects factor and sex as a between-subjects factor. For data from drug trials, dose (2-

4 doses in Experiment 1 and 2-6 doses in Experiment 2, including controls) and cue 

delay were within-subjects factors and sex was a between-subjects factor. Doses of 

each drug were compared to control for Experiment 1. Two sets of comparisons were 

made for Experiment 2: 1) individual or combination doses were compared with control, 

and 2) combination doses were compared with NIC or AMPH alone to gauge the 



97 
 

effectiveness in attenuating the effects caused by NIC or AMPH. Post-hoc testing 

(Sidak) was performed when appropriate using SPSS. 

5.4 Results 

For all data on initial learning and drug challenges, significant sex-related differences 

were infrequent and thus are only included, when present, for the 2 primary measures 

of interest, accuracy and premature responding. Data on other measures including 

perseverative responding, which was rarely affected, omissions, and latencies during 

drug trials are presented in tabular form in the Supplemental Material to assist with 

interpretation of drug effects. Due to substantial significant differences in premature 

responding and latency to incorrect responses between cue delays, data for the drug 

trials were separately analyzed for each cue delay (3, 5, 7 s for accuracy; 5, 7 s for 

premature responses). Full F test results are reported for accuracy and premature 

responding, but not for other measures in the interest of space. 

 

Cholinergic Drug Effects 

Data on accuracy and premature responding for NIC, MEC, DHBE, and donepezil are 

presented in Figure 5.1.1 and Table 5.1.2. Other dependent measures are in Table 5.3.  

     Nicotine did not have statistically significant effects on accuracy, but NIC increased 

premature responding at cue delays of 5 s (F3, 84 = 3.9, p = 0.012) and 7 s (F3, 84 = 7.2, p < 

0.001). Post-hoc analysis determined that the 0.1 mg/kg dose was ineffective, the 0.3 

mg/kg dose was effective only at the longer 7 s delay (p = 0.001), and 0.5 mg/kg increased 

premature responding at both 5 s (p = 0.01) and 7 s (p = 0.003) delays. Other aspects of 

performance were not affected by NIC. 
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     The non-selective nAChR antagonist MEC significantly decreased accuracy at both 3 s 

(F3, 84 = 23.2, p < 0.001) and 5 s (F3, 84 = 8.6, p < 0.001) cue delays, but only at the highest 

dose of 3 mg/kg (p < 0.001 for both delays). Similarly, only the 3 mg/kg dose of MEC 

significantly decreased premature responding at both cue delays of 5 s (F3, 84 = 7.6, p < 

0.001) and 7 s (F3, 84 = 18.3, p < 0.001) when compared to saline control (p = 0.011 for 5 s, 

p < 0.001 for 7 s). However, the 3 mg/kg dose also significantly increased omissions 

(although not enough to meet criteria for exclusion of the dose), and significantly increased 

latencies for both correct and incorrect responses. 

     The selective nAChR antagonist DHBE did not alter accuracy or premature responding 

at either dose. Other aspects of performance were not altered by DHBE. 

     Donepezil, which inhibits acetylcholinesterase to increases synaptic ACh 

concentrations, reduced accuracy at the higher dose of 2 mg/kg at all three cue delays: 3 

s (F2, 55 = 14.4, p < 0.001, post-hoc p < 0.001), 5 s (F2, 54 = 9.2, p < 0.001, post-hoc p < 

0.001) and 7 s (F2, 55 = 4.7, p = 0.013, post-hoc p = 0.013). Donepezil also had a 

significant effect on premature responding at cue delays 5 s (F2, 54 = 3.2, p = 0.047) and 

7 s (F2, 53 = 9.6, p < 0.001), but on post-hoc analysis only the higher dose of 2 mg/kg 

remained significant at 7 s (p = 0.026). For donepezil trials, the main effect of sex was 

significant at 7 s cue delay (F1, 28 = 3.5, p = 0.02), but the sex by dose interaction was 

not. At 7 s, females made less percent premature responses than males (25.1 ± 3.7% 

vs. 37.7 ± 3.5%). Like MEC, 2 mg/kg donepezil significantly increased omissions, 

increased perseverative responding, and increased latencies for both correct and incorrect 

responses. The 4 mg/kg donepezil dose was removed from analysis due to the 

excessive number of omissions it caused.  
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Dopaminergic Drug Effects 

Data on accuracy and premature responding for AMPH, GBR 12909, FLU, SCH 23390, 

and eticlopride are presented in Figures 5.2 and 5.3 and Supplemental Table 5.4. Other 

dependent measures are in Supplemental Table 5.5. 

     Amphetamine, which increases synaptic dopamine concentrations, significantly 

decreased accuracy at all 3 cue delays: 3 s (F3, 80 = 3.8, p = 0.014), 5 s (F3, 80 = 7.9, p < 

0.001), and 7 s (F3, 79 = 12.9, p < 0.001). Post-hoc analyses were not significantly different 

between doses at 3 s, but 0.8 mg/kg at 5 s, and 0.4 and 0.8 mg/kg at 7 s significantly 

decreased accuracy compared to saline (all p ≤ 0.001). The sex by dose interaction was 

significant at 3 s (F3, 80 = 3.5, p = 0.02), but there were not differences between sexes at 

each dose upon post-hoc evaluation. AMPH also significantly increased premature 

responding compared to saline at both cue delays of 5 s (F3, 79 = 18.0, p < 0.001) and 7 s 

(F3, 79 = 12.7, p < 0.001) at 0.4 mg/kg (p = 0.009 for 5 s, p < 0.001 for 7 s) and 0.8 mg/kg (p 

< 0.001 at both cue delays). AMPH did not significantly alter other aspects of performance 

at the significant doses and cue delays. 

     The effects of the dopamine transporter inhibitor GBR 12909 were essentially the same 

as AMPH. The high dose, 10 mg/kg, decreased accuracy at both 5 s (F3, 71 = 11.9, p < 

0.001) and 7 s (F3, 71. = 8.3, p < 0.001) (p < 0.001 for both on post-hoc). GBR 12909 also 

increased premature responding at both cue delay 5 s (F3, 71 = 13.4, p < 0.001) and 7 s (F3, 

71 = 8.4, p < 0.001). Post-hoc analysis revealed that 5 mg/kg (p = 0.039 at 5 s, p = 0.021 at 

7 s) and 10 mg/kg (p < 0.001 at both 5 and 7 s) were effective. GBR 12909 did not 

significantly alter other aspects of performance. 
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     The effects of the non-selective DR 1/DR 2 antagonist FLU on accuracy at shorter 

delays were like those of GBR 12909 and AMPH at longer delays but differed on premature 

responding. FLU decreased accuracy at 3 s (F3, 79 = 17.5, p < 0.001) and 5 s (F3, 79 = 5.6, p 

= 0.002) cue delays, but not at 7 s. The 0.15 mg/kg dose decreased accuracy at 3 s (p = 

0.007), while 0.3 mg/kg decreased accuracy at both 3 s and 5 s (p ≤ 0.001 for both). The 

main effect of sex was significant at the 7 s cue delay (F1, 27 = 4.5, p = 0.044). At 7 s, 

females had greater accuracy than males (78.7 ± 1.3% vs. 74.7 ± 1.3%). Both 0.15 and 0.3 

mg/kg decreased premature responding at both 5 s and 7 s (p < 0.001 for all). Both 0.15 

(F3, 77 = 13.0, p < 0.001) and 0.3 mg/kg (F3, 78 = 23.3, p < 0.001) FLU increased correct and 

incorrect response latencies, and 0.3 mg/kg also increased omissions and premature 

responding.  

     The DR 1-selective antagonist SCH 23390 had a mixed effect on accuracy, depending 

on cue delay, and decreased premature responding, similar to FLU. At 3 s cue delay, 0.02 

mg/kg significantly decreased accuracy (F1, 27 = 5.4, p = 0.028). There was no dose-related 

effect on accuracy at 5 s. At 7 s, 0.02 mg/kg significantly increased accuracy (F1, 25 = 7.0, p 

= 0.014). SCH 23390 at 0.02 mg/kg significantly increased premature responding at both 5 

s (F1, 24 = 12.5, p = 0.002) and 7 s (F1, 24 = 11.2, p = 0.003). SCH 23390 increased 

omissions above those seen with saline and increased both correct response and incorrect 

response latencies. The 0.04 and 0.06 mg/kg doses were excluded from analysis due to 

the high number of omissions both doses caused.  

     The DR 2-selective antagonist eticlopride also decreased accuracy, but only at the 3 s 

cue delay (F3, 76 = 5.0, p = 0.003). The 0.04 mg/kg (p = 0.025) and 0.06 mg/kg (p = 0.03) 

doses were both significant on post-hoc analysis. The main effect of sex was significant at 
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both 3 s (F1, 27 = 5.0, p = 0.034) and 5 s (F1, 26 = 6.8, p = 0.015). At both delays, females 

had higher accuracy than males (3 s: 72.9 ± 2.3% vs. 65.6 ± 2.3%; 5 s: 80.8 ± 1.7% vs. 

47.6 ± 1.7%). Eticlopride did not significantly affect premature responding. The 0.06 mg/kg 

dose increased perseverative responding at the 3 s delay and increased correct response 

latency across all cue delays.  

 
Experiment 2 - Baseline 5-CSRTT Performance  

Like the rats in Experiment 1 during the Sustained Attention phase, accuracy increased, 

and premature responding decreased over the 7 blocks of training. Asymptotic 

performance, when performance in a block was not statistically different from that in 

subsequent blocks, was attained by block 4 for attention and block 6 for premature 

responding (not shown).  

     During block 7, there was a significant difference in accuracy between cue delays 

(F2, 56 = 6.4, p = 0.003). Accuracy at 3 s and 5 s were not significantly different, but 

accuracy was significantly higher at 3 s than at 7 s (p = 0.003) and marginally higher at 

5 s than at 7 s (p = 0.06). See Table 3 for dependent measures for Experiment 2, block 

7. There was also a significant difference between cue delays for premature responding 

(F1, 28 = 330.2, p < 0.001), with there being over twice as many premature responses at 

7 s than 5 s, as was seen in Experiment 1. The main effect of sex was not significant for 

either measure. The latency to incorrect responses was significantly different between 

cue delays, as seen in Experiment 1, with the average latency being significantly longer 

at 3 s versus 5 s and 7 s (both p ≤ 0.001). Other measures were not significantly 

different between cue delays.  
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Nicotine and Dopamine Antagonists Combined  

Data on accuracy and premature responding for both NIC-dopamine antagonist trials, 

and AMPH-dopamine antagonist trials, are presented in Figure 5.4 and Table 5.6. Other 

dependent measures are listed in Supplemental Tables 5.1.7- 5.1.10. 

     For NIC combined with SCH 23390, the main factor of drug dose did not have a 

significant effect on accuracy at 3 or 5 s cue delays. There was a significant effect at 7 s 

(F5, 126 = 3.1, p = 0.011) but significant differences between the drugs were not found on 

post-hoc analysis (not shown).  

     Premature responding was significantly affected by dose at both 5 s (F5, 126 = 23.5, p 

< 0.001) and 7 s (F5, 126 = 33.5, p < 0.001). At both cue delays, NIC increased 

premature responding above levels seen with saline, while only at 7 s did both SCH 

23390 doses and the NIC + 0.02 mg/kg SCH 23390 dose reduce premature responding 

significantly below levels seen with saline alone (all p < 0.001). At both cue delays, both 

SCH 23390 doses significantly attenuated the effects of NIC on premature responding 

when given in combination with NIC (all p < 0.001). The main effect of sex was 

significant at 7 s for the NIC-SCH 23390 trials (F1, 26 = 4.9, p = 0.036). Females had less 

percent premature responses than males (24.5 ± 2.5% vs. 32.4 ± 2.5%). Regarding 

other measures, 0.02 mg/kg SCH 23390 increased omissions alone and in combination 

with NIC and increased incorrect response latencies at the shorter cue delays, 

compared to saline.  

     In the eticlopride trials, there was a significant main effect of drug dose on accuracy 

at 3 s cue delay (F5, 123 = 9.0, p < 0.001), but not at 5 s or 7 s. Post-hoc analysis 

revealed that at 3 s, the 0.06 mg/kg dose of eticlopride, alone and in combination with 
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NIC, significantly decreased accuracy as compared to saline (p = 0.002 for eticlopride, p 

< 0.001 for combination) (not shown). The NIC + 0.06 mg/kg eticlopride combination 

also reduced accuracy (p < 0.001) as compared to NIC alone, which did not affect 

accuracy (not shown).  

     For premature responding, the main effect of eticlopride dose was significant at both 

5 s (F5, 123 = 12.6, p < 0.001) and 7 s (F5, 123 = 16.3, p < 0.001) cue delays. Post-hoc 

analysis revealed that NIC increased premature responding at both delays (both p < 

0.001), while only 0.06 mg/kg eticlopride at the 7 s cue delay (p = 0.003) significantly 

decreased premature responding compared to controls. When combined with NIC, 

eticlopride significantly attenuated the effects of NIC: 0.03 mg/kg eticlopride at 5 s (p = 

0.018) and 0.06 mg/kg eticlopride at both cue delays (p ≤ 0.001 for both). The higher 

dose of eticlopride also increased omissions across cue delays and inconsistently 

increased correct and incorrect response latencies at shorter cue delays, as compared 

to saline. 

 

Amphetamine and Dopamine Antagonists Combined 

The effects of AMPH and SCH 23390 on accuracy in the combination trials were limited. 

The main effect of dose was significant at 3 s (F5, 124 = 5.1, p < 0.001) and 7 s (F5, 123 = 

4.5, p = 0.001) cue delays, but not at 5 s. The post-hoc analysis determined that none of 

the drugs alone or in combination significantly affected accuracy compared to saline, 

except for a decrease in accuracy caused by 0.02 mg/kg SCH 23390, which was only at 

the 3 s cue delay (p = 0.008) (not shown). At 7 s, accuracy was greater when 
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administered the combination of AMPH + 0.02 mg/kg SCH 23390 versus AMPH alone 

(p = 0.046) (not shown).  

     For premature responding, the main effect of dose was significant at both 5 s (F5, 122 

= 20.4, p < 0.001) and 7 s (F5, 123 = 25.9, p < 0.001). At both cue delays, AMPH 

significantly increased premature responding (p < 0.001 for both), and the AMPH + 0.01 

mg/kg SCH 23390 combination was significantly greater than control (p = 0.001 at 5 s, p 

= 0.002 at 7 s), while both doses of SCH 23390 significantly attenuated the effect of 

AMPH on premature responding, 0.02 mg/kg to a greater extent (p < 0.001 at 5 s, p = 

0.002 at 7 s) than 0.01 mg/kg SCH 23390 (p = 0.005 at 5 s, p = 0.027 at 7 s). For other 

dependent measures, 0.02 mg/kg SCH 23390 increased omissions and correct 

response latencies, while 0.01 mg/kg and AMPH had minimal effects. 

     Eticlopride also had limited effects on accuracy. Only at 5 s was the main effect of 

dose significant (F3, 76 = 5.6, p = 0.002), with 0.03 mg/kg eticlopride decreasing 

accuracy (p = 0.001), while AMPH had no significant effect (not shown). The 0.06 mg/kg 

eticlopride dose was excluded from analysis due to high percent omissions. The 0.03 

mg/kg eticlopride dose also increased omissions, but not to the extent that met the 

criteria for exclusion. 

     In the eticlopride combination trials, the main effect of dose was significant for 

premature responding at both 5 s (F3, 73 = 17.0, p < 0.001) and 7 s (F3, 75 = 14.9, p < 

0.001). AMPH increased premature responding at both cue delays (p < 0.001 for both), 

while AMPH + 0.03 mg/kg eticlopride also significantly differed from control (p = 0.002 

for 5 s, p = 0.007 for 7 s). Eticlopride marginally attenuated the effects of AMPH at 5 s 

(p = 0.068).
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5.5 Discussion 

The present study examined the effects of cholinergic and dopaminergic drugs on 

accuracy and premature responding in the 5-CSRTT, where the behavioral measures 

correspond to attention and impulsive behavior respectively (Robbins, 2002a). Our 

interest in this project arose when we observed in a separate, unpublished study that a 

cholinergic manipulation significantly altered premature responding. Strong roles have 

been established for dopaminergic signaling in the type of motor or action-related 

impulsivity assessed by the 5-CSRTT (Winstanley, 2011), but less emphasis has been 

placed on the role of cholinergic signaling. The PFC, nucleus accumbens, and striatum 

are key regions affecting premature responding and accuracy on the 5-CSRTT. The 

nicotinic ACh system has critical roles in modulating cognitive functioning in these 

regions(Havekes et al., 2011; Wallace and Bertrand, 2013) , and nAChRs containing β2 

subunits are important for attentional performance(Poorthuis and Mansvelder, 2013), 

with less known about nAChRs important for response inhibition. 

     Regarding attention in Experiment 1, NIC did not have an effect at any of the doses 

(0.1 to 0.5 mg/kg) or cue delays, whereas AMPH and GBR 12909, both of which 

increase the concentration of dopamine in the synaptic cleft, decreased accuracy at the 

longer delays (5 and 7 s). Donepezil, which increases the synaptic ACh concentration, 

reduced accuracy across all cue delays. In contrast, the dopamine antagonists and 

MEC, which is a general nAChR antagonist, also decreased accuracy, but at the shorter 

cue delays, particularly 3 s. The DR 1 antagonist SCH 23390 had a biphasic effect, 

decreasing accuracy at 3 s delay, but increasing it at the 7 s cue delay. 
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     For impulsivity in Experiment 1, NIC, AMPH, and GBR 12909 all increased 

premature responding at both cue delays (5 and 7 s). The DR 1/DR 2 antagonist FLU, 

the DR 1 antagonist SCH 23390, and MEC, but not the DR 2 antagonist eticlopride, all 

decreased premature responding at both cue delays. Donepezil decreased premature 

responding at the longer cue delay. In Experiment 2, the results of the single drug trials 

recapitulated the findings in Experiment 1, but not as strongly, and the effects of single 

doses and combinations on attention were quite limited. However, the effects on 

premature responding were more robust. Both DR 1 and DR 2 antagonists attenuated 

the effect of NIC, while only the DR 1 antagonist attenuated the effect of AMPH. 

 

Dopamine-Related Findings 

Our findings confirm physiologic roles for dopamine in both attention and response 

inhibition. In considering the role of dopamine, previous studies have demonstrated that 

systemic administration of drugs such as AMPH and GBR 12909, which enhance 

dopaminergic signaling, often have no effect on accuracy as assessed by the 5-CSRTT 

(Cole and Robbins, 1987; van Gaalen et al., 2006c; Harrison et al., 1997; Koskinen and 

Sirviö, 2001; Paterson et al., 2011), but when an effect is seen, it is to reduce accuracy 

(Baarendse and Vanderschuren, 2012). In the few studies where dopamine antagonists 

affect accuracy, the response is usually limited to DR 1 agonists improving accuracy 

(van Gaalen et al., 2006c; Hahn et al., 2002a), as opposed to our results. The current 

findings suggest that there are optimal levels of synaptic dopamine for peak attentional 

performance. The optimal levels of dopamine vary by cue delay, with decreased 

accuracy resulting from too little or too much dopaminergic signaling. The influence of 
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catecholamine signaling resulting in an inverted U-shaped effect on PFC functioning 

has been well characterized by the Arnsten group (Arnsten and Li, 2005). At the 3 s 

delay, FLU, SCH 23390, and eticlopride, which impede signaling via antagonism of DR 

1, DR 2, or both, all impaired attention, suggesting that the level of dopaminergic 

signaling was reduced below the optimal point. At the longer cue delays, both AMPH 

and GBR 12909 also impaired attention, suggesting that these drugs increased the level 

of dopaminergic signaling above the point optimal for attentional performance. SCH 

23390 increased accuracy at 7 s, suggesting that the baseline level of dopaminergic 

signaling at 7 s was supra-optimal and was reduced to a more optimal level by DR 1 

antagonism. In line with this, at 7 s delay, the relative attentional load was highest, so 

phasic catecholamine release in the PFC was heightened (Arnsten and Pliszka, 2011). 

A model developed by Dreyer et al. shows that phasic bursts of dopamine release are 

particularly associated with higher DR 1 occupancy (Dreyer et al., 2010). This suggests 

why the DR 1 antagonist, SCH 23390, was more efficacious than the DR 2 antagonist at 

improving attention at the longest cue delay. 

     Consistent with prior studies, systemic AMPH and GBR 12909 both increased 

impulsivity (Baarendse and Vanderschuren, 2012; Cole and Robbins, 1987; van Gaalen 

et al., 2006c; Harrison et al., 1997; Paterson et al., 2011), which aligns with what is 

known about the role of dopaminergic signaling in facilitating impulsive action in rodent 

models (Jupp and Dalley, 2014). Also consistent with most of prior studies was the 

decrease in premature responding caused by DR 1 antagonists in both experiments 

(Fleckenstein et al., 2007; van Gaalen et al., 2006c; Hahn et al., 2002a; Harrison et al., 

1997) and the ability of systemic SCH 23390 to attenuate the effects of AMPH (van 
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Gaalen et al., 2006c). Prior studies report an equivocal effect of DR 2 antagonists on 

premature responding (van Gaalen et al., 2006c; Hahn et al., 2002a; Harrison et al., 

1997; Koskinen and Sirviö, 2001), while our findings of a minimal effect of eticlopride 

alone, or on the effects of AMPH, match the findings of a comparable study (van Gaalen 

et al., 2006c). The effects of AMPH and GBR 12909 are unlikely to solely be due to 

indirect DR agonism alone because systemic administration of either a DR 1 agonist or 

a DR 2 agonist decreased impulsivity, rather than increased it, in a study by Winstanley 

et al. (Winstanley et al., 2010). Rather, systemic effects of drugs such as AMPH, which 

work through broader mechanisms than specifically targeting receptors (Fleckenstein et 

al., 2007), are due to a combination of site-specific effects (e.g., PFC, striatum), 

receptor-mediated effects, and effects on additional neurotransmitter systems including 

noradrenergic and serotonergic systems (Jupp and Dalley, 2014; Winstanley, 2011). 

     Our findings for the AMPH-DR antagonist trials in Experiment 2 argue for a stronger 

role of DR 1 signaling in mediating the effects of AMPH in our model, given that that 

both SCH 23390 doses effectively attenuated the effect of AMPH to increase premature 

responding. However, visual examination of Figure 4 suggests that 0.03 mg/kg 

eticlopride also attenuated the effect of AMPH, but not to the extent that there was a 

significant difference from AMPH alone. It is possible that a significant effect would have 

been seen with 0.06 mg/kg eticlopride, but that dose was omitted from analysis due to a 

high omission rate. These findings parallel those of van Gaalen et al (van Gaalen et al., 

2006c). In that study, which used DR antagonist doses identical to ours and 0.5 mg/kg 

AMPH (as opposed to 0.6 mg/kg), 0.02 mg/kg SCH 23390 and 0.06 mg/kg eticlopride 

both significantly attenuated the effect of AMPH, but eticlopride did so to a lesser extent 
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than SCH 23390. This further serves to confirm that although differential responses to 

DR 1 and DR 2 agonists and antagonists can occur in targeted brain regions (e.g., SCH 

23390 but not eticlopride decreased premature responding when infused into the 

nucleus accumbens (Pattij et al., 2007), the sum of effects of systemically-administered 

dopaminergic agents on impulsivity in the 5-CSRTT is modulated by multiple DR 

subtypes. 

 

Nicotinic Acetylcholine-Related Findings 

We determined that NIC did not affect attention in our model. Some prior studies have 

demonstrated that NIC improves accuracy (Hahn and Stolerman, 2002; Hahn et al., 

2011; Stolerman et al., 2000), while others found no effect (Blondel et al., 1999, 2000; 

Day et al., 2007; van Gaalen et al., 2006c; Ruotsalainen et al., 2000). There are 

methodological aspects of the version of the 5-CSRTT we used that may have 

contributed to a lack of effect on accuracy by NIC. Blondel et al. showed that a single 

NIC dose increased accuracy, but that the effect on accuracy was lost with as little as 2 

additional NIC doses within one week’s time (Blondel et al., 1999). The loss of effect on 

accuracy persisted with subsequent NIC injections over multiple weeks (Blondel et al., 

1999; Stolerman et al., 2009). We chose to begin both experiments by injecting NIC for 

3 consecutive days to avoid generalized disruptions in performance reported when NIC 

is first administered to naïve animals (Stolerman et al., 2009), which may have 

contributed to the lack of effect of NIC on accuracy in our study. Another potential factor 

is that we used variable cue delays within the same session on training and drug 

injection days. In a study by Hahn et al., NIC administered with fixed cue delays 
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resulted in a dose-dependent increase in accuracy, but NIC with variable due delays 

had minimal effect on accuracy (Hahn and Stolerman, 2002). 

     An additional contributing factor is that the strain we used, Long-Evans rats, may be 

relatively insensitive to the effects of NIC on attention as assessed by the 5-CSRTT. 

While acquisition and baseline performance of the 5-CSRTT can vary between strains 

(Auclair et al., 2009; Didriksen Michael and Christensen Anne Vibeke, 2009), strain-

related differences in response to NIC have also been reported (Hahn et al., 2016; 

Mirza and Bright, 2001). A recent study by Hahn et al. compared the responses of 

Long-Evans, Sprague-Dawley, and Wistar rats to NIC on 5-CSRTT performance. At 

doses up to 0.2 mg/kg NIC, and under conditions of variable cue delay, NIC had a 

minimal effect on correct responses in the Long-Evans and Sprague-Dawley strains, 

while NIC improved attention in the Wistar strain, like our findings in Long-Evans rats.  

     Despite absence of an effect of NIC, the general nAChR antagonist MEC reduced 

accuracy at the shorter cue delays of 3 and 5 s, like the findings with the dopamine 

antagonists. While the majority of prior 5-CSRTT studies report no effect of MEC on 

accuracy (Blondel et al., 2000; Hahn et al., 2016; Ruotsalainen et al., 2000; Stolerman 

et al., 2000), at least 2 other studies also reported that MEC reduced accuracy (Grottick 

and Higgins, 2000; Jones et al., 1995). At the same time, we determined that the 

subtype-selective nAChR antagonist DHBE did not affect accuracy, which aligns with 

the findings of other prior studies (Blondel et al., 2000; Grottick and Higgins, 2000; Hahn 

et al., 2011).  

     In contrast, NIC increased premature responding, which was a finding in several 

other studies (Blondel et al., 1999, 2000; van Gaalen et al., 2006c; Hahn et al., 2002b; 
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Stolerman et al., 2000), including in the Long-Evans strain (Hahn et al., 2016), but not in 

all studies (Grottick et al., 2003; Hahn and Stolerman, 2002; Hahn et al., 2011; Mirza 

and Stolerman, 2000; Ruotsalainen et al., 2000). Our 5-CSRTT methodology may have 

enhanced our ability to detect a NIC response. The study by Hahn et al. demonstrated 

that a variable cue delay, which we employed in the current study, greatly enhanced 

premature responding in response to NIC as compared to a fixed cue delay (Hahn and 

Stolerman, 2002). Additionally, Mirza and Stolerman reported that as cue delay was 

increased from 1 s to 20 s, the ability of NIC to increase premature responding became 

more prominent (Mirza and Stolerman, 1998). This suggests that although our cue 

delays of 5 and 7 s were not exceedingly long, they were long enough to make it more 

likely NIC would elicit an effect.   

     Opposite to the effect of NIC, a decrease in premature responding, was seen with 

MEC, similar to several prior studies (Grottick and Higgins, 2000; Mirza and Stolerman, 

2000; Ruotsalainen et al., 2000; Stolerman et al., 2000), but again not all (Blondel et al., 

2000; Jones et al., 1995). The specific nAChR antagonist DHBE did not influence 

impulsivity, which parallels other studies (Blondel et al., 2000; Grottick and Higgins, 

2000; Hahn et al., 2011). 

     The concordance of our NIC results with those of AMPH and GBR 12909, and the 

MEC results with those of the DR antagonists, leads to consideration of the interaction 

between the nicotinic and dopaminergic systems in 5-CSRTT performance. Nicotine 

interacts with the dopaminergic system via nAChRs, a family of ligand-gated, 

pentameric cation channels constituted from combinations of α and β subunits 

expressed in the mammalian brain (Gotti et al., 2006). It has been shown that nAChRs 
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are present on midbrain dopaminergic cell bodies in the ventral tegmental area (VTA) 

and substantia nigra (SN), and on the axonal terminals of the dopamine neuronal 

projections to the dorsal striatum, nucleus accumbens, and PFC (Livingstone and 

Wonnacott, 2009b). Thus, systemic administration of NIC stimulates nAChRs on 

dopaminergic cell bodies in the midbrain, and on dopaminergic terminals in the PFC, 

nucleus accumbens, and striatum, leading to an increase in dopamine release in these 

target regions, and a subsequent increase in impulsive behavior (Livingstone and 

Wonnacott, 2009b; Marshall et al., 1997; Ohmura et al., 2012). 

     Of the different nAChRs that mediate these effects, receptors containing α4β2 

subunits have important roles in modulating dopamine-release in all of the 

aforementioned brain regions, while nAChRs containing other subunits such as α7 or β5 

have roles in some, but not all of these regions (Cao et al., 2005; Gotti et al., 2006; 

Livingstone and Wonnacott, 2009b; Livingstone Phil D. et al., 2009; Pistillo et al., 2015). 

The current literature points to ACh in the PFC, particularly the medial PFC (mPFC), as 

being critical for attentional processes, including those assessed by the 5-CSRTT. 

Acetylcholine is released in the mPFC during 5-CSRTT performance (Dalley et al., 

2001), with phasic ACh release being associated with signal detection (Sarter et al., 

2016). In the PFC, α4β2-containing NAChRs facilitate increased cholinergic tone, and 

thus enhance attention, while nAChRs with α7 subunits control the duration of ACh 

release (Wallace and Bertrand, 2013). However, evidence for a relationship between 

cholinergic and dopaminergic signaling in the mPFC driving attentional processes is not 

as strong as it is for a similar relationship in striatal regions. A recent study by 

Boekhoudt et al. demonstrated that chemogenetic activation of dopamine neurons in the 
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SN, which project to the striatum and nucleus accumbens, impaired accuracy on the 5-

CSRTT; activation of dopamine neurons in the VTA, which project to the PFC, did not 

impair accuracy, although omissions were increased, demonstrating more subtle effects 

on attention (Boekhoudt et al., 2017). Furthermore, Marshall et al. demonstrated that 

direct application of NIC to the PFC, nucleus accumbens, and striatum increased 

dopamine release in each of the 3 regions, but to a much lesser extent in the PFC 

(Marshall et al., 1997).  

     Thus, although nAChRs modulate dopamine release in the mPFC (Livingstone and 

Wonnacott, 2009b), effects of drugs on cholinergic or dopaminergic signaling alone 

more strongly mediate effects on attention then an interaction between the cholinergic 

and dopaminergic systems. As discussed above, methodological aspects of our 5-

CSRTT experiments likely created a situation where the effects of NIC on attention were 

weak, but the effects of MEC and the DR antagonists either on dopamine release alone, 

or due to ACh-mediated dopamine release, were strong enough to negatively impact 

attentional processes. Regarding the lack of effect of the specific nAChR antagonist 

DHBE as compared to an effect by the general antagonist MEC, both drugs overlap in 

targeting several nAChRs including those with β2 subunits, while a primary difference 

between the two drugs is that MEC targets α7 nAChRs and DHBE does not (Chavez-

Noriega et al., 1997) . Thus, under our experimental circumstances, we suspect that the 

complementary effects of both α4β2 and α7 nAChRs needed to be inhibited for an effect 

on attention to be evident. 

     The relationship between cholinergic and dopaminergic signaling for influencing 

impulsive responding on the 5-CSRTT is better established. Both mPFC and 
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dorsomedial striatum are important regions in the circuit for premature responding, while 

the nucleus accumbens is an even more critical component (Cassaday et al., 2014; 

Eagle and Baunez, 2010; Pattij et al., 2007). There are regional differences in the 

influence of DR 1 or DR 2 on premature responding: DR 1 more strongly mediates 

premature responding in the nucleus accumbens (Pattij et al., 2007; Pezze et al., 2007), 

while DR 2 plays a more prominent role in the dorsal striatum (Agnoli et al., 2013). As 

discussed above, nAChRs modulate dopamine release in all of these regions 

(Livingstone and Wonnacott, 2009b), and NIC causes dose-dependent dopamine 

release in the same regions, although to a greater extent in the nucleus accumbens and 

striatum mPFC (Marshall et al., 1997).  

     Considering the above, our findings support the role of an ACh-dopamine 

relationship in mediating impulsive behavior in our model of the 5-CSRTT: NIC 

increased premature responding (Experiments 1 and 2), MEC decreased premature 

responding (Experiment 1), and both DR 1 and DR 2 antagonists attenuated the effects 

of NIC on premature responding, with SCH 23390 appearing to have a stronger effect 

than eticlopride at the doses we used (Experiments 1 and 2). Our results suggest that at 

both cue delays of 5 and 7 s, NIC caused sufficient dopamine release to increase 

impulsivity above baseline levels. Concurrently, a decrease in nAChR-mediated 

dopamine release by MEC limited the effect of baseline levels of dopamine on 

impulsivity, and direct antagonism of DRs by SCH 23390 or eticlopride, limited the effect 

of NIC-elevated dopamine.  
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Donepezil-Related Findings 

In our model, 2 mg/kg donepezil, but not 0.5 mg/kg, decreased attention across all cue 

delays, although more strongly at 3 and 5 s delays, and decreased impulsive 

responding at 7 s. Two prior studies employing the 5-CSRTT did not demonstrate that 

donepezil affected accuracy or premature responding, but the highest donepezil dose in 

both studies was 1 mg/kg, which may not have been high enough to elicit effects 

(Balducci et al., 2003; Kirkby et al., 1996).  

     The pattern of effects resembles those caused by the nAChR antagonist MEC and 

the DR antagonist FLU. This was unexpected given that donepezil has been shown at 

the same 2 mg/kg dose to inhibit acetylcholinesterase by close to 100%, and to 

substantially increase ACh (2100%) and dopamine (80%) concentration in dialysate 

from the frontal cortex (Giacobini et al., 1996). One possible explanation is that 

excessive release of ACh, dopamine, or both, resulted in neurotransmitter levels that 

were higher than required for optimal attention or response inhibition. As discussed 

above, behavioral responses often follow an inverted U-shaped curve, initially improving 

and then deteriorating as synaptic ACh (Newman and Gold, 2016) or dopamine 

(Arnsten and Li, 2005) levels increase. A study by Zhang et al. reports a potential 

mechanism that might mediate the effect of increased synaptic ACh by donepezil 

(Zhang et al., 2004). The authors discuss how cholinergic neurons in the striatum fire 

tonically, which enhances striatal dopamine release via nAChRs on the post-synaptic 

dopamine terminals and optimizes dopamine-related behavioral performance. Normally 

acetylcholinesterase quickly hydrolyzes synaptic ACh and prevents nAChRs from 

becoming desensitized. However, if the dose of donepezil is high enough, AChE is fully 



116 
 

inhibited resulting in continuously elevated synaptic ACh. This, in turn, desensitizes 

striatal nAChRs and causes diminished dopamine release. Given the higher dose of 

donepezil that was required to see effects in our study, as compared to the lower 

therapeutic doses used for human patients, the above explanation is plausible. 

Additionally, 5 mg/kg donepezil has been shown to decrease dopaminergic neuronal 

firing rate in the VTA, which was mediated by an effect on muscarinic AChRs 

(Schilström et al., 2007). A separate study reported that donepezil facilitated nAChR 

desensitization in dopaminergic neurons in the SN via allosteric modulation of nAChRs 

(Angelantonio et al., 2004). These additional off-target effects of donepezil may have 

also contributed to our findings. In retrospect, our expectations that donepezil would 

improve attention and response inhibition may have been unfounded given that in 

rodent models the cognitive-enhancing effects of acetylcholinesterase inhibitors, such 

as donepezil, have mainly been reported in subjects with experimentally-induced 

hypocholinergic states (Braida et al., 1996; Flood et al., 1983). 

Based on our findings, we propose that our effects on impulsive behavior were due 

to an increase in synaptic dopamine levels via nAChR binding by NIC. An interaction 

between the cholinergic and dopaminergic systems via nACHRs would also explain why 

the dopamine antagonists ameliorated the effects of NIC and AMPH on premature 

responding. The consistent effects seen with SCH 23390 in our study indicate that DR 1 

played a more significant role in modulating impulsive behavior, but that DR 2 also had 

roles in impulsivity and attention. 

     Our methodology for the 5-CSRTT appears to be effective at eliciting drug effects on 

premature responding, while it is less effective for evaluating effects on attention. This 
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may be in part due to the use of varied cue delays during testing sessions, as opposed 

to the practice of many other research groups to use only one cue delay per session. 

Our choice of the Long-Evans strain, which is infrequently used in 5-CSRTT studies, 

may have also contributed to our ability to readily discern changes in premature 

responding. Regardless of the reason, the drugs used in this study establish the 

effective doses at which they elicit differences in behavior in our model, and thus will be 

used in our future studies.  

     In conclusion, we have shown that both D1 and D2 receptors are involved in 

regulating impulsive behavior when there is an enhancement of DA neurotransmission. 

The present data demonstrate that an interaction between cholinergic and dopaminergic 

neurotransmission is critical to mediate inhibitory control, but we need to explore further 

the underlying neural and psychological mechanisms to identify targets for treatment 

strategies when there are deficits in response inhibition. 
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5.6 Figures and Tables 

Figure 5.1. Performance on 5-CSRTT at different cue delays after administering cholinergic drugs. 
Nicotine did not alter accuracy but increased premature responding at both cue delays. Mecamylamine 
decreased accuracy and premature responding at the highest dose. Donepezil decreased accuracy at all 
three cue delays at the higher dose of 2mg/kg. Results for DHBE are not shown as it did not affect 
accuracy and premature responding. All doses are in mg/kg. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 compared 
to saline control 
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Figure 5.2. Accuracy after administering dopaminergic drugs. Amphetamine and GBR 12909 decreased 
accuracy at the higher cue delays of 5 s and 7 s. Flupenthixol decreased accuracy at cue delays of 5 and 
7 s. SCH 23390 decreased accuracy at the lower cue delay of 3 s and increased accuracy at 7 s. 
Eticlopride had a minimal effect on accuracy. 
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Figure 5.3. Premature responding after administering dopaminergic drugs. Amphetamine and GBR 12909 
increased premature responding at both delays of 5 and 7 s, while flupenthixol and SCH 23390 
decreased premature responding at both delays. Eticlopride did not alter premature responding. All doses 
are in mg/kg. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 compared to saline control.  
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Drug Mechanism Doses (mg/kg) 

Nicotine nAChR agonist 0.5 x 3 sessions 

Nicotine nAChR agonist 0.1, 0.3, 0.5 

Donepezil AChE inhibitor 0.5, 2, 4 

Mecamylamine Non-selective nAChR antagonist 0.75, 1.5, 3 

Dihydro-β-erythroidine 
Subunit-selectivea nAChR 

antagonist 
6, 9 

Amphetamine 
Increases synaptic dopamine 

levels 
0.2, 0.4, 0.8 

GBR 12909 Dopamine transporter inhibitor 2.5, 5, 10 

Flupenthixol Non-selective DR antagonist 0.05, 0.15, 0.3 

SCH 23390 DR 1 antagonist 0.02, 0.04, 0.06 

Eticlopride DR 2 antagonist 0.02, 0.04, 0.06 

Table 5.1. Drugs, mechanisms of action, and doses administered in Experiment 1 
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Drugs Doses (mg/kg) 

Nicotine 0.5 x 3 sessions 

Nicotine/SCH 23390 0.5/0.01, 0.02 

Nicotine/Eticlopride 0.5/0.03, 0.06 

Amphetamine/SCH 23390 0.6/0.01, 0.02 

Amphetamine/Eticlopride 0.6/0.03, 0.06 

Table 5.2. Drug combinations and doses administered in Experiment 2. 
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Table 5.3. Dependent measures from Block 7 of the 21 days of the sustained attention phase for both experiments, with cue delay as a main 
factor. Premature responding was significantly greater at the longest cue delay of 7 s in both experiments.  Latency to make incorrect responses 
was significantly lower at the 7 s delay. *Compares cue delay 3 s to 5 s. ^Compares 3 s to 7 s. †Compares 5 s to 7 s. * ^ †p ≤ 0.05, ** ^^ ††p ≤ 
0.01, *** ^^^ †††p ≤ 0.001 

 

 

% Accuracy 
% 

Premature 
% Omission 

 
Average 

Perseverative 
Response 

 

 
Correct 

Response 
Latency 

 

 
Incorrect 
Response 
Latency 

 

 
Reinforcement 

Latency 
 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

Block 
7, 

Experi
ment 1 

77.5 
± 

1.7 

76.9 
± 

1.9 

75.7 
± 

2.1 

16.6 
± 

1.8 

41.4 
± 

3.2 
††† 

3.9 
± 

0.7 

3.2 
± 

0.5 

3.7 
± 

0.6 

0.07 
± 

0.01 

0.08 
± 

0.01 

0.06 
± 

0.01 

1.12 
± 

0.05 

0.97 
± 

0.03 

0.99 
± 

0.05 

4.51 
± 

0.22 

4.13 
± 

0.25 

3.31 
± 

0.2 
† 

^^^ 

1.84 
± 

0.14 

1.93 
± 

0.2 

1.81 
± 

0.1 

Block 
7,  

Experi
ment 2 

77.6 
± 

1.9 

75.9 
± 

1.9 

72.2 
± 

1.8 
^^ 

14.5 
± 

1.7 

36.3 
± 

2.1 
††† 

3.0 
± 

0.7 

2.7 
± 

0.7 

3.3 
± 

0.8 

0.09 
± 

0.03 

0.06 
± 

0.01 

0.08 
± 

0.03 

1.08 
± 

0.05 

1 ± 
0.05 

1.03 
± 

0.05 

5 ± 
0.21 

4.16 
± 

0.19 
*** 

3.66 
± 

0.23 
^^^ 

1.46 
± 

0.08 

1.41 
± 

0.06 

1.51 
± 

0.11 
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Table 5.4. Effects of cholinergic drugs on attention and impulsive behavior in Experiment 1. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 compared to vehicle 
control. The highest dose of donepezil of 4 mg/kg was not included in the analysis due to omissions > 50%. 

 

 

Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

% Accuracy % Premature 

Cue Delay Cue Delay 

3 s 5 s 7 s 5 s 7 s 

Nicotine 

0.1 

20 

79.9 ± 2.2 81.8 ± 1.82 75.0 ± 2.3 11.8 ± 1.4 37.1 ± 3.5 

0.3 79.3 ± 2.1 80.2 ± 2.2 74.0 ± 2.5 13.27 ± 1.51 46.9 ± 3.9 *** 

0.5 81.7 ± 1.9 81.4 ± 1.9 76.5 ± 2.4 14.6 ± 1.8 ** 44.2 ± 4.0 ** 

Vehicle 0 20 78.1 ± 2.2 81.4 ± 1.9 78.54 ± 1.79 8.1 ± 1.3 30.4 ± 2.9 

Mecamylamine 

0.75 

30 

78.3 ± 1.7 77.9 ± 1.5 72.1 ± 2.0 9.9 ± 1.1 35.1 ± 2.7 

1.5 70.2 ± 2.3 75.7 ± 1.7 72.5 ± 1.8 8.6 ± 1 29.5 ± 2.7 

3 58.9 ± 2.8 *** 68.2 ± 2.5 *** 68.9 ± 2.3 5.1 ± 0.9 * 16.3 ± 2.2 *** 

Vehicle 0 20 76.3 ± 1.9 79.9 ± 1.5 73.9 ± 1.9 8.5 ± 0.9 30.9 ± 3.2 

DHBE 
6 

10 
78.9 ± 1.9 80.9 ± 1.6 73.4 ± 1.6 10.7 ± 1.5 36.0 ± 2.9 

9 79.1 ± 1.7 80.9 ± 1.3 77.2 ± 1.4 9.1 ± 1.3 34.6 ± 3.7 

Vehicle 0 20 76.8 ± 1.7 79.05 ± 1.5 73.7 ± 1.9 8.9 ± 1.4 29.5 ± 3.1 

Donepezil 
0.5 

30 
77 ± 1.8 79.1 ± 1.9 74.7 ± 1.8 12.0 ± 1.6 39.6 ± 3.8 

2 62.7 ± 3.47*** 71.4 ± 2.7 *** 65.5 ± 4.1 * 5.9 ± 1.9 20.2 ± 3.5 * 

Vehicle 0 20 76.24 ± 2.6 81.3 ± 1.6 76.9 ± 2.14 10 ± 1.5 31.6 ± 3.5 
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Table 5.5. Effects of cholinergic drugs on other dependent measures of 5-CSRTT performance in Experiment 1. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
compared to vehicle (Veh.) control. 

Drugs 
Dose 
(mg/k

g) 

Time 
before 
testing 
(min) 

% Omissions 
Perseverative 

Responses 
Correct Response 

Latency 
Incorrect Response 

Latency 
Reinforcement Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

N
ic

o
ti

n
e
 0.1 

20 

2.8 ± 
1.1 

2.2 ± 
0.8 

1.7 ± 
0.6 

0.04 ± 
0.01 

0.05 ± 
0.01 

0.04 ± 
0 

1.13 ± 
0.07 

0.91 ± 
0.05 

0.86 ± 
0.05 

4.52 ± 
0.23 

3.3 ± 
0.39 

2.78 ± 
0.31 

2.1 ± 
0.33 

1.9 ± 
0.27 

2.51 ± 
0.84 

0.3 
4.0 ± 
1.4 

3.3 ± 
1.3 

3.5 ± 
1.6 

0.03 ± 
0 

0.03 ± 
0.01 

0.09 ± 
0.05 

1.07 ± 
0.06 

1.02 ± 
0.18 

0.94 ± 
0.2 

4.23 ± 
0.35 

2.69 ± 
0.39 

2.58 ± 
0.35 

2.38 ± 
0.39 

2.38 ± 
0.44 

2.24 ± 
0.34 

0.5 
3.3 ± 
1.3 

2.2 ± 
0.9 

2.7 ± 
1.1 

0.02 ± 
0 

0.02 ± 
0 

0.05 ± 
0.01 

1 ± 
0.04 * 

0.78 ± 
0.03 

0.75 ± 
0.05 

4.34 ± 
0.29 

3.7 ± 
0.48 

2.29 ± 
0.31 

1.86 ± 
0.17 

1.94 ± 
0.29 

2.2 ± 
0.41 

Veh. 0 20 
2.4 ± 
0.9 

2.2 ± 
0.7 

2.0 ± 
0.7 

0.02 ± 
0 

0.02 ± 
0 

0.02 ± 
0 

1.26 ± 
0.11 

0.9 ± 
0.05 

0.83 ± 
0.05 

4.91 ± 
0.26 

3.66 ± 
0.31 

2.46 ± 
0.31 

1.67 ± 
0.08 

1.9 ± 
0.23 

1.85 ± 
0.14 

M
e

c
a
m

y
la

m
in

e
 

0.75 

30 

3.5 ± 
1.5 

3.0 ± 
1.0 

1.7 ± 
0.5 

0.05 ± 
0.01 

0.04 ± 
0 

0.04 ± 
0 

1.47 ± 
0.13 

0.97 ± 
0.05 

0.95 ± 
0.08 

4.59 ± 
0.17 

3.41 ± 
0.31 

2.5 ± 
0.25 

1.59 ± 
0.07 

1.74 ± 
0.15 

1.82 ± 
0.13 

1.5 
5.4 ± 
1.2 

3.6 ± 
0.6 

3.2 ± 
0.7 

0.04 ± 
0 

0.04 ± 
0 

0.04 ± 
0 

1.61 ± 
0.13 

1.07 ± 
0.07 

1.09 ± 
0.09 

5.77 ± 
0.32 

4.42 ± 
0.37 

3.52 ± 
0.37 

2.04 ± 
0.24 

2.43 ± 
0.46 

2.18 ± 
0.4 

3 
18.7 ± 
2.5 *** 

15.7 ± 
2.5 *** 

12.6 ± 
2.1 *** 

0.07 ± 
0.01 

0.04 ± 
0.01 

0.05 ± 
0.01 

2 ± 
0.14 ** 

1.55 ± 
0.12 
*** 

1.34 ± 
0.11 
*** 

7.15 ± 
0.29 
*** 

6.59 ± 
0.39 
*** 

5.09 ± 
0.34 
*** 

1.85 ± 
0.11 

2.22 ± 
0.21 

2.82 ± 
0.89 

Veh. 0 20 
3.5 ± 
1.1 

2.0 ± 
0.7 

2.1 ± 
0.6 

0.06 ± 
0.01 

0.05 ± 
0.01 

0.03 ± 
0 

1.4 ± 
0.09 

1.01 ± 
0.06 

0.84 ± 
0.04 

5.35 ± 
0.24 

3.92 ± 
0.32 

2.6 ± 
0.3 

2.55 ± 
0.57 

2.07 ± 
0.24 

2.18 ± 
0.25 

D
H

B
E

 6 

10 

2.5 ± 
0.9 

1.2 ± 
0.5 

1.5 ± 
0.6 

0.04 ± 
0 

0.04 ± 
0.01 

0.04 ± 
0.01 

1.25 ± 
0.09 

0.92 ± 
0.04 

0.82 ± 
0.06 

4.79 ± 
0.22 

3.61 ± 
0.41 

2.88 ± 
0.33 

1.81 ± 
0.14 

2.01 ± 
0.2 

2.16 ± 
0.32 

9 
2.7 ± 
1.0 

2.8 ± 
0.8 

2.8 ± 
1.1 

0.03 ± 
0 

0.05 ± 
0.01 

0.04 ± 
0 

1.26 ± 
0.07 

0.91 ± 
0.05 

0.78 ± 
0.04 

4.6 ± 
0.23 

3.84 ± 
0.32 

2.27 ± 
0.29 

1.76 ± 
0.2 

1.66 ± 
0.09 

1.68 ± 
0.1 * 

Veh. 0 20 
2.4 ± 
0.8 

1.8 ± 
0.6 

2.9 ± 
0.9 

0.04 ± 
0 

0.04 ± 
0 

0.03 ± 
0 

1.36 ± 
0.07 

1 ± 
0.05 

0.9 ± 
0.06 

5.15 ± 
0.33 

3.22 ± 
0.23 

2.24 ± 
0.3 

1.65 ± 
0.1 

1.65 ± 
0.09 

1.8 ± 
0.23 

D
o

n
e

p
e
z
il
 

0.5 

30 

4.0 ± 
0.8 

3.3 ± 
1.0 

2.3 ± 
0.9 

0.03 ± 
0 

0.04 ± 
0.01 

0.02 ± 
0 

1.26 ± 
0.09 

0.95 ± 
0.06 

0.83 ± 
0.05 

4.95 ± 
0.28 

3.97 ± 
0.33 

2.83 ± 
0.28 

1.69 ± 
0.11 

1.93 ± 
0.17 

1.82 ± 
0.2 

2 
19.9 ± 
5.2 *** 

16.7 ± 
4.9 *** 

14.1 ± 
4.5 ** 

0.13 ± 
0.04 * 

0.12 ± 
0.04  * 

0.07 ± 
0.04 

1.94 ± 
0.22 
*** 

1.44 ± 
0.18 ** 

1.03 ± 
0.06 ** 

6.38 ± 
0.4 

4.76 ± 
0.42 

4.28 ± 
0.42 

7.22 ± 
3.81 * 

2.86 ± 
0.53 

4.4 ± 
1.61 ** 

Veh. 0 20 
3.9 ± 
1.2 

2.1 ± 
0.8 

2.9 ± 
0.8 

0.03 ± 
0 

0.03 ± 
0 

0.02 ± 
0 

1.42 ± 
0.24 

1.03 ± 
0.1 

0.79 ± 
0.04 

5.37 ± 
0.4 

3.73 ± 
0.36 

2.89 ± 
0.37 

1.78 ± 
0.13 

1.78 ± 
0.13 

1.8 ± 
0.16 
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Table 5.6. Effect of dopaminergic drugs on attention and impulsive behavior in Experiment 1. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 compared to 
vehicle control. The higher SCH 23390 doses of 0.04 and 0.06 mg/kg were not included in the analysis due to omissions > 50%. 

 

Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

% Accuracy % Premature 

Cue Delay Cue Delay 

3 s 5 s 7 s 5 s 7 s 

Amphetamine 

0.2 

10 

81.1 ± 1.7 79.0 ± 1.6 74.9 ± 1.8 14.1 ± 1.7 44.6 ± 3.4 

0.4 76.4 ± 2.4 77.4 ± 2.1 65.8 ± 2.3 *** 18.8 ± 2.7 ** 57.3 ± 4.0 *** 

0.8 74.1 ± 2.1 70.5 ± 2.7 *** 62.8 ± 3.2 *** 27.4 ± 3.2*** 55.3 ± 3.8*** 

Vehicle 0 20 78.2 ± 1.5 81.0 ± 1.3 77.6 ± 1.5 11.2 ± 1.3 38.7 ± 3.0 

GBR 12909 

2.5 

20 

77.6 ± 2.4 78.3 ± 2.2 73.1 ± 2.3 10.5 ± 1.87 34.7 ± 4.7 

5 76.2 ± 2.5 75.2 ± 1.8 74.1 ± 2.1 20.3 ± 3.3 * 50.2 ± 4.9 * 

10 70.9 ± 3.1 63.8 ± 2.8 *** 61.7 ± 3.5 *** 31.5 ± 4.1 *** 55.9 ± 4.4 *** 

Vehicle 0 20 76.7 ± 2.0 79.8 ± 2.0 75.5 ± 1.8 9.0 ± 1.3 33.8 ± 3.1 

Flupenthixol 

0.05 

30 

77.2 ± 2.1 79.4 ± 1.4 75.5 ± 1.4 9.6 ± 1.1 37.0 ± 3.3 

0.15 71.1 ± 1.6 ** 79.1 ± 1.9 75.4 ± 1.5 5.3 ± 0.7 *** 21.4 ± 1.7 *** 

0.3 64.4 ± 2.1 *** 75.0 ± 1.7 *** 78.3 ± 2 4.5 ± 0.8 *** 16.4 ± 1.9 *** 

Vehicle 0 20 78.1 ± 1.9 82.7 ± 1.2 77.1 ± 1.6 12.9 ± 1.8 39.1 ± 3.8 

SCH 23390 0.02 30 69.4 ± 2.3 * 77.6 ± 2.1 78.1 ± 1.7 * 3.2 ± 0.6 ** 18.6 ± 2.5 ** 

Vehicle 0 20 74.8 ± 2.0 80.0 ± 1.4 74.8 ± 1.4 6.8 ± 1 28.6 ± 2.4 

Eticlopride 

0.02 

20 

72.0 ± 2.2 76.5 ± 2.1 76.8 ± 1.8 8.4 ± 1.4 30.9 ± 3.4 

0.04 64.9 ± 2.5 * 76.3 ± 3.1 72.4 ± 3.0 6.8 ± 1.3 27.3 ± 3.3 

0.06 65.8 ± 3.0 * 75.1 ± 2.2 74.9 ± 1.5 5.5 ± 0.7 22.9 ± 2.6 

Vehicle 0 20 73.3 ± 2.1 82.0 ± 1.5 73.3 ± 2.2 7.4 ± 1.2 33.6 ± 4.1 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

% Omissions 
Perseverative 

Responses 
Correct Response 

Latency 
Incorrect 

Response Latency 
Reinforcement 

Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

A
m

p
h

e
ta

m
in

e
 0.2 

10 

4.2 ± 
1.3 

3.9 ± 
1.1 

2.8 ± 
0.7 

0.04 
± 

0.01 

0.03 
± 

0.01 

0.17 
± 

0.14 

1.07 
± 

0.06 

0.91 
± 

0.04 

1.04 
± 0.1 

4.32 
± 

0.27 

3.23 
± 

0.35 

2.18 
± 

0.26 

2.37 
± 

0.38 

1.86 
± 

0.16 

1.78 
± 

0.17 

0.4 
5.9 ± 
3.7 

4.8 ± 
3.6 

1.8 ± 
0.7 

0.06 
± 

0.01 

0.09 
± 

0.02 

0.05 
± 

0.01 

0.97 
± 

0.04 

0.84 
± 

0.04 

0.78 
± 

0.07 

4 ± 
0.37 

2.93 
± 

0.31 

2.63 
± 0.3 

1.84 
± 

0.15 

2.25 
± 

0.36 

1.85 
± 

0.19 

0.8 
4.6 ± 
1.4 

4.8 ± 
1.5 

5.8 ± 
2.6 

0.05 
± 

0.01 

0.05 
± 

0.01 

0.61 
± 

0.59 

0.89 
± 

0.03 
* 

0.88 
± 

0.06 

0.89 
± 

0.08 

3.63 
± 0.3 

* 

3.14 
± 

0.33 

2.75 
± 

0.34 

1.79 
± 

0.17 

2.03 
± 

0.32 

1.97 
± 

0.37 

Vehicle 0 20 
2.5 ± 
1.0 

2.4 ± 
0.7 

2.6 ± 
1.1 

0.04 
± 

0.01 

0.05 
± 

0.01 

0.33 
± 

0.29 

1.1 ± 
0.07 

0.92 
± 

0.06 

0.78 
± 

0.04 

4.74 
± 

0.29 

3.11 
± 

0.21 

1.94 
± 

0.24 

1.8 ± 
0.25 

1.79 
± 

0.19 

1.82 
± 

0.18 

G
B

R
 1

2
9

0
9

 

2.5 

20 

3.7 ± 
1.4 

3.6 ± 
1.7 

2.5 ± 
0.7 

0.05 
± 

0.01 

0.04 
± 

0.01 

0.03 
± 

0.01 

1.35 
± 

0.16 

0.99 
± 0.1 

0.89 
± 

0.08 

4.74 
± 0.3 

3.97 
± 0.4 

2.92 
± 

0.34 

2.31 
± 

0.21 

2.7 ± 
0.34 

2.23 
± 

0.39 

5 
3.0 ± 
1.5 

3.6 ± 
1.6 

3.2 ± 
1.4 

0.04 
± 0 

0.06 
± 

0.01 

0.06 
± 

0.01 

1.2 ± 
0.11 

0.83 
± 

0.03 

0.89 
± 

0.13 

3.89 
± 

0.27 
* 

2.66 
± 

0.27 

2 ± 
0.39 

1.96 
± 

0.26 

1.7 ± 
0.09 

1.92 
± 

0.18 

10 
5.1 ± 
1.4 

5.4 ± 
1.5 

6.0 ± 
1.7 

0.07 
± 

0.01 

0.09 
± 

0.02 

0.07 
± 

0.02 

1.1 ± 
0.13 

1.05 
± 

0.11 

1.12 
± 

0.13 

3.71 
± 

0.36 
** 

3.11 
± 

0.29 

3.11 
± 0.4 

1.97 
± 

0.18 

2.3 ± 
0.29 

2.24 
± 

0.45 

Vehicle 0 20 
3.2 ± 
1.0 

3.4 ± 
0.9 

2.7 ± 
0.9 

0.07 
± 

0.02 

0.04 
± 

0.01 

0.08 
± 

0.02 

1.25 
± 

0.07 

0.94 
± 

0.05 

0.79 
± 

0.03 

5.12 
± 

0.31 

3.73 
± 

0.36 

2.31 
± 

0.24 

2.66 
± 

0.53 

2.75 
± 

0.51 

2.94 
± 0.6 

Table 5.7. Effects of dopaminergic drugs on other dependent measure in 5-CSRTT performance in Experiment 1. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 
0.001 compared to vehicle control 
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F
lu

p
e
n

th
ix

o
l 

0.05 

30 

2.5 ± 
0.8 

2.2 ± 
0.7 

1.8 ± 
0.6 

0.04 
± 

0.01 

0.04 
± 

0.01 

0.02 
± 0 

1.21 
± 

0.09 

0.91 
± 

0.04 

0.77 
± 

0.04 

5.05 
± 

0.28 

3.52 
± 

0.27 

2.25 
± 

0.25 

1.69 
± 

0.13 

1.82 
± 

0.19 

1.59 
± 

0.07 

0.15 
6.7 ± 
2.0 

5.7 ± 
2 

4.3 ± 
1.1 

0.04 
± 0 

0.05 
± 

0.01 

0.05 
± 

0.01 

1.51 
± 

0.09 
* 

1.09 
± 

0.05 
* 

0.98 
± 

0.05 

5.86 
± 

0.24 
** 

4.63 
± 

0.41 
** 

2.97 
± 

0.35 

1.95 
± 

0.17 

1.92 
± 

0.14 

2.3 ± 
0.28 

0.3 
13.8 
± 1.9 
*** 

17.9 
± 3.1 
*** 

13.3 
± 2.6 
*** 

0.1 
± 

0.03 

0.05 
± 

0.03 

0.07 
± 

0.02 

1.84 
± 

0.12 
*** 

1.39 
± 0.1 
*** 

1.15 
± 

0.09 
*** 

6.85 
± 0.3 
*** 

5.53 
± 

0.38 
*** 

4.48 
± 

0.43 
*** 

8.68 
± 

5.45 

3.02 
± 

0.95 

4.45 
± 

1.58 

Vehicle 0 20 
2.8 ± 
1.1 

1.5 ± 
0.7 

2.3 ± 
0.8 

0.04 
± 

0.01 

0.03 
± 0 

0.03 
± 

0.01 

1.15 
± 

0.07 

0.86 
± 

0.04 

0.78 
± 

0.05 

4.49 
± 

0.23 

3.1 ± 
0.34 

2.18 
± 

0.31 

1.68 
± 0.1 

1.78 
± 

0.16 

1.94 
± 

0.21 

SCH 
23390 

0.02 30 
10.7 
± 2.1 
*** 

7.7 ± 
1.9 
*** 

5.8 ± 
1.4 ** 

0.07 
± 

0.01 

0.06 
± 

0.01 

0.03 
± 

0.01 

1.62 
± 

0.13 
** 

1.27 
± 

0.09 
** 

1 ± 
0.11 

6.11 
± 

0.31 
* 

4.91 
± 

0.43 
** 

3.52 
± 

0.42 
* 

3.23 
± 

1.01 

5.23 
± 

2.94 

2.52 
± 

0.34 

Vehicle 0 20 
2.8 ± 
0.9 

1.79 
± 0.5 

1.5 ± 
0.4 

0.04 
± 

0.01 

0.03 
± 0 

0.03 
± 

0.01 

1.22 
± 

0.07 

0.92 
± 

0.05 

0.8 ± 
0.04 

5.05 
± 

0.29 

3.43 
± 

0.29 

2.39 
± 

0.31 

1.82 
± 

0.12 

2.34 
± 

0.54 

1.92 
± 

0.16 

E
ti

c
lo

p
ri

d
e

 

0.02 

20 

4.3 ± 
1.6 

3.7 ± 
1.5 

3.9 ± 
1.7 

0.03 
± 0 

0.05 
± 

0.01 

0.04 
± 

0.01 

1.32 
± 

0.08 

0.99 
± 

0.07 

0.8 ± 
0.05 

5.13 
± 

0.23 

3.35 
± 

0.29 

2.46 
± 

0.28 

2.2 ± 
0.3 

1.84 
± 

0.15 

1.89 
± 

0.17 

0.04 
7.8 ± 
2.1 

8.3 ± 
2.5 

7.9 ± 
2.1 

0.04 
± 

0.01 

0.03 
± 0 

0.07 
± 

0.02 

1.53 
± 

0.14 

1.12 
± 

0.07 

1.04 
± 

0.08 

5.18 
± 

0.25 

4.62 
± 

0.28 
* 

2.95 
± 

0.29 

1.84 
± 

0.16 

2.04 
± 

0.27 

1.98 
± 

0.18 

0.06 
8.4 ± 
2.3 

7.9 ± 
2.4 

8.5 ± 
2.4 

0.07 
± 

0.01 
* 

0.03 
± 

0.01 

0.05 
± 

0.01 

1.68 
± 

0.13 
** 

1.27 
± 

0.11 
** 

1.11 
± 

0.09 
* 

5.95 
± 

0.26 

4.09 
± 

0.29 

3.27 
± 

0.25* 

2.86 
± 

0.95 

2.09 
± 

0.23 

3.5 ± 
1.3 

Vehicle 0 20 
2.8 ± 
0.6 

1.8 ± 
0.5 

2 ± 
0.7 

0.03 
± 0 

0.04 
± 

0.01 

0.04 
± 0 

1.2 ± 
0.07 

0.96 
± 

0.06 

0.81 
± 

0.04 

5.05 
± 

0.36 

3.36 
± 

0.42 

2.2 ± 
0.29 

2.25 
± 

0.31 

2.05 
± 

0.32 

2.33 
± 0.4 

Table 5.7 (Continued). Effects of dopaminergic drugs on other dependent measure in 5-CSRTT performance in Experiment 1. *p ≤ 0.05, **p ≤ 
0.01, ***p ≤ 0.001 compared to vehicle control. 



129 
 

Drugs 
Dose 

(mg/kg) 

% Accuracy % Premature 

Cue Delay Cue Delay 

3 s 5 s 7 s 5 s 7 s 

Nicotine 0.5 78.8 ± 2.1 78.1 ± 2.0 75.3 ± 2.0 
20.5 ± 1.8 

*** 
48.6 ± 3.1 

*** 

SCH 23390 
0.01 78.7 ± 1.7 79.6 ± 1.9 80.9 ± 2.2 7.5 ± 1.4 

22.2 ± 2.2 
*** 

0.02 74.6 ± 2.4 79.9 ± 2.3 79.5 ± 1.9 6.3 ± 1.0 
17.8 ± 2.3 

*** 

Nicotine + 
SCH 23390 

0.5 + 0.01 76.9 ± 2.3 81.5 ± 2.3 74.7 ± 2.2 
10.7 ± 1.2  

^^^ 
27.3 ± 2.3 

^^^ 

0.5 + 0.02 77.1 ± 2.2 80.2 ± 2.0 79.5 ± 1.9 
8.7 ± 1.6 

^^^ 
21.5 ± 3.1 

*** ^^^ 

Vehicle 0 79.1 ±2.19 78.2 ±2.3 74.1 ± 2.8 9.9 ± 1.6 33.7 ± 2.3 

Nicotine 0.5 77.8 ± 1.9 79.4 ± 1.8 74.5 ± 2.6 
20.4 ± 2.4 

*** 
46 ± 3.3 

*** 

Eticlopride 
0.03 71.5 ± 2.9 74.9 ± 2.2 71.6 ± 1.9 8.4 ± 1.1 26.4 ± 2.4 

0.06 
67.3 ± 2.6 

** 
74.2 ± 2.7 74.2 ± 2.8 7.5 ± 1.1 

19.9 ± 2.3 
** 

Nicotine + 
Eticlopride 

0.5 + 0.03 76.9 ± 2.3 76.7 ± 3.1 71.9 ± 2.8 
14.1 ± 1.7 

^ 
38.5 ± 3.5 

0.5 + 0.06 
64.6 ± 3.6 

*** ^^^ 
74.4 ± 2.5 71.4 ± 3.3 

12.1 ± 1.0 
^^^ 

25.6 ± 2.0 
^^^ 

Vehicle 0 77.9 ± 1.5 79.1 ± 1.9 76.2 ± 2.0 10.4 ± 1.4 32.7 ± 2.6 

AMPH 0.6 77.1 ± 2.3 73.7 ± 2.3 67.9 ± 3.05 
27.9 ± 3.9 

*** 
53.4 ± 4.5 

*** 

SCH 23390 
0.01 71.8 ± 3.4 79.0 ± 2.3 79.4 ± 1.9 4.4 ± 0.9 15.3 ± 2.3 

0.02 
68.9 ± 3.7 

** 
77.2 ± 2.5 75.9 ± 2.8 5.3 ± 1.3 15.2 ± 2.8 

AMPH + 
SCH 23390 

0.6 + 0.01 79.3 ± 2.6 78.2 ± 1.6 70.2 ± 2.1 
17.8 ± 2.6 

*** ^^ 
40.7 ± 4.2 

** ^ 

0.6 + 0.02 81.3 ± 1.6 79. ± 1.9 
76.9 ± 2.3 

^ 
13.3 ± 2.5 

^^^ 
36.2 ± 4.4 

^^ 

Vehicle 0 79.4 ± 1.9 80.5 ± 2.0 75.8 ± 1.7 6.07 ± 1.2 24.5 ± 2.3 

Amphetamine 0.6 81.0 ± 2.1 76.7 ± 2.2 72.2 ± 2.4 
27.5 ± 3.2 

*** 
55.9 ± 3.5 

*** 

Eticlopride 0.03 74.5 ± 3.6 
71.6 ± 3.4 

*** 
71.2 ± 4.0 10.7 ± 2.1 31.3 ± 3.0 

Amphetamine 
+ Eticlopride 

0.6 + 0.03 78.2 ± 2.6 78.1 ± 1.9 72.4 ± 2.9 
18.6 ± 2.8 

** 
44.4 ± 4.1 

** 

Vehicle 0 82.1 ± 1.6 83.3 ± 1.7 77.5 ± 1.9 7.7 ± 1.4 30.8 ± 3.0 

Table 5.8. Effects of nicotine or amphetamine combined with dopaminergic antagonists. *Compared to 
saline. ^Compared to nicotine or amphetamine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001. The higher 
eticlopride dose of 0.06 mg/kg was not included in the AMPH-eticlopride analysis due to omissions > 
50%. 
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Figure 5.4. Effects of nicotine or amphetamine in combination with dopamine antagonists on premature 
responding. Both nicotine and amphetamine increased premature responses, when compared to saline at 
both cue delays. SCH 23390 significantly attenuated the effects of nicotine and amphetamine. Eticlopride 
significantly attenuated the effects of nicotine. *Compared to saline. ^Compared to nicotine or 
amphetamine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001.
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 
(min) 

% Omissions 
Perseverative 

Responses 

Correct 
Response 
Latency 

Incorrect 
Response 
Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 
N

ic
o

ti
n

e
 

0.5 20 
0.6 
± 

0.2 

0.8 
± 

0.0 

0.9 
± 

0.3 

0.05 
± 

0.01 

0.05 
± 

0.01 

0.04 
± 

0.01 

0.07
9 ± 

0.04 

0.78 
± 

0.05 

0.85 
± 

0.7 

4.02 
± 

0.29 
*** 

3.06 
± 

0.26 

2.5 
± 

0.25 

1.44 
± 

0.09 

1.47 
± 

0.1 

1.36 
± 

0.05 

S
C

H
 2

3
3

9
0

 0.01 

30 

4.3 
± 

0.8 

3.3 
± 

0.9 

2.3 
± 

0.4 

0.05
2 ± 

0.01 

0.04 
± 

0.01 

0.04 
± 

0.01 

1.3 
± 

0.08 
^^ 

0.95 
± 

0.06 
^^ 

0.92 
± 

0.07 

6.27 
± 

0.33 
^^^ 

4.78 
± 

0.26 
^^ 

3.03 
± 

0.35 

1.53 
± 

0.08 

1.51 
± 

0.06 

1.56 
± 

0.09 

0.02 

8.5 
± 

0.8*
** 

^^^ 

6.6 
± 

1.4 
* ^^ 

6.0 
± 

1.2*
* ^^ 

0.07 
± 

0.03 

0.06 
± 

0.01 

0.07 
± 

0.03 

1.23 
± 

0.08 
^^ 

1.08 
± 

0.08 

0.96 
± 

0.06 

6.58 
± 

0.37 
^^^ 

5.38 
± 

0.35 
^^^ 
**  

3.82 
± 

0.29 
^ 

1.72 
± 

0.18 

1.99 
± 

0.32 

1.78 
± 

0.15 

N
ic

o
ti

n
e
 +

  
  
  

  
  
  

  
  
  

  
 

S
C

H
 2

3
3

9
0

 0.5 + 
0.01 

 
2.6 
± 

0.8 

2.6 
± 

0.9 

1.8 
± 

0.7 

0.03
8 ± 

0.01 

0.03
2 ± 

0.08 

0.04 
± 

0.01 

1.19 
± 

0.09 
^ 

0.87 
± 

0.04 

0.94 
± 

0.06 

5.22 
± 

0.35 

4.6 
± 

0.37
** 

2.89 
± 

0.27 

1.48 
± 

0.05 

1.48 
± 

0.05 

2.14 
± 

0.62 

0.5 + 
0.02 

 

10.9 
± 

2.5*
** 

^^^ 

7.9 
± 

2.1*
** 

^^^ 

7.4 
± 

1.9*
** 

^^^ 

0.06 
± 

0.02 

0.05 
± 

0.01 

0.06 
± 

0.01 

1.32 
± 

0.18 
^^^ 

1 ± 
0.07 

0.88 
± 

0.05 

6.86 
± 

0.14 
** 

^^^ 

5.23 
± 

0.48 
*** 

^^^ 

3.94 
± 

0.38 
^^ 

1.78 
± 

0.15 

1.8 
± 

0.13 

1.68 
± 

0.09 

V
e
h

ic
le

 

Saline 20 
1.2 
±0.2 

1.8 
± 

0.5 

1.5 
± 

0.3 

0.04 
± 

0.01 

0.04
± 

0.01 

0.08 
± 

0.03 

1.08 
± 

0.06 

0.88
± 

0.05 

0.81 
± 

0.07 

5.40 
± 

0.31 

3.46 
± 

0.31 

3.73 
± 

0.40 

1.36 
± 

0.05 

1.35 
± 

0.05 

1.45 
± 

0.08 

Table 5.9. Effects of the combination of nicotine and SCH 23390 on other dependent measures of 5-CSRTT performance from Experiment 2. 
*Compared to saline. ^Compared to nicotine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001. 
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Table 5.10. Effects of combination of nicotine and eticlopride on other dependent measures on 5-CSRTT from Experiment 2. *Compared to saline. 
^Compared to nicotine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001. 

  

Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 
(min) 

% Omissions 
Perseverative 

Responses 

Correct 
Response 
Latency 

Incorrect 
Response 
Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

N
ic

o
ti

n
e
 

0.5 20 
1.4 
± 

0.5 

1.7 
± 

0.6 

1.2 
± 

0.5 

0.03 
± 

0.01 

0.04 
± 

0.01 

0.07 
± 

0.03 

0.98 
± 

0.07 

0.81 
± 

0.06 

0.88 
± 

0.05 

4.25 
± 

0.3^ 

3.52 
± 

0.35 

2.65 
± 

0.26 

1.63 
± 

0.15 

1.63 
± 

0.17 

1.88 
± 

0.23 

E
ti

c
lo

p
ri

d
e
 0.03 

20 

6.5 
± 

1.9 

5.7 
± 

1.5 

4.9 
± 

1.7 

0.04 
± 

0.01 

0.04 
± 0 

0.04 
± 

0.01 

1.35 
± 

0.09 

1.17 
± 

0.08 
^ 

0.97 
± 

0.08 

5.47 
± 

0.29 
^^ 

4.85 
± 

0.33
* 

3.43 
± 

0.37 

1.4 
± 

0.05 

1.4 
± 

0.04 

1.43 
± 

0.07 

0.06 

8.3 
± 

2.2 
** 
^^ 

7.2 
± 

2.0 
** 

7.5 
± 

1.9 
^ **  

0.09 
± 

0.03 

0.07 
± 

0.01 

0.05 
± 

0.01 

1.68 
± 

0.19
*** 

^^^ 

1.14 
± 

0.11 
^ 

1.11 
± 

0.11 

6.43 
± 

0.3 
^^^ 

5.71 
± 

0.43 
^^^ 
** 

4.19 
± 

0.28 
^ 

1.49 
± 

0.05 

1.48 
± 

0.05 

1.53 
± 

0.06 

N
ic

o
ti

n
e

 +
 

E
ti

c
lo

p
ri

d
e
 

0.5 + 
0.03 

 
5.0 
± 

1.8 

3.1 
± 

1.4 

4.1 
± 

1.8 

0.07 
± 

0.03 

0.06 
± 

0.02 

0.07 
± 

0.02 

1.05 
± 

0.07 

0.95 
± 

0.11 

0.92 
± 

0.12 

4.81 
± 

0.28 

3.69 
± 

0.38 

2.7 
± 

0.38 

1.58 
± 

0.08 

1.64 
± 

0.1 

1.56 
± 

0.07 

0.5 + 
0.06 

 

13.5 
± 

2.9*
** 

^^^ 

11 ± 
2.4*
** 

^^^ 

10.7 
± 

2.8*
** 

^^^ 

0.06 
± 

0.03 

0.04 
± 

0.01 

0.05 
± 

0.03 

1.33 
± 

0.15 

1.33 
± 

0.15 
^^^ 
**  

0.9 
± 

0.1 

5.62 
± 

0.46 
^^ 

4.87 
± 

0.43 

4.03 
± 

0.49 
^ 

1.61 
± 

0.12 

1.51 
± 

0.1 

1.57 
± 

0.11 

V
e

h
ic

le
 

Saline 20 
1.3 
± 

0.3 

0.8 
± 

0.2 

0.5 
± 

0.2 

0.08 
± 

0.02 

0.06 
± 

0.02 

0.09 
± 

0.03 

1.04 
± 

0.06 

0.86 
± 

0.05 

0.8 
± 

0.06 

5.44 
± 

0.31 

3.79 
± 

0.28 

2.85 
± 

0.3 

1.82 
± 

0.19 

1.72 
± 

0.13 

1.87 
± 

0.23 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 
(min) 

% Omissions 
Perseverative 

Responses 

Correct 
Response 
Latency 

Incorrect 
Response 
Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 
A

m
p

h
e

ta
m

in
e
 

0.6 10 
2.9 
± 

1.0 

2.2 
± 

0.7 

3.8 
± 

1.5 

0.07 
± 

0.01 

0.11 
± 

0.02 

0.07 
± 

0.02 

0.87 
± 

0.07 

0.82 
± 

0.07 

0.96 
± 

0.12 

3.79 
± 

0.37 
** 

3.19 
± 

0.31 

2.69 
± 

0.35 

1.55 
± 

0.11 

1.82 
± 

0.27 

1.53 
± 

0.15 

S
C

H
 2

3
3

9
0
 0.01 

30 

9.3 
± 

2.4 

8.8 
± 

2.4 
*^ 

5.8 
± 

1.6 

0.16 
± 

0.1 

0.14 
± 

0.07 

0.13 
± 

0.06 

1.39 
± 

0.13 
^^ 

1.08 
± 

0.07 

0.98 
± 

0.06 

6.87 
± 

0.44 
^^^ 

6.03 
± 

0.41 
^^^ 

* 

4.22 
± 

0.46 
^ 

2.43 
± 

0.9 

1.75 
± 

0.2 

4.93 
± 

3.32 

0.02 

15.8 
± 

3.4 
** 
^^ 

16.3 
± 

3.5 
*** 

^^^ 

13.5 
± 

3.2 
** 
^ 

0.04 
± 

0.01 

0.01 
± 

0.01 

0.07 
± 

0.03 

1.66 
± 

0.24 
^^^ 
** 

1.35 
± 

0.25 
^^ 
* 

1.03 
± 

0.09 

7.35 
± 

0.45 
^^^ 

5.33 
± 

0.31 
^^ 

5.01 
± 

0.57 
^^^ 

1.82 
± 

0.14 

2.16 
± 

0.56 

3 ± 
1.27 

A
m

p
h

e
ta

m
in

e
 +

  
  

  
  

  
  

  

S
C

H
 2

3
3

9
0
 0.6 + 

0.01 
 

3.6 
± 

1.4 

4.0 
± 

1.2 

4.8 
± 

1.3 

0.11 
± 

0.04 

0.14 
± 

0.06 

0.09 
± 

0.02 

0.89 
± 

0.05 
 

0.86 
± 

0.05 

0.96 
± 

0.11 

4.7 
± 

0.43 
 

4.05 
± 

0.56 
 

2.57 
± 

0.34 
 

1.57 
± 

0.08 

1.72 
± 

0.12 

1.65 
± 

0.11 

0.6 + 
0.02 

 

5.9 
± 

2.56 
 

4.9 
± 

2.4 

5.6 
± 

2.5 
 

0.1 
± 

0.03 

0.1 
± 

0.04 

0.13 
± 

0.05 

1 ± 
0.06 

 

0.82 
± 

0.06 
 

0.86 
± 

0.07 

4.58 
± 

0.47 
 

3.59 
± 

0.44 
 

3.3 
± 

0.43 
^^ 

1.6 
± 

0.15 

1.66 
± 

0.13 

1.65 
± 

0.16 

V
e

h
ic

le
 

Saline 20 
3.1 
± 

0.8 

2.2 
± 

0.6 

2.0 
± 

0.5 

0.05 
± 

0.01 

0.06 
± 

0.02 

0.13 
± 

0.07 

1.17 
± 

0.08 

0.88 
± 

0.05 

0.79 
± 

0.04 

5.82 
± 

0.36 

4.32 
± 

0.32 

2.93 
± 

0.26 

1.51 
± 

0.07 

1.46 
± 

0.05 

1.56 
± 

0.08 

Table 5.11. Effects of combination of amphetamine and SCH 23390 on other dependent measures on 5-CSRTT from Experiment 2. *Compared to 
saline. ^Compared to nicotine or amphetamine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001. 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 
(min) 

% Omissions 
Perseverative 

Responses 

Correct 
Response 
Latency 

Incorrect 
Response 
Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 3s  5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 

A
m

p
h

e
ta

m
in

e
 

0.6 10 
2.7 
± 

0.7 

2.5 
± 

1.0 

2.5 
± 

0.8 

0.08 
± 

0.02 

0.07 
± 

0.01 

0.1 
± 

0.02 

0.8 
± 

0.04 

0.89 
± 

0.11 

0.87 
± 

0.08 

3.94 
± 

0.32 
^^ 

2.37 
± 

0.33 

2.59 
± 

0.29 

1.46 
± 

0.06 

1.63 
± 

0.13 

1.54 
± 

0.09 

E
ti

c
lo

p
ri

d
e
 

0.03 20 

6.4 
± 

2.2 
* 

5.6 
± 

2.0 
* 

4.8 
± 

1.8 
* 

0.04 
± 

0.01 

0.05 
± 

0.01 

0.04 
± 

0.01 

1.36 
± 

0.13 
^^^ 

* 

1.18 
± 

0.17 

1.12 
± 

0.2 

5.25 
± 

0.26 
^ 

4.26 
± 

0.39 
^ 

2.47 
± 

0.32 

1.48 
± 

0.05 

1.48 
± 

0.05 

1.48 
± 

0.05 

A
m

p
h

e
ta

m
in

e
 +

  
  

  
  

  
  

  

E
ti

c
lo

p
ri

d
e
 

0.6 + 
0.03 

 
5.5 
± 

2.2 

5.4 
± 

2.1 

5.2 
± 

1.8 

0.09 
± 

0.03 

0.11 
± 

0.05 

0.1 
± 

0.03 

1.05 
± 

0.12 

0.88 
± 

0.08 

1 ± 
0.13 

4.64 
± 

0.43 
* 

3.45 
± 

0.44 

3.18 
± 

0.57 

1.48 
± 

0.07 

1.51 
± 

0.07 

1.59 
± 

0.11 

V
e

h
ic

le
 

Saline 20 
1.6 
± 

0.3 

0.9 
± 

0.3 

0.5 
± 

0.2 

0.06 
± 

0.01 

0.05 
± 

0.01 

0.05 
± 

0.01 

1.03 
± 

0.05 

0.9 
± 

0.06 

0.86 
± 

0.08 

5.34 
± 

0.3 

3.44 
± 

0.28 

2.5 
± 

0.3 

1.62 
± 

0.15 

1.46 
± 

0.06 

1.45 
± 

0.06 

Table 5.12. Effects of combination of amphetamine and eticlopride on other dependent measures on 5-CSRTT from Experiment 2. *Compared to 
saline. ^Compared to nicotine or amphetamine. * ^p ≤ 0.05, ** ^^p ≤ 0.01, *** ^^^p ≤ 0.001. The higher eticlopride dose of 0.06 mg/kg was not 
included in the AMPH-eticlopride analysis due to omissions > 50%. 
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Chapter 6 Interaction between Cholinergic and Dopaminergic Neurotransmitters 
that Influence Attention and Response Inhibition under Conditions of Circadian 

Disruption 

6.1 Abstract 

Circadian rhythms are endogenous rhythms governing behavior and physiology. 

Circadian disruption is an environmental factor that impacts cognition and increases the 

risk of neurodegenerative disease by altering the circadian clock at a molecular level. 

Conventional sources of circadian disruption in human populations include working 

beyond the regular hours of ‘9 to 5’ (shift work) and untimely exposure to light (light-at-

night, LAN). Our study investigated the effect of 2 models of circadian disruption on 

response inhibition, which has previously been unaddressed, and attention using a 5-

choice serial reaction time task (5-CSRTT). Adult Long-Evans rats of both sexes were 

maintained on a 12h:12h light:dark cycle and were tested under one of 3 light 

conditions: light at night, light phase, and control (no light). Our hypothesis that rats 

tested under both models of circadian disruption would have reduced response 

inhibition and attention versus controls was confirmed. Because acetylcholine (ACh) 

governs circadian rhythms and attention, and dopamine (DA) modulates response 

inhibition, we performed drug challenges to examine for an interaction between the 2 

neurotransmitter systems in our models. We combined an ACh agonist (nicotine) and a 

DA receptor 1 (DR1) antagonist (SCH 23390) under the 3 circadian conditions to 

identify differential drug responses between treatment groups. We also repeated the 

same process with a DA receptor 2 (DR2) antagonist (eticlopride). SCH 23390 and 

eticlopride ameliorated the effect of nicotine in both models. The 2 circadian disruption 

models showed increased sensitivity to nicotine and the combination of nicotine and 

0.01 mg/kg SCH 23390 compared to control. This response to the combination of drugs 
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confirms an interaction between cholinergic and dopaminergic neurotransmitters and 

identifies novel effects of circadian disruption on response to nicotine.  

6.2 Introduction 

Circadian rhythms are 24-hour endogenous rhythms that govern both behavior and 

physiology. The suprachiasmatic nucleus (SCN), the master clock, located in the 

hypothalamic region of the brain governs these rhythms. Factors like light and 

demanding cognitive tasks have a direct effect on these internal rhythms (Gritton et al., 

2013; Silver and Kriegsfeld, 2014). These rhythms can be disturbed when there is a 

conflict between the external cues and intrinsic rhythms (Arble et al., 2010; Karatsoreos 

et al., 2011; Potter and Newhouse, 2008). We continue to use the two models, shift 

work (Wright et al., 2013) and light at night (LAN) (Dominoni et al., 2016; Fonken and 

Nelson, 2014) that we established in Chapter 4. Both the models we used in Chapter 4 

showed a significant deficit in attention and response inhibition compared to the control 

group which was tested in their active phase under red light.  

The deficits in attention due to circadian disruption match with previously established 

literature (Gritton et al., 2009) as attention and circadian rhythmicity are both modulated 

by acetylcholine (ACh) signaling (Gritton et al., 2012; Landgraf et al., 2014; Wright et al., 

2012). We also reported the effects of circadian disruption on impulsive behavior for the 

first time. Previous research and our results from Chapter 5 establish that impulsive 

behavior is predominantly governed by dopamine (DA) via binding to dopamine-1 or -2 

receptors (DR1s or DR2s) (Dalley and Roiser, 2012). In the prefrontal cortex (PFC), 

which is crucial for both attention and impulsive behavior, nucleus accumbens (NAc), 

striatum and the ventral tegmental area (VTA), cholinergic signaling interacts with 
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dopaminergic neurotransmission. ACh stimulates the release of DA from presynaptic 

terminals through the nicotinic ACh receptors (nAChRs) in these brain regions (van 

Gaalen et al., 2006a; Livingstone and Wonnacott, 2009; Picciotto et al., 2012). These 

effects were established in Chapter 5 under the LAN condition where we observed that 

impulsive behavior was affected by cholinergic drugs. 

Studies using clock gene mutations have established that regulation of various 

aspects of dopaminergic signaling are under circadian control. Clock expression in VTA 

and NAc is implicated in reward processing and mood (McClung et al., 2005; Roybal et 

al., 2007). ClockΔ19 mutant mice show abnormal mesolimbic dopaminergic signaling 

and exhibit increased sensitivity to rewarding substances compared to wild-type mice 

(McClung et al., 2005; Ozburn et al., 2012). REV-ERBα, a circadian nuclear receptor, 

represses the expression of tyrosine hydroxylase (Th) in the midbrain implicating the 

circadian proteins in the transcriptional control of DA-related proteins (Chung et al., 

2014). Both DR1 and DR2 receptors also possess canonical E-box sites where the 

CLOCK/BMAL1 heterodimer binds to regulate the rhythmic expression of these 

receptors (Akhisaroglu et al., 2005).  

Interestingly, DA receptors (DR1 and DR2) also affect the expression of clock genes 

(Imbesi et al., 2009). Weaver et al. established that D1 receptors are expressed in the 

SCN and that DA signaling could influence the entrainment to cues (Weaver et al., 

1992, 1995). This observation was further substantiated by a study where timed D1 

agonists administered to SCN-lesioned pregnant hamsters caused fetal entrainment 

(Viswanathan and Davis, 1997). This study helped establish that in the absence of input 

from the SCN, stimulation of DR1 aided in the alignment of external cues. This SCN 
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DR1 expression is known to persist into adulthood (Rivkees and Lachowicz, 1997; 

Weaver et al., 1992). Luo et al. identified previously unknown populations of neurons in 

the VTA. A large portion of these novel neurons in the VTA were recorded in the dark 

phase, the active phase for rats (Luo et al., 2008). They also identified a novel 

projection pathway from the SCN to VTA via the medial preoptic nucleus (Luo and 

Aston-Jones, 2009). These studies establish that, like cholinergic signaling (Gritton et 

al., 2009, 2012, 2013), there is a possibility of a bidirectional relationship between 

dopaminergic signaling and circadian rhythms. The disruption of one system could have 

detrimental effects on the other.  

The purpose of this experiment was to allow us to understand the effect of circadian 

disruptions on the interaction between cholinergic and dopaminergic neurotransmission. 

We accomplished this by studying the effects of cholinergic and dopaminergic drugs on 

impulsive behavior under different conditions of circadian disruption which have been 

previously unexplored. We examined the effects of combinations of the cholinergic 

agonist, nicotine, and dopaminergic antagonists for both DR1 (SCH 23390) and DR2 

(eticlopride) on accuracy and premature responding on 5-CSRTT, where the behavioral 

measures correspond to attention and impulsive behavior (Robbins, 2002). Chapter 5 

and other studies have established that nAChRs have a critical role in modulating 

attention (Havekes et al., 2011; Wallace and Bertrand, 2013), and an interaction 

between nicotinic signaling and the DA pathways modulates impulsive behavior 

(Livingstone and Wonnacott, 2009). Like in Chapter 5, we administered these drugs 

individually and then combined nicotine with DA receptor antagonists. 
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6.3 Materials and Methods 

Subjects 

Two cohorts of Long-Evans rats, with 30 rats (15 of each sex) in the first cohort and 42 

(21 of each sex) in the second cohort, approximately 70 days of age were purchased 

from Envigo (Indianapolis, IN.) Rats were single-housed in polycarbonate shoebox 

cages with wood-chip bedding (Beta Chip, Northeastern Products Corp., Warrensburg, 

NY) in a temperature- and humidity-controlled room (targeted 22o C, 40-55% humidity). 

2020X Teklad Rodent Diet (Envigo) was fed to the rats. Food restriction was initiated 

after a one-week acclimation period to reduce rats’ body weights over 2 weeks to target 

weights of 85% of their free-feed body weights. After that, target weights were 

incrementally increased by 5-10 g every 2 weeks, with a maximum of 250 ± 10 g for 

female rats and 350 ± 10 g for male rats, to allow for growth. Food restriction was 

intended to maintain motivation for performing operant-based behavioral tasks. Tap 

water was provided ad libitum. TestDiet sucrose pellets (AIN-76A 5TUL, 45 mg pellets, 

St. Louis, MO) were used for food-based reinforcement during behavior testing. After 1 

week of acclimation the rats were randomly assigned to 3 different light conditions and 

were housed in chambers where the light cycle was regulated and maintained in the 

same light condition until the end of the study. Ultimately, 12 males and 12 females 

were maintained under each light condition.   

The two conditions of circadian disruption included light at night (LAN) group and 

light phase (shift work) group. The rats in LAN were tested 4 h after the lights were 

switched off, during their active period. They were subjected to ambient light during 

testing and transportation to the testing room. The light phase group of rats was tested 

4 h after the lights were switched on which was during their physiological resting phase. 
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The control group of rats was tested 4 h after the lights were switched off during their 

active phase, with no exposure to ambient light. Control rats were handled under red 

lights exclusively. In the testing chambers, control rats were exposed to a red LED 

stimulus cue light as well as low-intensity, yellow LEDs from the 5 nose-poke holes. 

During the daily testing sessions for both circadian disruption groups, rats were 

exposed to overhead fluorescent white. While in the testing chambers, rats were 

exposed to the house light (2.8 watt bulb) in each chamber, a 2.8-watt stimulus cue 

light, and a low-intensity, yellow LED from the 5 nose-poke holes during both behavior 

tasks. The light intensity in the home cages ranged from 220 to 360 lux (average 290 

lux). Rats were behavior tested at either zeitgeber time (ZT) 4 or 16 where the 

environmental cues are called zeitgebers (timegiver).  Timers were staggered to allow 

light-dark transitions for a maximum of 12 rats at a time, counterbalanced across sexes 

and treatment groups, to permit adequate time for daily testing of all rats. This schedule 

was maintained across cohorts. Figure 1 shows the schematic of the experimental plan.  

 

Apparatus and the 5-Choice Serial Reaction Time Task (5-CSRTT) 

Behavioral testing began 3 weeks after the rats arrived when rats were approximately 

90 days of age. Training and testing sessions, 1 per day, were performed 6 days each 

week in 12 5-choice operant behavior-conditioning chambers housed in sound-insulated 

and ventilated cubicles (Med Associates Inc., St. Albans, VT). Each chamber consisted 

of 5 evenly-spaced nose-poke cue holes (2.5 x 2.5 x 2.5 cm and 2 cm above the floor) 

on one wall. Each aperture had a yellow LED light centered in the back and an infrared 

photocell to detect head entries. The opposite wall had a pellet trough with a head-entry 
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detector in the center panel, a stimulus cue light directly above it, and then a house light 

mounted 6 cm above the cue light.  Experimental contingencies were programmed 

using MedState Notation programming language, and data acquisition was performed 

using MED-PC IV software (version 4.38, Med Associates). Behavioral-testing programs 

were modified from those used by Beaudin et al. (Beaudin et al., 2017). 

     During the 7 initial training phases of the 5-CSRTT, rats learned to associate nose 

pokes in the pellet trough and the 5 nose-poke holes with food reinforcement. The 

house light remained on during all these phases. The criterion to advance from one 

phase to the next was 99 or 100 successful nose pokes. Each session during the 7 

initial phases lasted until 100 pellets were earned or 60 min elapsed. Rats took an 

average of 8 days, ranging from 7 to 15 days, to complete initial training. The next 

phase of training was Visual Discrimination 1, during which cue lights were introduced. 

Cue lights were illuminated for 15 s during each trial. Nose pokes in the illuminated cue 

hole resulted in reinforcer delivery. Poking in any other cue hole, or not poking during 

the 15 s period, resulted in a time-out (see next section). Rats were tested on this phase 

until criteria of making 75% or more correct responses for 2 out of three consecutive 

days were met within 15 sessions. All but one rat in this study met the criteria, taking an 

average of 8.4 days, ranging from 5 to 12 days to progress to next phase. In the next 

phase, Visual Discrimination 2, the duration of cue light illumination was shortened to 1 

s, requiring rats to be more attentive to optimize performance. Rats still had a 15 s 

limited-hold period to nose poke. Rats were tested on this phase for 5 days. 
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Sustained Attention Task 

Following the training sessions, rats were tested on the Sustained Attention phase for 

21 days. During daily sessions in each phase, the yellow LED cue lights in the 5 nose-

pokes holes would randomly illuminate in one hole per trial, in a counterbalanced 

manner, so that each hole was illuminated during an equal number of trials per session. 

The house light was illuminated except during time-out periods. Each trial began with a 

nose-poke in the pellet trough. If it was the first trial, or if the previous trial resulted in 

sucrose pellet delivery, the rat was given 3 s to consume the pellet (reinforcer duration). 

After the 3 s reinforcer duration, the rat was given a 3 s turn-around time to allow the rat 

time to orient toward the wall with the 5 nose-poke holes. If the previous trial had 

resulted in a time-out, there was no reinforcer duration after a nose poke in the trough. 

In this phase of the test, there were variable delays of 3, 5 or 7 s until a cue light would 

illuminate in a nose-poke hole. These delays consisted of the 3 s turn-around time plus 

an additional delay of 0, 2 or 4 s. The cue light in the nose-poke holes would illuminate 

for a maximum of 1 s and, concurrently, a 15 s limited-hold period would commence 

during which a nose poke could be registered.  

     One of 4 trial outcomes could result. A correct trial was when the rat poked in the 

hole in which the cue light was illuminated during the 15 s limited-hold period. An 

incorrect trial was when the rat poked in one of the other 4 holes. A premature trial 

was when the rat poked during the delay before the cue light illuminated. Premature 

nose-pokes were not recorded during the 3 s turn-around time, so premature trials only 

occurred when the cue delay was 5 or 7 s. An omission occurred when the rat did not 

poke during the limited-hold period. Correct trials resulted in a food pellet being 
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dispensed, the cue light over the feeder illuminating, and the beginning of a new trial 

when the rat retrieved the reinforcer. If the rat continued to make nose pokes in any of 

the 5 cue holes after making a correct response, those nose pokes were recorded as 

perseverative responses but had no consequence. Perseverative responses were 

recorded only when there was a correct trial. Incorrect, premature, and omission 

responses triggered an immediate 5 s time-out, during which all cue lights and the 

house light extinguished. Poking in any of the 5 nose-poke holes during a time-out reset 

the time-out timer. When 5 s elapsed without any nose pokes, the cue light above the 

pellet trough illuminated until the rat poked in the trough, thus beginning the next trial. 

Each daily session lasted until 150 trials or 60 min elapsed. For the control group of 

rats, the house light was turned off, and the cue light over the feeder was replaced with 

a red LED light.  

 

Drug Challenges  

After rats completed 21 sessions of Sustained Attention, they continued testing on that 

phase until all rats in the experiment completed 21 sessions. Subsequently, rats tested 

for an average of 5.9 extra days (range 0 to 12), prior to drug challenges commencing. 

Between the Sustained Attention phase and drug testing, rats were tested with only one 

cue delay of 5 s to maintain what was termed a baseline level of performance. Drug 

testing occurred daily Monday through Friday. Mondays and Wednesdays were 

baseline performance days with only the 5 s cue delay, Tuesdays and Fridays were 

drug administration days, and all rats received a saline injection on Thursdays. During 
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drug and saline days, all 3 cue delays (3, 5 and 7 s) were present during testing 

sessions.  

     Rats in this study received single and then paired drug combinations (see Table 6.1). 

Drugs were administered in the order listed in the table. For each drug, all doses were 

administered using a Latin square design, with a minimum of 3 days between each 

dose, before moving to the next drug. All of the drugs were dissolved in sterile 0.9% 

normal saline (Baxter Healthcare Corp., Deerfield, IL) and drugs were administered 

intraperitoneally. Concentrations of each dosing solution were adjusted so that 1 μL/g 

body weight was always administered. The drugs used and times of administration 

before beginning testing sessions were (-)-nicotine ditartrate (NIC) 20 min (Tocris 

Bioscience, Minneapolis, MN), SCH 23390 hydrochloride (SCH) 30 min (Tocris), S-(-)-

eticlopride hydrochloride (ETI) 20 min (Sigma-Aldrich, St. Louis, MO), and saline vehicle 

20 min, based on available pharmacokinetic information. Results from Chapter 5 were 

used to select and modify the doses for this study. Like the study in Chapter 5, all rats 

were initially administered 0.5 mg/kg NIC for 3 consecutive days to acclimate rats to the 

undesirable physiologic effects of NIC that might impair performance (Bizarro and 

Stolerman, 2003). One female did not make the 75% correct criteria within 15 days in 

Visual Discrimination 1 and was omitted from the study, and another female died during 

the NIC and ETI administration phase and thus was only included in analyses of drugs 

through that point. Behavior testing lasted 17 weeks.  
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Data Analysis 

R program for statistical computing and graphics (R Core Team, 2016) was used to 

calculate percent correct (number of correct responses/total trials *100), percent 

incorrect (number of incorrect responses/total trials *100), percent accuracy (percent 

correct/(percent correct + percent incorrect)), percent premature (number of premature 

responses/total trials *100), percent omissions (number of omitted responses/total 

trials *100), and average perseverative responses (sum of perseverative responses in 

all 5 nose-poke holes/number of correct responses). Latency to correct responses 

(sum of latencies to all correct responses/number of correct responses), latency to 

incorrect responses (sum of latencies to all incorrect responses/number of incorrect 

responses), and latency to collect reinforcers (sum of latencies to collect 

reinforcers/number of correct responses) were also calculated. Percent accuracy 

indicates the ability of the subject to sustain attention. Percent premature responses 

indicate deficits in response inhibition. Percent omissions is a measure of 

inattentiveness, a lack of motivation, or both (Robbins, 2002). Data are reported as 

mean ± SEM. 

      All statistical analyses were conducted using SPSS for Windows (version 24, SPSS 

Inc., Chicago, IL). Mixed model ANOVAs were used to analyze all data, with statistical 

significance set at p ≤ 0.05. The data from the 21 days of Sustained Attention phase 

were evaluated to characterize learning of the 5-CSRTT. Experimental factors of block 

(7 3-day blocks) and cue delay (3 cue delays, except for 2 for percent premature) were 

within-subjects factors, and treatment (3 light conditions) and sex were between-

subjects factors. Post-hoc testing (Bonferroni) was performed when appropriate using 
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SPSS. The data from the last 3 days of the Sustained Attention phase (block 7), when 

asymptotic performance had been reached, was evaluated with cue delay as a within-

subjects factor and treatment (3 light conditions) and sex as between-subjects factors. 

For data from drug trials, dose (2-6 doses, including controls) was a within-subjects 

factor and treatment (3 light conditions) and sex were between-subjects factor. Two sets 

of comparisons were made in this study for drugs: 1) individual and combination doses 

were compared with control, and 2) combination doses were compared with NIC alone 

to gauge the effectiveness in attenuating the effects caused by NIC. For drug trials, 

post-hoc testing (Sidak) was performed when appropriate using SPSS.  

6.4 Results 

For all data on initial learning and drug challenges, significant sex-related differences 

were infrequent and thus are only included, when present, for the 2 primary measures 

of interest, accuracy and premature responding. Data on other measures including 

perseverative responding, which was rarely affected, omissions, and latencies during 

drug trials are presented in tabular form in the Tables section to assist with 

interpretation of drug effects. Due to substantial significant differences in premature 

responding and latency to incorrect responses between cue delays, data for the drug 

trials were separately analyzed for each cue delay (3, 5, 7 s for accuracy; 5, 7 s for 

premature responses). Full F test results are reported for accuracy and premature 

responding, but not for other measures in the interest of space. 

 

 

 



 
 

155 
 

Baseline 5-CSRTT Performance  

Across the 7 blocks of testing on the Sustained Attention phase, accuracy increased, 

and premature responding decreased until asymptotic performance was reached by 

block 6 for both measures (not shown). In block 7, (See Table 6.2 and Figures 6.2-6.3) 

when the rats were said to have reached baseline performance levels, there was not a 

significant difference in accuracy between cue delays, but there was an effect of light 

condition across all 3 cue delays (F2, 65 = 43.9, p < 0.001), where LAN (p < 0.001) and 

shift work (p < 0.001) groups both showed significantly lower accuracy (Figure 6.2). For 

premature responding, the main effects of cue delay (F1, 65 = 283.5, p < 0.001) and light 

conditions (F2, 65 = 35.1, p < 0.001) were both significant. There was a significant cue 

delay by light condition interaction (F2, 65 = 27.8, p < 0.001). Post hoc analysis revealed 

that the rats under all 3 light conditions made more premature responses at 7 than at 5 

s (pcon = 0.008, pLAN and plightphase < 0.001). Control rats made fewer premature 

responses compared to rats in both models of circadian disruption of LAN (p < 0.001 at 

both cue delays) and light phase (p5s = 0.009 and p7s < 0.001) (Figure 6.3).  

Omissions were not affected by light condition but were affected by cue delay (F2, 130 

= 7.9, p = 0.001). There was a decrease in omissions at longer cue delays compared to 

3 s (p5s = 0.001 and p7s = 0.003). There was a decrease in average perseverative 

responses in block 7 under both conditions of circadian disruption compared to control 

(F2, 65 = 3.4, p = 0.04; pLAN = 0.024, plightphase = 0.002). Additionally, the main factors of 

light condition (F2, 65 = 9.1 p < 0.001) and cue delay (F2, 130 = 8.4, p < 0.001) were 

significant for latency to correct response but the interaction was not significant. Post 

hoc analysis revealed that both LAN (p = 0.006) and light phase (p < 0.001) groups took 
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longer to make a correct response. Rats in all three light conditions group took less time 

to make a correct response at both the longer cue delays of 5 s (p = 0.001) and 7 s (p = 

0.003). There was an effect of light condition on latency to make incorrect responses 

(F2, 65 = 3.4, p = 0.041), where post hoc analysis revealed that the light phase (p = 

0.044) group took longer to make incorrect responses compared to control. There was 

also a significant effect of cue delay on this measure (F2, 130 = 172.7, p < 0.001).  Post 

hoc analysis showed that rats took less time to make incorrect responses at longer cue 

delays of 5 s and 7s (p < 0.001 for both) compared to 3 s. The rats also took less time to 

make an incorrect response at 7s (p < 0.001) compared to 5s. Reinforcement latency 

did not differ between light conditions or by cue delay. 

 

Nicotine and Dopamine 1 Receptor Antagonist (SCH 23390) Trials 

Percent accuracy graphs for each cue delay are in presented in Figure 6.4, 6.5 and 6.6. 

There was an effect of light condition on accuracy at the cue delays of 3 s (F2, 71 = 30.9, 

p < 0.001), 5 s (F2, 70 = 28.6, p < 0.001) and 7 s (F2, 70 = 26.5, p < 0.001) with both 

conditions of circadian disruption having lower accuracy (p < 0.001 at all three cue 

delays for both LAN and light phase versus control). There were dose effects at 3 s (F5, 

316 = 8.6, p < 0.001), 5 s (F5, 316 = 4.2, p = 0.001), and 7 s (F5, 315 = 3.9, p = 0.002). Post 

hoc analysis revealed that at the shortest cue delay of 3 s only, NIC increased accuracy 

compared to saline (p = 0.013) (See Figure 6.4). At 5 s, SCH at the lower dose of 0.01 

mg/kg lowered accuracy compared to saline (p = 0.023). At the longest cue delay of 7s 

the combination of NIC-SCH (0.02 mg/kg) differed from NIC (p = 0.004) and saline (p = 
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0.012). There was no interaction observed between drug and light condition with 

respect to accuracy. 

For premature responding, at both cue delays there was a significant effect of light 

condition (5 s - F2, 67 = 20.7, p < 0.001 and 7 s - F2, 70 = 32.5, p < 0.001), where both 

LAN and light phase group showed greater premature responding (both p < 0.001) than 

controls as shown in Figures 6.7 and 6.8. Doses of NIC and SCH also influenced 

premature responding at both cue delays of 5 s (F5, 315 = 57.4, p < 0.001) and 7s (F5, 318 

= 56.9, p < 0.001). There was an interaction between light condition and drug at both 

cue delays of 5 s (F10, 315 = 13.6, p < 0.001) and 7 s (F10, 318 = 8.0, p < 0.001). 

At the cue delay of 5 s, post hoc analysis revealed that NIC increased impulsive 

behavior compared to saline in LAN and light phase groups (both p < 0.001) but not in 

the circadian control group. NIC + 0.01 mg/kg SCH increased premature responding 

compared to saline in the light phase (p = 0.005). In LAN group, there was a significant 

decrease in premature responding with NIC + 0.01 mg/kg SCH (p < 0.001) and NIC + 

0.02 mg/kg SCH (p < 0.001) compared to NIC. The light phase group also showed a 

significant decrease in premature responding in NIC + 0.01 mg/kg SCH (p = 0.002) and 

NIC + 0.02 mg/kg SCH (p < 0.001) compared to nicotine.   

At the cue delay of 7 s, NIC increased premature responding compared to saline in 

both LAN and light phase groups (both p < 0.001). In the LAN group, 0.01 mg/kg SCH 

decreased premature responding compared to saline (p < 0.001) while the higher SCH 

dose did not alter behavior. NIC + 0.02 mg/kg SCH also decreased premature 

responding compared to saline in LAN group (p = 0.01). There were decreases in 
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premature responding associated with NIC + 0.01 mg/kg SCH and NIC + 0.02 mg/kg 

SCH compared to NIC alone in both LAN and light phase groups (all p < 0.001) .  

Table 6.4 shows the effects of drugs and light conditions on the other dependent 

measures on 5-CSRTT. There was an effect of dose on omissions at 3 s (F5, 323 = 37.8, 

p < 0.001), 5 s (F5, 323 = 41.9, p < 0.001) and 7 s (F5, 325 = 31.7, p < 0.001). Light 

conditions altered omissions only at the longest cue delay of 7 s (F2, 74 = 5.4, p = 0.006). 

There was an interaction between dose and light condition at all 3 cue delays of 3 s (F10, 

323 = 1.9, p = 0.042), 5 s (F10, 324 = 3.1, p = 0.021) and 7 s (F10, 324 = 2.2, p = 0.013). Post 

hoc analysis for this interaction revealed that at the shortest cue delay of 3 s, 0.02 

mg/kg SCH increased omissions compared to saline (p = 0.015) in the control group. In 

the LAN group, both doses of SCH increased omissions compared to saline (p < 0.001) 

and NIC + 0.02 mg/kg SCH increased omissions compared to saline and NIC alone (p < 

0.001). In the light phase group the higher dose of 0.02 mg/kg SCH increased 

omissions compared to saline (p < 0.001) and NIC + 0.02 mg/kg SCH increased 

omissions compared to both saline (p = 0.019) and NIC (p < 0.001).  

At the cue delay of 5s, post hoc analysis revealed that in the control group, the 

higher dose of 0.02 mg/kg SCH also increased omissions compared to saline (p = 

0.003). In the LAN group, both doses of SCH increased omissions compared to saline 

(p < 0.001), and NIC + 0.02 mg/kg SCH significantly increased omissions compared to 

both saline and NIC (p < 0.001). In the light phase group NIC + 0.02 mg/kg SCH 

significantly increased omissions compared to saline (p = 0.019) and NIC (p = 0.003). 

At the 7s cue delay, there was no effect of drug dose in the circadian control group. 

Both doses of SCH (0.01 mg/kg SCH, p = 0.006 and 0.02 mg/kg SCH, p < 0.001) and 
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NIC + 0.02 mg/kg SCH (p < 0.001) increased omissions compared to saline in the LAN 

group. Omissions caused by NIC + 0.02 mg/kg SCH also increased compared to NIC in 

LAN group (p < 0.001). In light phase group the higher dose of 0.02 mg/kg SCH 

increased omissions compared to saline (p < 0.001). 

There was an effect of light condition on the latency to correct responses at all three 

cue delays of 3 s (F2, 71 = 3.6, p = 0.032), 5 s (F2, 73 = 9.1, p < 0.001) and 7 s (F2, 75 = 

4.4, p = 0.015). Post hoc analysis revealed that only the light phase group took longer 

than control group to make correct responses (p3s = 0.028, p5s < 0.001, p7s = 0.014). 

There was a light condition and dose interaction observed only at the longest cue delay 

of 7 s (F10, 323 = 2.1, p < 0.021). Post hoc analysis revealed that NIC + 0.01 mg/kg SCH 

made the rats take longer to make a correct response in light phase group compared to 

saline (p = 0.009). Latency to incorrect responses showed an effect of light condition at 

cue delays of 3 s (F2, 65 = 3.4, p = 0.032), 5 s (F2, 60 = 8, p = 0.001) and 7 s (F2, 68 = 4.5, 

p = 0.014) where post hoc analysis revealed that circadian disruption caused the rats to 

take longer to make an incorrect response (plightphase3s = 0.044; pLAN5s = 0.003 and 

plightphase5s = 0.002; pLAN7s = 0.015). Additional drug related effects are listed in Table 6.4. 

There were limited effects of dose and light condition on average perseverative 

responses and reinforcement latency.   

 

Nicotine and Dopamine 2 Receptor Antagonist (Eticlopride) Trials 

The effect of drugs and light condition on percent accuracy and percent premature 

are in presented in Table 6.5, and the other 5-CSRTT dependent measures are detailed 

in Table 6.6. The dose of 0.06 mg/kg ETI was excluded from analysis as it caused more 
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than 50% omissions in more than half the animals. Percent accuracy graphs for each 

cue delay are in presented in Figures 6.9, 6.10 and 6.11.  

The effect of light condition on percent accuracy was consistent with previous results 

at all 3 cue delays: 3 s (F2, 68 = 34.5, p < 0.001), 5 s (F2, 68 = 23.7, p < 0.001) and 7 s (F2, 

69 = 38.7, p < 0.001). Post hoc analysis revealed that the control group had significantly 

greater percent accuracy compared to both conditions of disruption (all p < 0.001) at all 

three cue delays. While the main effect of dose was significant at the 3 s (F3, 182 = 7.3, p 

< 0.001), 5 s (F3, 183 = 5.6, p = 0.001) and 7 s (F3, 184 = 3.9, p = 0.01) cue delays, findings 

on post hoc analysis were limited. The dose of 0.03 mg/kg of ETI and NIC + 0.03 mg/kg 

ETI decreased accuracy compared to NIC alone (p = 0.001) at 3 s. At 5 s cue delay, 

NIC + 0.03 mg/kg ETI decreased accuracy compared to both NIC (p < 0.001) and saline 

(p = 0.035). At the longest cue delay of 7 s, NIC + 0.03 mg/kg ETI decreased accuracy 

compared to saline (p = 0.022). 

Figures 6.12 and 6.13 shows the effects of light condition, NIC and ETI on 

premature responding. Light condition altered premature responding at both 5 s (F2, 68 = 

8.8, p ≤ 0.001) and 7 s (F2, 70 = 22.5, p ≤ 0.001) cue delay. Post hoc analysis showed 

that the control group made fewer premature responses compared to both LAN (p < 

0.001 at both cue delays) and light phase groups (p5s = 0.029 and p7s < 0.001). There 

was a dose effect at both 5 s (F3, 183 = 20.7, p < 0.001) and 7 s (F3, 188 = 19.5, p ≤ 

0.001). Post hoc analysis revealed that at 5 s, NIC (p < 0.001) and NIC + 0.03 mg/kg 

ETI (p = 0.002) increased premature responding compared to the saline. At the 7 s cue 

delay, the post hoc analysis showed that NIC increased premature responding 

compared to saline (p < 0.001), while 0.03 mg/kg ETI and NIC + 0.03 mg/kg ETI 
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decreased premature responding (p < 0.001) compared to NIC. Effects of NIC and ETI 

on other parameters are presented in Table 6.6 but are not discussed. 

6.5 Discussion 

The present study examined the effects of combinations of cholinergic and 

dopaminergic drugs on accuracy and premature responding on 5-CSRTT, where the 

behavioral measures correspond to attention and impulsive behavior (Robbins, 2002). 

The motivation for the study in this chapter was based on the effects we saw on 

attention and impulsive behavior in both models of circadian disruption (LAN and light 

phase) in Chapter 4. We successfully reproduced the effects of circadian disruption 

detailed in Chapter 4 during the 21 days of the Sustained Attention phase before 

starting the drug trials. The overall results of the study indicate minimal effects of drugs 

(single and combination) on percent accuracy, which is a proxy for attention. The effects 

were more significant for percent premature which is an indicator of impulsive behavior. 

This study is the first of its kind to examine the effects of circadian disruption on the 

interaction between cholinergic and dopaminergic neurotransmitters in their role in 

governing impulsive behavior.  

The combination of NIC (0.05 mg/kg) and SCH (0.01 and 0.02 mg/kg) had minimal 

effect on attention. The effect of light condition was consistent with our previously 

observed results, with the control group being more attentive. The combination of NIC 

and SCH had prominent effects on impulsive behavior. We hypothesize that this was 

due to NIC increasing DA release from presynaptic terminals, increasing impulsive 

behavior. Meanwhile SCH countered the effects of NIC, reducing premature responding 

by itself and in combination with NIC, consistent with previous results and literature (van 
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Gaalen et al., 2006b; Hahn et al., 2002). We saw these effects of drugs in light phase 

and LAN groups but not in the control group of rats at both cue delays when the 

combination of NIC and SCH was administered. The cumulative effects of drug 

treatment and light condition were more pronounced at the longer cue delay of 7 s. 

There was an increase in impulsive behavior separate from drug effects in both LAN 

and light phase models. Nicotine increased impulsive behavior in both models of 

circadian disruption compared to control group. Even though SCH ameliorated the 

effects of NIC within the LAN and light phase groups, within these 2 groups there still 

was a significant increase in impulsive behavior as compared to controls, reflecting the 

underlying effect of circadian disruption. Although speculative at this time, it is possible 

that SCH 23390 bound DR1 in the SCN and altered the already disrupted rhythms in 

LAN and light phase groups, thus increasing deficits in cognition (Rivkees and 

Lachowicz, 1997; Weaver et al., 1992). Studies by Rivkees and Weaver established the 

presence of DR1 in the SCN, but this is the first study to explore the effects they could 

have on circadian disruption and cognition. Further studies are needed to validate this 

relationship. 

Nicotine (0.05 mg/kg) and ETI (0.03 mg/kg), individually and in combination, had 

limited effects on attention, compared to the effects on impulsivity. The main effect of 

light condition was consistent with previously observed results. Nicotine and ETI more 

strongly altered impulsive behavior in this study. Nicotine (0.05 mg/kg) increased 

impulsive behavior and the combination of nicotine and 0.03 mg/kg ETI ameliorated the 

effect of nicotine. The control group of rats had better response inhibition compared to 

both groups of circadian disruption. We hypothesized that administration of NIC 
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increased the baseline levels of DA, thus increasing impulsive behavior, but the 

antagonistic nature of SCH 23390 and eticlopride limited these effects, which are 

identical to the effects we saw in Chapter 5. Our results in the previous chapter 

established the relationship between cholinergic and dopaminergic signaling in 

influencing impulsive behavior on 5-CSRTT under one light condition which was the 

LAN model. Now we have been able to demonstrate that differential response to drugs 

is more prominent in 2 different models of circadian disruption as compared to the 

control group.  

It has been shown that in vivo administration of NIC increases the release of 

glutamate, a neurotransmitter in the retinal hypothalamic tract. Glutamate signals photic 

cues to the SCN and can increase the firing of SCN neurons to produce phase shifts 

(Miller et al., 1987). The concentration of the endogenous agonist, ACh, can be altered 

by untimely exposure to light (Murakami et al., 1984). Additionally, a pulse of light can 

stimulate the synthesis of choline acetyltransferase, an enzyme catalyzing the synthesis 

of ACh, which is present in the SCN (Brownstein et al., 1975). Considering the above, 

our findings suggest that there is an interaction between nicotine administration and 

circadian disruption (LAN and light phase) which alters premature responding. Part of 

this effect may be due to nicotine stimulating the nAChRs present on the presynaptic 

terminals of DA neurons (Livingstone and Wonnacott, 2009), but other types of 

interactions between nicotine and circadian disruption may also be important.  

It is possible that circadian disruption alters the endogenous levels of DA as various 

aspects of DA neurotransmission are under direct clock control. For example, 

monoamine oxidase A (Maoa) is directly regulated by the CLOCK/BMAL1 heterodimer 
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(Hampp et al., 2008). Tyrosine hydroxylase (Th), the rate limiting enzyme in the 

synthesis for DA, also exhibits diurnal variation under normal conditions (Sleipness et 

al., 2007; Webb et al., 2009). Imbesi et al. showed that DA receptors differentially 

altered the expression of clock genes in the striatum. Their study established that the 

dopamine receptors mediate psychostimulant-induced changes in clock gene 

expression (Imbesi et al., 2009).   

DA receptor expression has also been shown to be rhythmic, and canonical E-box 

sites are present in dopamine receptor 1 (Drd1) and dopamine 2 receptor (Drd2) genes, 

which are differentially expressed, suggesting that these genes are also directly 

controlled by clock genes (Parekh et al., 2015). Mohawk et al. established that the DR1 

antagonist SCH 23390, disrupted phase synchrony in peripheral tissues like liver and 

lungs and had similar effects even when combined with methamphetamine injections 

(Mohawk et al., 2013). It is a possibility that we are seeing similar effects on circadian 

disruption by the DR1 antagonist in our system as well. Hampp et al. showed that Per2 

mutant mice (another clock-component gene) had lower expression of DR1 (Hampp et 

al., 2008). We speculate that circadian disruption caused altered expression of clock 

genes, which in turn affected the expression of D1 and D2 receptors. The differential 

expression of the D1 and D2 receptors due to circadian disruption, in turn, could have 

modulated their behavioral responses observed in our study. Hood et al. showed a 

direct relationship between extracellular DA and Per2 in the dorsal striatum where DA 

concentrations peak 6 h ahead of Per2. Alterations in dopaminergic neurotransmission 

had direct effects on the expression of Per2 (Hood et al., 2010).  
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We hypothesize that the increased sensitivity to drugs that we observed in the 

models of circadian disruption is due to altered expression of molecular components 

under circadian control. The bidirectional relationship between dopaminergic and clock-

component genes is potentially the main cause for the increase in impulsive behavior 

we observed. Additionally, our results suggest a more significant role for modulation by 

DR1s. These receptors are present in a greater majority than DR2s in the SCN and 

assist in entraining the organism to photic cues and help modulate response inhibition. 

Our model of circadian disruption appears to consistently yield deficits in attention and 

response inhibition. Despite both D1 and D2 receptors playing a role in modulating 

response inhibition, the combined effects of circadian disruption and drugs seem to be 

predominantly modulated by DR1. We need to further explore the effects of D1 

receptors on responses to drugs and circadian disruption to better understand the 

underlying mechanism by which circadian disruption alters behavior and causes 

differential responses to nicotine. 
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6.6 Figures and Tables 

 

 
Figure 6.1. Schematic of the experiment plan that was followed for both the cohorts of rats.  
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Drugs Mechanism Doses (mg/kg) 

Nicotine nAChR agonist 0.5 x 3 sessions 

Nicotine/SCH 23390 nAChR agonist/DR1 antagonist 0.5/0.01, 0.02 

Nicotine/Eticlopride nAChR agonist/DR2 antagonist 0.5/0.03, 0.06 

Table 6.1. Drug combinations and doses administered. DR1/DR1, dopamine receptors 1 and 2; nAChR, 
nicotinic acetylcholine receptor 
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Figure 6.2. In block 7, % accuracy, a measure of attention was siginificantly diminished in rats in Light at 
Night (LAN) and Light Phase (LP) groups compared to control group (CON). ***p < 0.001 compared to 
control.  
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Figure 6.3. Percent premature, a measure of impulsive behavior, in block 7, for the three light conditions. 
Control (CON), Light at Night (LAN) and Light Phase (LP) shows increased impulsivity compared to 
control (*). Rats at the longer cue delay of 7 s also had greater % premature responding compared 5 s (# 
compared to 5 s). ***/### p < 0.001, **/## p < 0.01. 
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Table 6.2. Dependent measures from Block 7 of the Sustained Attention phase with cue delay 3 s, 5 s and 7s, for all three light conditions. 
Significant differences in accuracy and premature responding were seen in the light at night and light phase groups compared to the control group. 
Premature responding was significantly greater at the longest cue delay of 7s. #Compared to control group. *Compares cue delay 3 s to 5 s. 
^Compares 3 s to 7 s. †Compares 5 s to 7 s. * ^ †p ≤ 0.05, ** ^^ ††p ≤ 0.01, *** ^^^ †††p ≤ 0.001. 

 

 

 

 

 

 

 

 

 
Treatment 

Group 

% Accuracy 
% 

Premature 
% Omission 

Perseverative 
Responses 

Correct 
Response 
Latency 

Incorrect 
Response 
Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3 s 5 s 7 s 5 s 7 s 3 s 5 s 7 s 3 s 5 s 7 s 3s 5s 7s 3s 5s 7s 3s 5s 7s 

B
lo

c
k
 7

 

Light at 
Night 

72.9  
±  

2.4 
### 

72.4  
±  

1.8 
### 

71.7  
±  

2.3 
### 

26.2  
±  

2.9 
### 

51.2  
±  

3.5 
###  

††† 

2.5  
±  

0.6 

1.8  
±  

0.7 
*** 

1.8  
±  

0.7 
^^ 

0.07  
±  

0.01 
* 

0.06  
±  

0.01 
* 

0.07  
±  

0.01 
* 

1.13  
±  

0.07 
## 

1.01  
±  

0.05 
## 

*** 

0.99  
±  

0.07 
## 

^^ 

4.07  
±  

0.25 

3.66  
±  

0.2 
*** 

0.99  
±  

0.07 
^^^ 
††† 

1.29  
±  

0.05 

1.28  
±  

0.04 

1.32  
±  

0.06 

Light Phase 

70.6  
±  

2.7 
### 

74.4  
±  

2.3 
### 

70  
±  

2.7 
### 

19  
±  

2.3 
## 

46.2  
±  

4.2 
### 

††† 

2.7  
±  

0.7 

1.6  
±  

0.4 
*** 

1.7  
±  

0.6 
^^ 

0.06  
±  0 
** 

0.07  
±  

0.01 
** 

0.03  
±  0 
** 

1.24  
±  

0.07 
### 

1  ±  
0.05 

### 

*** 

1.07  
±  

0.09 
### 

^^ 

4.67  
±  

0.26 
# 

3.46  
±  

0.24 
# 

*** 

1.07  
±  

0.09 
# 

^^^ 
††† 

1.47  
±  

0.1 

1.49  
±  

0.08 

1.42  
±  

0.05 

Control 
92.6  
±  1 

93.6  
±  

0.6 

92.5  
±  1 

4.4  
±  

0.7 

11.9  
±  

1.9 
†† 

4.4  
±  

1.1 

2.7  
±  

0.8 
*** 

2.9  
±  

0.8 
^^ 

0.14  
±  

0.02 

0.13  
±  

0.02 

0.13  
±  

0.02 

0.84  
±  

0.02 

0.81  
±  

0.02 
*** 

0.78  
±  

0.02 
^^ 

3.92  
±  

0.5 

2.58  
±  

0.29 
*** 

0.78  
±  

0.02 
^^^ 
††† 

1.34  
±  

0.05 

1.34  
±  

0.05 

1.37  
±  

0.06 
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Figure 6.4. Effects of light condition on attention when NIC (0.05 mg/kg) and SCH 23390 (0.01mg/kg and 
0.02 mg/kg) were administered individually and in combination at cue delay of 3 s. Both LAN and light 
phase groups showed a reduction in accuracy compared to control. Nicotine reduced accuracy in all 
groups only at this cue delay. #Compares control group to LAN and light phase.*Compares dose to saline. 
###p < 0.001. *p < 0.05. 
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Figure 6.5. Effects of light condition on attention when NIC (0.05 mg/kg) and SCH 23390 (0.01 mg/kg and 
0.02 mg/kg) were administered individually and in combination at cue delay of 5 s. Both LAN and light 
phase groups showed a reduction in accuracy compared to control. Limited effects of drugs were 
observed. #Compares control group to LAN and light phase. ### p < 0.001. 
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Figure 6.6. Effects of light condition on attention when NIC (0.05 mg/kg) and SCH 23390 (0.01 mg/kg and 
0.02 mg/kg) were administered individually and in combination at cue delay of 7s. Both LAN and light 
phase groups showed a reduction in accuracy compared to control. Limited effects of drugs were 
observed. #Compares control group to LAN and light phase. ### p < 0.001. 
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Figure 6.7. Effects of light conditions and the cholinergic agonist, nicotine, and the DR1 antagonist, SCH 
23390, on impulsive behavior at 5 s cue delay. Both LAN and light phase groups had significantly more 
premature responding compared to control. Significant dose effects of NIC and SCH were seen in both 
conditions of circadian disruption but not in the control group. #Compares Control group to Light at Night 
and Light phase. *Compared to Saline within each light condition group. ^Compared to nicotine within 
each light condition group. ** ^^ p <0.01, ### *** ^^^ p < 0.001 
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Figure 6.8. Effects of light conditions and the cholinergic agonist, nicotine, and the DR1 antagonist, SCH 
23390, on impulsive behavior at 7 s cue delay. Both LAN and light phase groups had significantly more 
premature responding compared to control. Significant dose effects of NIC and SCH were seen in both 
conditions of circadian disruption but not in the control group. #Compares Control group to Light at Night 
and Light phase. *Compared to Saline within each light condition group. ^Compared to nicotine within 
each light condition group. ** ^^ p <0.01, ### *** ^^^ p < 0.001 
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Table 6.3 Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 1 (DR1) antagonist on attention and 
impulsive behavior. #Compares Light at Night and Light Phase to Control group. † Compared Light at night to Light Phase *Compared to Saline 
within each treatment group. ^Compared to nicotine within each treatment group. * ^ p ≤ 0.05, ** ^^ p ≤ 0.01, *** ^^^ p ≤ 0.001. 

Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

Treatment 
Group 

%Accuracy %Premature 

Cue Delay Cue Delay 

3s 5s 7s 5s 7s 

Nicotine 0.5 20 

L
ig

h
t 

a
t 

N
ig

h
t 

78.6  ±  2.2 
### * 

79.7  ±  1.6 
### 

77.5  ±  2 
### 

26.7  ±  2.2 
### *** 

54.1  ±  2.9 
### *** 

SCH 
23390 

0.01 30 
70.1  ±  2.5 

### 
77.2  ±  2.6 

### * 

80.8  ±  1.5 
### 

6.7  ±  1.1 
18.3  ±  2.3 

*** 

0.02 30 
70.9  ±  2.8 

### 
75.1  ±  3 

### 
78.4  ±  3.1 

### 
3.9  ±  0.8 10  ±  1.8 

Nicotine + 
SCH 

23390  

0.5 + 
0.01 

  

79  ±  1.9 
### 

81.3  ±  1.8 
### 

82.9  ±  1.7 
### 

9.8  ±  1.6 
^^^ 

30.5  ±  3.4 
### ^^^ 

0.5 + 
0.02 

78.1  ±  2.6 
### 

73.8  ±  4.3 
### 

80.1  ±  2.7 
### * ^^ 

5.9  ±  1.3 
^^^ 

20.8  ±  2.7 
^^^ ** 

Vehicle 0 20 
74.9  ±  2.6 

 ### 
81.2  ±  1.7 

77.2  ±  1.7 
### 

8.5  ±  1 
32.9  ±  2.5 

### 

Nicotine 0.5 20 
L

ig
h

t 
P

h
a
s

e
 

75.9  ±  3.3 
### * 

80.1  ±  2.7 
### 

73.2  ±  3.2 
### 

18.6  ±  2.6 
###  †† *** 

48.8  ±  4.4 
### *** 

SCH 
23390 

0.01 30 
68.3  ±  3.1 

### 
78.6  ±  3.7 

### * 
78.7  ±  2.9 

### 
5.2  ±  0.9 20.8  ±  3.4 

0.02 30 
68.4  ±  4.3 

### 
73.5  ±  3.8 

### 
78.2  ±  3.4 

### 
5  ±  1.2 15.4  ±  2.9 

Nicotine + 
SCH 

23390  

0.5 + 
0.01 

  

73.3  ±  3.9 
### 

81.5  ±  2.8 
### 

78.8  ±  3.4 
### * ^^ 

11.4  ±  1.8 
## ^^ ** 

30.7  ±  4.1 
### ^^^ 

0.5 + 
0.02 

73.5  ±  4.7 
### 

77.6  ±  2.8 
### 

78.5  ±  3.2 
### * ^^ 

6.9  ±  1.7 
^^^ 

22  ±  4.1 
^^^ 

Vehicle 0 20 
69.4  ±  3.8 

### 
77.5  ±  2.9 

### 
74.3  ±  3.6 

### 
4.7  ±  0.8 

27.9  ±  3.3 
### 

Nicotine 0.5 20 

C
o

n
tr

o
l 

96.9  ±  0.6 
* 

94.9  ±  0.7 91.7  ±  1.5 4.5  ±  1 14  ±  2.6 

SCH 
23390 

0.01 30 91.2  ±  1.2 
93.5  ±  1 

* 
94.3  ±  0.8 2.5  ±  0.9 5.6  ±  2 

0.02 30 86.6  ±  3.8 90.3  ±  2.1 93  ±  1.4 1  ±  0.7 4  ±  0.9 

Nicotine + 
SCH 

23390  

0.5 + 
0.01 

  

94.9  ±  1.1 95  ±  1.1 95  ±  1 3.3  ±  0.9 8.2  ±  1.5 

0.5 + 
0.02 

93.5  ±  2.6 92.3  ±  1.6 
91.7  ±  1.2 

### * ^^ 
2.6  ±  0.5 10.1  ±  1.9 

Vehicle 0 20 92.4  ±  1.5 93.5  ±  1.2 91.7  ±  1.2 3.7  ±  1 10  ±  2.2 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

Treatment 
Group 

%Omission 
Perseverative 

Responses 
Correct Response 

Latency 
Incorrect 

Response Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3s 5s 7s 3s 5s 7s 3s 5s 7s 3s 5s 7s 3s 5s 7s 

Nicotine 0.5 20 

L
ig

h
t 

a
t 

N
ig

h
t 

0.7  ±  
0.4 

0.6  
±  

0.3 

0.6  
±  

0.3 

0.05  
±  

0.01 

0.06  
±  

0.01 

0.06  
±  

0.01 

0.85  
±  

0.05 

0.74  
±  

0.04 
* 

0.63  
±  

0.04 

3.41  
±  

0.35 
*** 

2.52  
±  

0.34  
## 

2.1  
±  

0.33 
# 

1.21  
±  

0.04 

1.22  
±  

0.04 

1.26  
±  

0.08 

SCH 
23390 

0.01 30 
15.1  
±  2.1 

*** 

13.9  
±  

2.4 
*** 

10.3  
±  

1.9 
** 

0.06  
±  

0.01 

0.05  
±  

0.01 

0.06  
±  

0.02 

6.62  
±  

0.42 
*** 

1.16  
±  

0.09 

1.02  
±  

0.07 

6.62  
±  

0.42 
* 

5.74  
±  

0.42 
## * 

4.03  
±  

0.38 
# * 

1.61  
±  

0.18 

1.42  
±  

0.06 

1.63  
±  

0.19 

0.02 30 
24.4  
±  3 
*** 

25.5  
±  

3.1 
*** 

20.7  
±  

2.8 
*** 

0.06  
±  

0.02 

0.08  
±  

0.02 

0.07  
±  

0.02 

1.96  
±  

0.28 

1.2  
±  

0.13 
** 

1.16  
±  

0.13 

7.72  
±  

0.4 
* 

6.01  
±  

0.52 
## 
*** 

4.88  
±  

0.68 
# *** 

1.57  
±  

0.12 

1.74  
±  

0.23 

1.48  
±  

0.06 

Nicotine+ 
SCH 

23390  

0.5 + 
0.01 

  

7.1  ±  
2.3 

3.9  
±  

1.3 

5.2  
±  

1.7 

0.07  
±  

0.02 

0.1  
±  

0.06 

0.06  
±  

0.01 

1.14  
±  

0.07 

0.96  
±  

0.04 

1.14  
±  

0.07 
^^^ 

5.46  
±  

0.42 
^ 

4.53  
±  

0.46 
## 

3.08  
±  

0.41 
# 

1.42  
±  

0.05 

3.54  
±  

2.06 

1.58  
±  

0.12 

0.5 + 
0.02 

22.3  
±  5.1 
# ^^^ 

*** 

17.4  
±  

4.2 
^^^ 
*** 

18.2  
±  5 
### 
^^^ 
*** 

0.05  
±  

0.01 

0.07  
±  

0.02 

0.04  
±  

0.01 

1.18  
±  

0.09 

1.13  
±  

0.1 

0.77  
±  

0.04 

6.99  
±  

0.63 
^^^ 

6.18  
±  

0.58 
## 

^^^ 

5.51  
±  

0.76 
^^^ 
# *** 

1.46  
±  

0.05 

1.47  
±  

0.05 

1.54  
±  

0.07 

Vehicle 0 20 
1.5  ±  

0.5 

0.4  
±  

0.1 

0.5  
±  

0.2 

0.07  
±  

0.01 

0.04  
±  

0.01 

0.04  
±  0 

1.32  
±  

0.13 

0.88  
±  

0.07 

0.88  
±  

0.07 

4.98  
±  

0.38 

3.54  
±  

0.4 
## 

2.37  
±  

0.32 
# 

1.34  
±  

0.06 

1.31  
±  

0.06 

1.32  
±  

0.05 

Table 6.4. Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 1 (DR1) antagonist on other dependent 
measures of 5-CSRTT performance. # Compares Light at Night and Light phase group to Control group. *Compared to Saline within each treatment 
group. ^Compared to nicotine within each treatment group. * ^ # p ≤ 0.05, ** ^^ ## p ≤ 0.01, *** ^^^ ### p ≤ 0.001. 
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Nicotine 0.5 20 

L
ig

h
t 

P
h

a
s

e
 

1.3  ±  
0.5 

0.5  
±  

0.2 

0.6  
±  

0.4 

0.04  
±  

0.01 

0.04  
±  

0.01 

0.06  
±  

0.03 

1.04  
±  

0.08 
# *** 

0.87  
±  

0.08 
# * 

0.66  
±  

0.03 
# ** 

4.34  
±  

0.38 
# *** 

3.75  
±  

0.64 
## 

2.25  
±  

0.34 

1.34  
±  

0.06 

1.37  
±  

0.07 

1.36  
±  

0.06 

SCH 
23390 

0.01 30 
10.3  
±  2.8 

8.8  
±  

2.3 

6  ±  
1.5 

0.04  
±  

0.01 

0.04  
±  

0.01 

0.03  
±  

0.01 

6.68  
±  

0.53 
# 

1.21  
±  

0.1 
# 

0.98  
±  

0.1 
# 

6.68  
±  

0.53 
# * 

5.24  
±  

0.42 
## * 

4.28  
±  

0.52 
* 

1.44  
±  

0.06 

1.57  
±  

0.11 

1.52  
±  

0.07 

0.02 30 
18.3  
±  3 
*** 

19.7  
±  

3.2 
*** 

14.8  
±  3 
*** 

0.05  
±  

0.01 

0.14  
±  

0.1 

0.25  
±  

0.19 

1.97  
±  

0.24 
# 

1.37  
±  

0.14 
# ** 

0.99  
±  

0.1 
# 

7.04  
±  

0.45 
# * 

6.89  
±  

0.73 
## 
*** 

4.26  
±  

0.6 
*** 

1.57  
±  

0.09 

1.77  
±  

0.23 

12.73  
±  

11.13 

Nicotine+ 
SCH 

23390  

0.5 + 
0.01 

  

3.5  ±  
1.1 

2.7  
±  

0.7 

2  ±  
0.6 

0.07  
±  

0.02 

0.07  
±  

0.02 

0.06  
±  

0.01 

1.28  
±  

0.11 
# 

1.01  
±  

0.09 
# 

1.28  
±  

0.11 
# 

^^^ 

5.72  
±  

0.52 
# ^^ 

4.04  
±  

0.62 
## 

2.67  
±  

0.33 

1.68  
±  

0.25 

1.67  
±  

0.15 

3.35  
±  

1.84 

0.5 + 
0.02 

14.1  
±  3 

^^^ * 

12.1  
±  

2.9 
^^ * 

9  ±  
2.2 

0.09  
±  

0.03 

0.13  
±  

0.04 

0.07  
±  

0.02 

1.75  
±  

0.24 
# 

1.21  
±  

0.16 
# 

^^^ 

1.09  
±  

0.13 
#^^^ 

6.23  
±  

0.57 
# 

^^^ 

4.88  
±  

0.47 
## 

^^^ 

4.55  
±  

0.61 
*** 
^^^ 

1.87  
±  

0.27 

4.1  
±  

2.18 

2.26  
±  

0.61 

Vehicle 0 20 
2.6  ±  

0.7 

1.8  
±  

0.4 

1.9  
±  

0.4 

0.07  
±  

0.01 

0.08  
±  

0.02 

0.04  
±  

0.01 

1.55  
±  

0.16 
# 

1.07  
±  

0.07 
# 

0.91  
±  

0.06 
# 

5.86  
±  

0.34 
# 

4.15  
±  

0.41 
## 

2.52  
±  

0.28 

1.58  
±  

0.11 

1.59  
±  

0.12 

1.54  
±  0.1 

Table 6.4 (Continued). Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 1 (DR1) antagonist on other 
dependent measures of 5-CSRTT performance. # Compares Light at Night and Light phase group to Control group. *Compared to Saline within 
each treatment group. ^Compared to nicotine within each treatment group. * ^ # p ≤ 0.05, ** ^^ ## p ≤ 0.01, *** ^^^ ### p ≤ 0.001. 

 

 

 

 

 

 



 
 

179 
 

Nicotine 0.5 20 

C
o

n
tr

o
l 

1.3  ±  
0.6 

1.5  
±  

0.6 

1.2  
±  

0.5 

0.14  
±  

0.03 

0.12  
±  

0.04 

0.12  
±  

0.04 

0.71  
±  

0.02 

0.68  
±  

0.02 
* 

0.67  
±  

0.02 

3.71  
±  

0.84 
*** 

2.53  
±  

0.48 

1.25  
±  

0.29 

1.31  
±  

0.07 

1.33  
±  

0.06 

1.51  
±  0.2 

SCH 
23390 

0.01 

30 
 

10.2  
±  2.8 

8.4  
±  

2.4 

6.8  
±  

1.9 

0.12  
±  

0.03 

0.12  
±  

0.02 

0.1  
±  

0.03 

6.32  
±  

0.89 
*** 

0.87  
±  

0.03 

0.87  
±  

0.03 

6.32  
±  

0.89 
* 

3.35  
±  

0.64 
* 

2.11  
±  

0.46 
* 

3.23  
±  

1.27 

1.51  
±  

0.1 

2.45  
±  

0.94 

0.02 
17.5  
±  4.5 

* 

15.4  
±  

3.4 
** 

11.9  
±  

2.1 
^ 

0.09  
±  

0.03 

0.11  
±  

0.03 

0.08  
±  

0.01 

1.28  
±  

0.24 

0.94  
±  

0.07 
** 

0.9  
±  

0.04 

5.62  
±  

0.87 
* 

4.83  
±  

1.13 
*** 

3.98  
±  

1.05 
*** 

1.56  
±  

0.08 

1.58  
±  

0.08 

1.74  
±  

0.15 

Nicotine+ 
SCH 

23390  

0.5 + 
0.01 

  

6.2  ±  
2 

6.1  
±  

1.9 

4.4  
±  

1.3 

0.09  
±  

0.01 

0.09  
±  

0.02 

0.1  
±  

0.03 

0.89  
±  

0.05 

0.8  
±  

0.02 

0.89  
±  

0.05 

4.27  
±  

0.88 
* 

2.72  
±  

0.54 

2.79  
±  

0.69 

1.57  
±  

0.15 

1.47  
±  

0.07 

1.72  
±  

0.21 

0.5 + 
0.02 

10.1  
±  2 

8.5  
±  

1.8 

7.9  
±  2 

0.05  
±  

0.01 

0.09  
±  

0.02 

0.09  
±  

0.02 

0.97  
±  

0.08 

0.83  
±  

0.02 
^^^ 

0.77  
±  

0.01 

3.98  
±  

0.68 
*** 

2.75  
±  

0.57 
^^^ 

3.09  
±  

0.57 
^^^ 
*** 

1.46  
±  

0.06 

1.45  
±  

0.05 

1.48  
±  

0.06 

Vehicle 0 20 
4.4  ±  

1.3 

2.3  
±  

0.7 

2.4  
±  

0.9 

0.12  
±  

0.02 

0.11  
±  

0.02 

0.1  
±  

0.02 

0.96  
±  

0.04 

0.87  
±  

0.03 

0.79  
±  

0.02 

5.31  
±  

0.73 

3.2  
±  

0.77 

2.19  
±  

0.56 

1.37  
±  

0.06 

1.38  
±  

0.06 

1.39  
±  

0.06 

Table 6.4 (Continued). Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 1 (DR1) antagonist on other 
dependent measures of 5-CSRTT performance. # Compares Light at Night and Light phase group to Control group. *Compared to Saline within 
each treatment group. ^Compared to nicotine within each treatment group. * ^ # p ≤ 0.05, ** ^^ ## p ≤ 0.01, *** ^^^ ### p ≤ 0.001. 
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Figure 6.9. Effects of light condition on attention when NIC (0.05 mg/kg) and eticlopride (ETI) (0.03 
mg/kg) were administered individually and in combination at 3 s. Both LAN and light phase groups 
showed deficits in accuracy compared to control. Limited effects of drugs were observed. #Compares 
Control group to Light at Night and Light phase groups. ^Compared to NIC ^^^ ### p ≤ 0.001, ^^p < 0.01. 
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Figure 6.10. Effects of light condition on attention when NIC (0.05 mg/kg) and eticlopride (ETI) (0.03 
mg/kg) were administered individually and in combination at 5 s. Both LAN and light phase groups 
showed deficits in accuracy compared to control. Limited effects of drugs were observed. #Compares 
Control group to Light at Night and Light phase groups. ^Compared to NIC. *Compares doses to saline. 
###/^^^ p < 0.001 and * p < 0.05. 
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Figure 6.11. Effects of light condition on attention when NIC (0.05 mg/kg) and eticlopride (ETI) (0.03 
mg/kg) were administered individually and in combination at 7 s. Both LAN and light phase groups 
showed deficits in accuracy compared to control. Limited effects of drugs were observed. #Compares 
Control group to Light at Night and Light phase groups. *Compared to saline. ### p < 0.001 and * p < 0.05. 
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Figure 6.12. Effects of light conditions and the cholinergic agonist, nicotine, and the DR2 antagonist, 
eticlopride, on impulsive behavior at 5 s cue delay. In LAN and light phase NIC increased impulsive 
behavior compared to saline, and nicotine + 0.03 mg/kg ETI reduced the effects of NIC alone. There was 
no interaction between drug and light condition. #Compares Control group to Light at Night and Light 
phase. *Compared to Saline within each treatment group. ^Compared to nicotine within each treatment 
group. ## ** ^^ p <0.01, ### *** ^^^ p < 0.001 
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Figure 6.13. Effects of light conditions and the cholinergic agonist, nicotine, and the DR2 antagonist, 
eticlopride, on impulsive behavior at 7 s cue delay. In LAN and light phase, NIC increased impulsive 
behavior compared to saline, and nicotine + 0.03 mg/kg ETI reduced the effects of NIC alone. There was 
no interaction between drug and light condition. #Compares Control group to Light at Night and Light 
Phase. *Compared to Saline within each treatment group. ^Compared to nicotine within each treatment 
group. ## ** ^^ p <0.01, ### *** ^^^ p < 0.001 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

Treatment 
Group 

% Accuracy % Premature 

Cue Delay Cue Delay 

3s 5s 7s 5s 7s 

Nicotine 0.5 20 

L
ig

h
t 

a
t 

N
ig

h
t 

76.3  ±  2.5 
### 

79.7  ±  1.9 
### 

70.5  ±  2.7 
### 

18  ±  2.1 
### *** 

52.9  ±  3.9 
### *** 

Eticlopride 0.03 20 
70.2  ±  3 

### ^^^ 
77.4  ±  1.7 

### 
76  ±  2 

### 
9.6  ±  1.7 

### ^^^ 
30.2  ±  3.7 

### ^^^ 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 67.5  ±  4.1 
###  ^^^ 

77.3  ±  3.1 
###  ^^^ * 

73.3  ±  3.2 
### * 

16.4  ±  2.9 
### ** 

38.2  ±  4.5 
### ^^^ 

Vehicle 0 20 
73.7  ±  2.7 

### 
78.3  ±  1.8 

### 
75.8  ±  1.1 

### 
8.7  ±  1.4 

### 
34.8  ±  4.2 

### 

Nicotine 0.5 20 

L
ig

h
t 

P
h

a
s

e
 

75  ±  3.9 
### 

79.7  ±  2.7 
### 

72.6  ±  3.7 
### 

17.3  ±  2.3 
# *** 

45  ±  4 
### *** 

Eticlopride 0.03 20 
69  ±  3.3 

###  ^^^ 
78.2  ±  2.3 

### 
77.4  ±  1.8 

### 
6.2  ±  1.3 

# ^^^ 
26  ±  3.3 

### ^^^ 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 68.7  ±  3.8 
###  ^^^ 

69.3  ±  4.2 
###  ^^^ * 

68.3  ±  3.9 
### * 

13.1  ±  2.4 
# ** 

33.4  ±  4.4 
### ^^^ 

Vehicle 0 20 
71.7  ±  3.4 

### 
76  ±  3 

### 
76.1  ±  3.2 

### 
8.4  ±  1.6 

# 
30  ±  3.9 

### 

Nicotine 0.5 20 

C
o

n
tr

o
l 

95.7  ±  0.6 95.4  ±  0.8 92.5  ±  1.2 
8  ±  1.9 

*** 
18.3  ±  3.5 

Eticlopride 0.03 20 
87.9  ±  1.9 

^^^ 
90.9  ±  1.5 90.3  ±  1.7 2.6  ±  0.7 8.1  ±  1.9 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 92.5  ±  1.9 
^^^ 

87.5  ±  4.9 
^^^ * 

88.1  ±  2.2 
* 

7.9  ±  2.9 
** 

19  ±  4.5 

Vehicle 0 20 91.4  ±  1.5 92.7  ±  0.7 92.4  ±  0.9 4.4  ±  1.4 12.9  ±  3.3 

Table 5.5 Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 2 (DR2) antagonist, eticlopride on attention and impulsive 
behavior. #Compares Control group to Light at Night and Light Phase. *Compared to Saline within each treatment group. ^Compared to nicotine within each 
treatment group. * ^ p ≤ 0.05, ** ^^  p ≤ 0.01, *** ^^^ p ≤ 0.001. 
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Drugs 
Dose 

(mg/kg) 

Time 
before 
testing 

Treat-
ment 

Group 

% Omission 
Perseverative 

Responses 
Correct Response 

Latency 
Incorrect 

Response Latency 

Reinforcement 
Latency 

Cue Delay Cue Delay Cue Delay Cue Delay Cue Delay 

3s 5s 7s 3s 5s 7s 3s 5s 7s 3s 5s 7s 3s 5s 7s 

Nicotine 0.5 20 

L
ig

h
t 

a
t 

N
ig

h
t 

0.7  
±  

0.2 

0.8  
±  

0.3 

0.6  
±  

0.4 

0.04  
±  

0.01 

0.04  
±  

0.01 

0.05  
±  

0.02 

1.05  
±  

0.07 
# * 

0.83  
±  

0.07 
*** 

0.83  
±  

0.07 

4.18  
±  

0.31 

2.79  
±  

0.3 
### 

2.02  
±  

0.37 

1.27  
±  

0.06 

1.28  
±  

0.05 

1.32  
±  

0.06 

Eticlopride 0.03 20 

16.1  
±  

5.4 
^^^ 

15.3  
±  

5.1 
^^ 
** 

15.9  
±  5 
^^^ 
*** 

0.07  
±  

0.02 

0.06  
±  

0.02 

0.04  
±  

0.01 

1.45  
±  

0.18 
# 

^^^ 

1.13  
±  

0.12 
^^^ 

1.01  
±  

0.11 
^^ 

5.79  
±  

0.39 

4.29  
±  

0.37 
### 

^^ 

3.45  
±  

0.84 

1.61  
±  

0.21 
^^ 

1.53  
±  

0.16 
^^ 

1.48  
±  

0.12 
^^ 
* 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 

27.4  
±  

6.8 
^^^ 

25.1  
±  

6.1 
^^^ 
*** 

21.9  
±  6 
^^^ 
*** 

0.03  
±  

0.01 

0.05  
±  

0.01 

0.06  
±  

0.02 

1.32  
±  

0.15 
# 

1.02  
±  

0.11 

0.8  
±  

0.08 

5.08  
±  

0.43 
# 

4.07  
±  

0.54 
### 

^^^ 

3.82  
±  

1.01 
^^ 

1.35  
±  

0.07 

1.5  
±  

0.12 
^ 

1.54  
±  

0.11 
^^^ 
** 

Vehicle 0 20 
1.7  
±  

0.7 

1.8  
±  

0.8 

1  ±  
0.3 

0.05  
±  

0.01 

0.05  
±  

0.01 

0.05  
±  

0.01 

1.5  
±  

0.17 
# 

0.97  
±  

0.08 

0.77  
±  

0.06 

4.95  
±  

0.37 

3.75  
±  

0.34 
### 

2.59  
±  

0.37 

1.44  
±  

0.1 

1.48  
±  

0.14 

1.36  
±  

0.06 

Table 5.6. Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 2 (DR2) antagonist, eticlopride, on other 
dependent measures of 5-CSRTT performance. # Compares Control group to Light at Night and Light Phase. *Compared to Saline within each 
treatment group. ^Compared to nicotine within each treatment group. * ^ p ≤ 0.05, ** ^^ p ≤ 0.01, *** ^^^p ≤ 0.001. 
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Nicotine 0.5 20 

L
ig

h
t 

P
h

a
s

e
 

8.8  
±  

5.2 

8.5  
±  5 

6.1  
±  

3.9 

0.06  
±  

0.01 

0.04  
±  0 

# 

0.03  
±  0 

1.2  
±  

0.13 
### * 

0.87  
±  

0.09 
# *** 

0.71  
±  

0.05 

4.54  
±  

0.44 

2.61  
±  

0.33 
# 

1.87  
±  

0.31 

1.37  
±  

0.07 

1.39  
±  

0.07 

1.36  
±  

0.06 

Eticlopride 0.03 20 

12.2  
±  

4.7 
^^^ 

7.7  
±  

2.9 
^^ 
** 

9.1  
±  

3.6 
^^^ 
*** 

0.04  
±  0 

0.06  
±  

0.01 
# 

0.05  
±  

0.01 

1.97  
±  

0.36 
### 

^^^ 

1.12  
±  

0.1 
# 

^^^ 

0.85  
±  

0.06 
^^ 

5.87  
±  

0.4 

4.39  
±  

0.46 
# 

^^ 

2.94  
±  

0.42 

1.6  
±  

0.11 
^^ 

1.53  
±  

0.07 
^^ 

1.69  
±  

0.14 
^^ 
* 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 

20.1  
±  

5.3 
^^^ 

18.2  
±  

5.6 
^^^ 
*** 

15.5  
±  

4.7 
^^^ 
*** 

0.04  
±  

0.01 

0.04  
±  

0.01 
# 

0.04  
±  

0.02 

1.43  
±  

0.27 
### 

1.58  
±  

0.32 
# 

0.89  
±  

0.09 

5.81  
±  

0.61 
### 

3.61  
±  

0.41 
# 

^^^ 

3.36  
±  

0.66 
^^ 

1.52  
±  

0.1 

1.5  
±  

0.09 
^ 

1.57  
±  

0.1 
^^^ 
** 

Vehicle 0 20 
4.9  
±  

1.8 

2.8  
±  

1.5 

2.9  
±  

1.4 

0.05  
±  

0.01 

0.05  
±  

0.01 
# 

0.08  
±  

0.02 

1.52  
±  

0.13 
### 

1.06  
±  

0.12 
# 

0.8  
±  

0.05 

5.2  
±  

0.3 

3.49  
±  

0.34 
# 

3.04  
±  

0.59 

1.53  
±  

0.12 

1.51  
±  

0.11 

1.48  
±  

0.09 

Nicotine 0.5 20 

C
o

n
tr

o
l 

2  ±  
0.9 

2  ±  
1 

1.7  
±  

0.8 

0.12  
±  

0.02 

0.08  
±  

0.02 

0.07  
±  

0.02 

0.75  
±  

0.03 
* 

0.72  
±  

0.03 
*** 

0.73  
±  

0.02 

3.86  
±  

0.8 

2.03  
±  

0.71 

1.67  
±  

0.35 

1.35  
±  

0.06 

1.41  
±  

0.09 

1.46  
±  

0.11 

Eticlopride 0.03 20 

21  
±  

5.7 
^^^ 

21.3  
±  

6.3 
^^ 
** 

20.3  
±  

6.3 
^^^ 
*** 

0.13  
±  

0.02 

0.09  
±  

0.02 

0.11  
±  

0.03 

1.02  
±  

0.04 
^^^ 

1  ±  
0.07 
^^^ 

0.87  
±  

0.03 
^^ 

5.09  
±  

0.78 

2.63  
±  

0.51 
^^ 

2.21  
±  

0.43 

1.6  
±  

0.16 
^^ 

1.53  
±  

0.12 
^^ 

1.53  
±  

0.12 
^^ 
* 

Nicotine + 
Eticlopride 

0.5 + 
0.03 

 

16.2  
±  

5.8 
^^^ 

17.1  
±  

5.3 
^^^ 
*** 

16.6  
±  

5.5 
^^^ 
*** 

0.12  
±  

0.05 

0.11  
±  

0.04 

0.14  
±  

0.07 

0.82  
±  

0.05 

0.8  
±  

0.04 

0.79  
±  

0.04 

2  ±  
0.44 

3.49  
±  

0.95 
^^^ 

2.45  
±  

0.51 
^^ 

1.59  
±  

0.18 

1.5  
±  

0.09 
^ 

1.65  
±  

0.15 
^^^ 
** 

Vehicle 0 20 
5  ±  
2 

4.6  
±  

1.6 

3.5  
±  

1.1 

0.13  
±  

0.03 

0.11  
±  

0.02 

0.13  
±  

0.03 

1.02  
±  

0.07 

0.85  
±  

0.03 

0.8  
±  

0.03 

4.32  
±  

0.78 

2.38  
±  

0.39 

1.74  
±  

0.3 

1.39  
±  

0.08 

1.4  
±  

0.08 

1.42  
±  

0.07 

Table 5.6(Continued). Combined effect of light condition and cholinergic agonist, nicotine, and dopaminergic receptor 2 (DR2) antagonist, 
eticlopride, on other dependent measures of 5-CSRTT performance. # Compares Control group to Light at Night and Light Phase. *Compared to 
Saline within each treatment group. ^Compared to nicotine within each treatment group. * ^ p ≤ 0.05, ** ^^ p ≤ 0.01, *** ^^^p ≤ 0.001. 
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Chapter 7 Conclusions 

7.1 Discussion 

The overall aim of my doctoral dissertation was to examine the effects of circadian 

disruption on cognition, specifically attention and response inhibition in adult Long-

Evans rats of both sexes. Circadian rhythms are endogenous 24-hour rhythms in all 

organisms that govern both behavior and physiology. Environmental factors like light 

alter these endogenous rhythms which modulate behavior and physiology (Silver and 

Kriegsfeld, 2014). I modeled two types of circadian disruption to study the effects they 

have on attention and impulsive behavior: 

1. Shift work is where the work-time schedules fall beyond the regular working 

hours of “9 am – 5 pm” and there is a conflict between the external cues that the 

body perceives (Wright et al., 2013);  

2. Light at night (LAN) is untimely exposure to light at night (Dominoni et al., 2016; 

Fonken and Nelson, 2014; Russart and Nelson, 2017).  

Specific Aim 1 detailed in Chapter 4 discusses the effects that these two models 

have on behavior. We established that both light phase and LAN model caused deficits 

in attention and response inhibition. Attentional deficits in shift work model have been 

previously shown by Gritton et al. (Gritton et al., 2009, 2012, 2013) but our study is the 

first to identify deficits associated with response inhibition in a light phase model. Nelson 

et al. have previously examined the physiological alterations associated with LAN model 

of circadian disruption (Dominoni et al., 2016; Fonken and Nelson, 2014; Russart and 

Nelson, 2017). This study uses the LAN model for the first time to establish deficits in 

both attention and response inhibition. Chapter 4 also identified changes at a molecular 

level caused by circadian disruption. This study identified deficits in the expression of 
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Per2 in the light phase work model of circadian disruption, but not in the LAN model. 

The altered expression of Per2 in the light phase group could be due to alterations in 

dopaminergic neurotransmission. We base this on studies by Hood et al. where 

circadian clock-controlled genes in the dorsomedial striatum govern the expression of 

dopaminergic neurotransmission (Hood et al., 2010; Verwey et al., 2016). Although we 

did not investigate the expression of monoamine oxidase (Maoa) gene, previous studies 

have established that alteration in the expression of Per2 directly affects Maoa, thus 

altering levels of endogenous dopamine (DA) (Hampp et al., 2008). We speculate that 

our shift work model of circadian disruption results in similar alterations. The absence of 

a difference in the expression of Per2 in the LAN model from the controls indicates a 

possibility of an alternative mechanistic pathway. Our observation of a higher 

expression of choline acetyltransferase (ChAT) associated with the active phase 

establishes that there are rhythmic alterations of neurotransmitter-related genes in our 

rats, which is consistent with the literature (Hut and Van der Zee, 2011). Both models of 

disruption also showed higher expression of dopamine 1 receptor (DR1) which when 

coupled with binding to the elevated DA levels, could initiate post-synaptic signaling 

cascades at a higher rate, leading to higher expression of impulsive behavior.  

These results identify deficits caused by both models of circadian disruption in 

attention and response inhibition. ACh governs both attention, and circadian rhythms 

(Gritton et al., 2012; Landgraf et al., 2014; Wright et al., 2012) and DA governs 

response inhibition (Dalley and Roiser, 2012; Dalley et al., 2008). The effects of both 

models of disruption on attention could be potentially due to alteration in the 

endogenous ACh levels. We speculate that the effects of the two models of disruption 
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on response inhibition is due to alterations in DA signaling. In brain regions like the 

prefrontal cortex (PFC), a brain region critical for both attention and impulsivity, and 

nucleus accumbens and striatum, cholinergic functioning interacts with dopaminergic 

signaling. In these regions, ACh release stimulates DA neurons to release DA via 

binding of nicotinic subtypes of ACh receptors (nAChRs) by ACh (van Gaalen et al., 

2006; Livingstone and Wonnacott, 2009a). We speculate that in our models of circadian 

disruption, effects on behavior were mediated through this signaling pathway.  

Specific Aim 2 focused on understanding the effects of circadian disruption on 

dopaminergic neurotransmission and impulsive behavior which have been previously 

unexplored. By applying pharmacological challenges in both models of circadian 

disruption, we identified that circadian rhythms which are governed by ACh were 

altering impulsive behavior. Combinations of the cholinergic agonist, nicotine, and 

dopaminergic antagonists for both DR1 (SCH 23390) and DR2 (eticlopride) did not 

influence accuracy but significantly altered premature responding on 5-CSRTT in both 

models of disruption, where the behavioral measures correspond to attention and 

impulsive behavior (Robbins, 2002). Chapter 5 as well as studies by others have 

established that nicotinic modulation of ACh has a critical role in modulating attention 

(Havekes et al., 2011; Wallace and Bertrand, 2013) and nicotinic acetylcholine 

receptors (nAChRs) on the dopaminergic presynaptic terminals play a role in 

modulating impulsive behavior (Livingstone and Wonnacott, 2009b). The effects of our 

drug challenges on impulsive behavior in Chapter 6 are novel and help us understand 

how circadian disruption increases impulsive behavior and sensitivity to drugs. Our 

findings are potentially due to altered expression of molecular components, especially 
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those components of dopaminergic neurotransmission that are under circadian control 

(Hampp et al., 2008; Hood et al., 2010; Verwey et al., 2016).  

7.2 Future Studies 

These studies are only the first step in learning how circadian disruption affects 

behavior. We need to further explore the effects of circadian disruption on the receptors 

and enzymes that are involved in modulating optimal cholinergic and dopaminergic 

neurotransmission. Future studies will parse out further mechanisms underlying these 

two models of circadian disruption by quantifying mRNA levels for TH, DAT and the 

DRs in the ventral tegmentum and substantia nigra, regions containing the 

dopaminergic neuronal bodies that project to the prefrontal cortex, nucleus accumbens 

and the striatum. Additionally, quantifying the protein levels corresponding to the genes 

tested in this study in both infralimbic cortex and dorsomedial striatum could provide us 

more information on how regulation of protein translation may alter the underlying 

neurochemistry in both our models of circadian disruption.   

One final point is that we repeatedly reproduced our effects of both models of 

circadian disruption on attention and response inhibition. These established models 

could further serve as the base to investigate the effects of how other environmental 

factors, including chemical sources of endocrine disruption, may affect neurochemical 

signaling and behavior.    
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