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ABSTRACT 

 

 Denitrification is a microbial process in wetlands that transforms nitrate pollutants into 

nitrogen gas under anaerobic conditions. Restored wetlands do not always reach equivalent 

denitrification rates as those they were intended to replace, and this is sometimes linked to 

differences in microbial composition. Further, increased drought and variability in flood regimes 

represents an additional threat because the stress of fluctuation between extreme dry or saturated 

conditions could alter the microbial community itself and the ability of remaining microbial taxa 

to transform nitrate via denitrification. 

 One of the goals of this dissertation was to identify either microbial or hydrologic factors 

that could limit the ability of restored wetland communities to reach high potential denitrification 

rates. Based on a survey of 30 restored and 15 reference wetlands, restored wetlands surprisingly 

reached equivalent rates as observed from reference sites. This survey was conducted twice: 

Once during a drought in 2012, and again in 2013 following unusually intense floods. Similar 

results were found both years, but average rates were an order of magnitude greater in 2013 than 

in 2012. These potential denitrification assays were performed under identical saturated 

anaerobic conditions in the lab each year, so the differences observed must be due to inherent 

differences in the active microbial community. The magnitude increase in rates between the two 

years could be explained by soil variables such as pH and moisture, as well as to the abundance 

of nirS-harboring denitrifiers in the community.  

 Soil moisture and oxygen availability strongly influence microbial community 

composition, so regions of a single floodplain wetland may contain vastly different communities 

depending on the hydrology. Another goal of this dissertation was to determine if past 
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hydrologic variability filters microbial taxa such that these communities exhibit high resistance 

or resilience and high functional stability in the face of altered hydrology. I established an 

experiment where I manipulated the hydrology of soil collected from upland, lowland and the 

transition region of a single wetland. The transition region contained a unique composition 

compared to the upland and lowland regions, and composition remained relatively stable 

compared to the other regions, indicating either high resistance or resilience. This community 

also exhibited stable potential rates compared to the other regions. 

 Since denitrification can also be influenced by soil factors, such as pH and texture, which 

differ among wetlands and even differ among regions of the same wetland, my final study 

included an experimental design that removed any differences between soil types. Sterilized soil 

mesocosms were inoculated by live wetland soil collected from wetlands that exhibited different 

historical flood regimes: Flashy floods, long extended floods, and high variability from year to 

year. These wetlands exhibited distinct microbial composition initially. Following inoculation of 

the sterile mesocosms, I manipulated the hydrology as I did in the previous study, but this time I 

measured potential denitrification at multiple time points, rather than only at the beginning and 

end. The manipulated hydrology was the strongest driver of rates, but the mesocosms inoculated 

with communities from the wetlands with high variability from year to year consistently showed 

lower rates than those inoculated by communities from the other wetlands. 

 Increased drought followed by intense floods due to climate change will influence 

denitrification function in wetlands. Restored wetlands can reach equivalent denitrification rates 

as those that they were intended to replicate, but both restored and reference wetlands are now 

threatened by increased drought and hydrologic variability. 
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CHAPTER 1: INTRODUCTION 

 

Risks to wetlands and wetland ecosystem function  

Wetlands were once common in the Midwestern United States but a vast majority of 

these wetlands were drained for agricultural expansion. Continued destruction of wetlands led to 

a federal policy that aims for “no-net-loss” of wetland acreage and function. In accordance with 

this policy, the US Army Corps of Engineers provides permits for wetland drainage and 

development as long as additional wetlands are restored (Erwin 2008, Bendor 2009, Hossler et 

al. 2011). Wetland processes carry an important role in the large scale management of nitrate 

pollutants (Rabalais et al. 2002, Ardón et al. 2010), so the effectiveness of restoration to truly 

replace the N cycling services in damaged or destroyed wetlands must be investigated (Rey 

Benayas et al. 2009, Moreno-Mateos and Comin 2010).  

In addition to drainage and development, wetland ecosystems face increasing disturbance 

from altered precipitation regimes, which will lead to increased drought intensity. Droughts are 

expected to become more frequent and last a longer duration while the precipitation events in 

between droughts will be larger, especially in the Midwestern United States (IPCC 2014). 

Increased drought would affect a range of ecosystem services, like the provisioning of seasonal 

habitat for animals (Elphick et al. 2010, Engle 2011) and facilitation of high productivity and C 

storage (Odum et al. 1995, Gitlin et al. 2006, Mitsch and Gosselink 2007). In particular, 

microbe-mediated nitrogen cycling processes that require saturated anaerobic conditions will be 

disrupted by drought (Friedl and Wüest 2002, Pinay et al. 2002).  

Not all microbial taxa are equally capable of handling hydrologic stress (Potts 1994). An 

important microbe-mediated ecosystem service is the cycling of nitrate into nitrogen gas by 
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denitrification (Groffman et al. 2006). Denitrification is performed by particularly diverse 

microbial taxa (Zumft 1997, Schimel et al. 2007), and thus denitrifiers display high variability in 

their physiological tolerance to environmental stress (Doi et al. 2009, Green et al. 2012, Bissett 

et al. 2013, Griffiths and Philippot 2013). A less desired consequence of denitrification is that it 

can also be a source of nitrous oxide (N2O), a harmful greenhouse gas, if the final step of N2O 

reduction to N2 does not occur (Weier et al. 1993). Some denitrifiers lack the enzymes necessary 

to reduce N2O to N2, so denitrifier composition can also influence greenhouse gas emissions that 

occur during denitrification (Philippot et al. 2011). Studies on how drought in wetlands will 

affect denitrifier community composition and their function are essential in order to manage 

excess nutrient pollutants and minimize greenhouse gas production in the face of a rapidly 

changing climate.  

 

Restoration of microbial services in wetlands 

 In order to determine if a restored wetland is capable of similar function as it was before 

conversion, it would be ideal to compare the restored site to historical information about the 

ecology and processes that occurred in the original wetland. However, wetland drainage in 

Illinois began as far back as the 1600s when European settlers first arrived, and the majority of 

recorded wetland loss occurred between 1890 and 1930 (Barringer and Balding 1996, Dahl and 

Allord 1996). Instead, ecologists use hydrologic and vegetative data to identify reference 

wetlands that might represent a typical wetland for that region.  

Denitrification has proven particularly difficult to restore since restored freshwater 

wetlands fail to exhibit equivalent denitrification rates when compared to reference wetlands 

(Hossler et al. 2011, Marton et al. 2014). Preliminary studies have demonstrated a correlation 
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between differences in function in restored and reference wetlands and a difference in denitrifier 

composition (Flanagan 2009, Peralta et al. 2010). Since denitrifiers encompass a wide range of 

phylogenetic diversity and vary in metabolic rates and strategies, the presence of specific 

microbial taxa may influence the denitrification capacity of a wetland community (Salles et al. 

2012). On the other hand, denitrifiers might so diverse that they exhibit a high degree of 

functional redundancy (Torsvik and Øvreås 2002, Allison and Martiny 2008, Shade et al. 2012), 

which would suggest that rates in restored wetlands are influenced more by abiotic controls.  

Differences in denitrification function between restored and reference wetland may 

persist simply because the microbial communities in the restored wetlands are slow to develop. If 

restoration trajectories of the belowground communities are as stochastic as trajectories of the 

aboveground community (Trowbridge 2007, Matthews et al. 2009, Matthews and Spyreas 2010), 

then there is a need to understand which environmental factors influence the outcome of these 

trajectories. If microbial community composition directly controls denitrification capacity, then 

research on denitrifier compositional trajectories may help restoration practitioners identify 

abiotic properties that can be managed to influence the long-term outcome of restoration. 

Work remains to determine (a) which microbial taxa are functionally important for 

denitrification in wetlands, (b) what drives differences in microbial composition to persist 

between restored and reference wetlands even after many years following restoration, and (c) 

whether such differences in taxonomic composition are relatively important drivers of function 

when compared to abiotic controls on denitrification function. 
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Using potential activity assays to study microbial ecology 

Denitrification can be measured either in situ in a wetland or by collecting soil to use 

later in activity assays in a laboratory. The laboratory-generated activity rates are considered to 

represent potential rates rather than the actual activity rates. Potential denitrification assays were 

used in this dissertation to quantify functional rates for three reasons: 

(1) Denitrification activity is limited by the presence of oxygen and by low substrate 

concentration (Tiedje et al. 1989, Hanson et al. 1994, Ballantine et al. 2014). The work presented 

in this dissertation is focused on identifying the biotic controls of denitrification with reduced 

confounding effects from the environment. During potential denitrification assays, oxygen is 

purged to create anaerobic conditions, and most of the assays in this dissertation add excess 

nitrate and a carbon source. This allowed me to measure the potential level of activity that can be 

performed by the denitrifier population in the soil, regardless of the abiotic controls on activity 

that would have been present in situ. 

(2) Potential denitrification assays can be conducted with added acetylene to measure 

overall denitrification (N2O + N2), rather than only N2O emissions that arise from incomplete 

denitrification. A gas chromatograph with an electron capture detector (GC-ECD) is a popular 

choice environmental scientists use to quantify N gas, but this type of detector can only measure 

N2O, not N2 (Sitaula et al. 1992, Grob and Barry 2004). During the assays, I added acetylene gas 

to block the reduction of N2O to N2, which allowed me to use a GC-ECD to measure the sum of 

both N2O and N2 produced (Balderston et al. 1976, Yoshinari et al. 1977). In Chapter 5, I 

adapted this method to include a second treatment without acetylene, and I was able to calculate 

potential rates of both complete and incomplete denitrification.  
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 (3) Finally, this approach allowed me to include a large number of replicate wetlands in 

my studies, and I was able to quickly visit wetlands that were geographically distant. Measuring 

denitrification rates in situ requires the establishment of semi permanent collars to be placed in 

the soil of the wetlands. The researcher must remain at a single site for a few hours to collect 

hourly gas samples from the collars (Groffman et al. 2006). Chapters 2, 3, and 5 each describe 

studies where wetlands were located at least an hour drive away from one another, and many that 

were more than 3-4 hours away from our laboratory. The relatively quick process of collecting 

soil allowed fieldwork to proceed twice as quickly as I would have been able to otherwise. 

Certainly, there are drawbacks associated with the potential activity assays described in 

this dissertation. Since these assays were intended to measure activity from only the current 

denitrifiers, the antibiotic chloramphenicol wads added to inhibit cell division and prevent 

growth of new denitrifier biomass. However, chloramphenicol has been documented to reduce 

denitrification rates from environmental communities (Pell et al. 1996), and to directly inhibit 

denitrification enzyme activity in the model denitrifier Paracoccus denitrificans (Brooks et al. 

1992). All denitrification rates reported in this dissertation were generated using the same 

concentration of chloramphenicol (10 mg/L) and this chloramphenicol concentration matches 

published assay conditions (Peralta et al. 2016). I can compare rates reported in each of the 

following chapters, and I can compare the results in this dissertation to potential denitrification 

rates published in the literature. However, I caution against interpreting potential rates to 

represent the maximum possible denitrification. 

Denitrification activity in soils is often characterized by high variability, where one soil 

core may display remarkably high rates while a neighboring soil core collected from a meter 

away may not show any activity (Groffman et al. 2006). It is important to point out that the 
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methods used to quantify denitrification in this dissertation were intended for the comparison of 

potential rates between wetlands (with the exception of rates generated during the manipulative 

soil experiments in Chapters 4 and 5). Because of this, I did not attempt to describe fine-scale 

variation between individual soil cores. Instead, I collected field replicates from random 

locations within each wetland in order to characterize the variability across the site, and each 

field replicate included multiple homogenized soil cores. Collecting field replicates allowed me 

to use formal statistical tests to compare potential rates between wetlands. I observed variability 

in potential denitrification within the wetlands, but this variability was probably lower than 

would have been observed between individual soil cores.  

 

Molecular techniques to study wetland microbial ecology 

In conjunction with assays that quantify potential functional rates, there are also 

molecular techniques that we can use to identify important microbial taxa, and detect changes in 

abundance over time or between wetlands. First, taxa can be identified via 16S rRNA gene 

sequences (Caporaso et al. 2011). This technique involves a broad survey of the entire 

belowground microbial community. This would identify other taxa besides the denitrifiers, and 

could allow us to detect complex ecological interactions. Differences in 16S rRNA gene 

sequences have been correlated with differences in potential denitrification rates in Great Lakes 

sediment communities (Small et al. 2016), so this method can serve to illuminate broad patterns 

in microbial composition-function relationships. A major disadvantage of this technique is that it 

relies on the assumption that we know the 16S rRNA gene sequence of all the ecologically 

important denitrifiers. Unfortunately, many 16S rRNA gene sequences are still unknown, and 

may be labeled with only a broad phylogenetic classification, such as “unidentified 
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alphaproteobacterium #234”, which yields limited insight to predict the function performed by 

these taxa.  

Second, we can use quantitative PCR (qPCR) to quantify functional genes known to 

encode for an enzyme responsible for individual steps of the denitrification process. Denitrifier 

taxa may harbor genes encoding an enzyme for any one of the four steps: NO3- reductase, NO2-

reductase, NO reductase, and finally N2O reductase (Philippot 2002). Microbial ecologists tend 

to focus on either NO2- reductase (nirK or nirS) or N2O reductase (Clade I or Clade II nosZ) 

genes as diagnostic genes for the ability to do denitrification. The process of NO3- reduction is 

also part of DNRA or anammox in addition to denitrification (Kartal et al. 2007, Yang et al. 

2017), and at least three different gene complexes encode for different types of NO3- reductase: 

The nas complex encodes a non-respiratory reductase, while nar and nap are part of a respiratory 

pathway (Richardson et al. 2001, Philippot 2002). Denitrifiers that use a nir gene to reduce NO2- 

to NO must also be able to reduce NO to N2O immediately due to its toxicity (Zumft 1993, Ye et 

al. 1994). Thus, the denitrifiers that harbor a nir gene are considered N2O-producing denitrifiers, 

while the denitrifiers that harbor a nos gene are considered N2O-consuming denitrifiers 

(Philippot et al. 2011). 

Many denitrifier genomes contain both a nir gene and a nos gene, but some taxa possess 

either one or the other (Jones et al. 2013, Jones et al. 2014). A benefit of directly quantifying 

either nir or nos genes is that it immediately allows us to compare the relative abundance of taxa 

that are capable of doing a known function in the denitrification process. The ratio of these genes 

has been correlated to N2O emissions (Philippot et al. 2011), and nir or nos gene abundances 

sometimes correlate to functional rates (Salles et al. 2017). However, a number of studies 

demonstrate a lack of a consistent correlation between functional gene abundance and functional 
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rates (Chroňáková et al. 2009, Song et al. 2010, Philippot et al. 2013, Brower et al. 2017). There 

may be important functional differences between microbial taxa that share the same functional 

genes, so a disadvantage using qPCR is that we have no way to know if these are all the same 

species, or many different species that possess a similar gene. Gene quantification by itself 

cannot reveal whether composition differs between sites if the sites contain similar abundances 

of these genes. 

Third, taxa belonging to specific functional groups can be identified via sequencing of the 

diagnostic functional genes, rather than simply quantifying these genes. A benefit of this 

technique is that it allows us to know whether denitrifiers in one wetland are different from the 

denitrifiers in another wetland. However, a disadvantage is that we will not be able to determine 

relative abundance of functional groups in the overall community, and we often still will not 

know the taxonomic assignment of these gene sequences. Many of these sequences would be 

labeled as “unidentified denitrifier #305” for example. This information would still help us to 

understand whether the presence of specific microbial taxa influence denitrification capacity of a 

wetland community.  

Use of a combination of these techniques should allow us maximum insight into the 

ecological dynamics of microbial functional groups involved in denitrification in wetlands. Each 

of the following chapters uses at least one of these PCR-based methods, if not all three, to 

describe the soil microbial communities. A complete list of the names and sequences of the PCR 

primers used in this dissertation is shown in Table 1.1. 
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Overview: 

The following chapters aim to address these specific objectives: (a) Identify correlations 

between potential rates of denitrification and the abundance of specific microbial OTUs or 

groups of microbes, (b) determine which abiotic characteristics in wetlands drive differences in 

microbial composition, especially between restored and reference wetlands, and (c) determine if 

those differences in composition correlate to differences in potential function. Chapters 2 and 3 

use an observational approach to observe how restored and reference wetland communities differ 

in composition and function, and whether these differences persist from year to year. Extreme 

hydrologic events (drought followed by floods) allowed me to observe whether restored and 

reference wetland communities are affected similarly by hydrologic disturbances. Chapters 4 and 

5 use an experimental approach to evaluate how hydrologic variability, including periods of 

drought, might structure denitrifier composition and influence their ability to function in 

increasingly variable environmental conditions. 

 In Ch. 2: Extended drought limits potential denitrifier activity in restored and reference 

freshwater wetlands equally, I conducted a large comparative survey that included 30 restored 

wetlands and 15 reference wetlands. Soil samples were collected once during a drought in 2012 

and again in 2013, which followed a spring season with particularly intense flooding by contrast. 

Potential rates were affected strongly by drought conditions despite the denitrification function 

being quantified under the exact same conditions in the lab with adequate moisture and nutrients, 

suggesting some sort of limitation by the microbial community. I also found that denitrifier gene 

abundances were similar between restored and reference wetlands, but these genes were in 

greater abundance during 2012 under a drought. Since these findings contradict a preliminary 

study conducted in Illinois (Flanagan 2009), it is possible that restored wetlands simply require 
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more time for the denitrifier communities to develop functional capacity and become similar to 

the reference wetland communities. 

 In saltmarshes, restored communities converge toward a composition that is similar to 

communities in unimpacted saltmarshes (Bernhard et al. 2012) and saltmarsh denitrifiers develop 

along a smooth restoration trajectory (Bernhard et al. 2015). Further, a chronosequence of marsh 

communities demonstrated that the development of the denitrifier community after restoration is 

correlated with an increase in potential denitrification rates (Salles et al. 2017). However, when I 

attempted to coerce the 30 restored freshwater wetlands from Ch. 2 into a chronosequence, I 

found the denitrifier communities and their potential functional rates were so diverse that no 

discernible patterns could be detected. Thus, I identified a need to directly observe changes in 

composition between paired wetlands over time, where each wetland could serve as its own 

control for comparison. In Ch. 3: Tracking temporal patterns in denitrification and microbial 

community composition following wetland restoration in Illinois, I studied microbial 

communities in soil collected in 2007, 2012, 2013, 2014, and 2015 from four paired restored and 

reference wetlands. Surprisingly, the four restored wetlands actually diverged in microbial 

composition over time, and not toward their own respective paired reference wetlands. Potential 

function was strongly influenced by external hydrologic conditions, where a peak was observed 

in 2013 following the intense flooding across the entire state of Illinois, despite identical 

laboratory assay conditions throughout the study. However, two of the reference wetlands 

showed a larger peak in potential denitrification in 2013 than any of the other wetlands, and 

these two wetlands showed distinct composition from the others throughout the eight-year study. 

The microbial taxa at these two sites may have been better able to respond to favorable 
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hydrologic conditions in the environment, and then were able to utilize conditions in the 

laboratory assays that were even more ideal for promoting denitrification activity. 

 Hydrology is a major factor that influences the soil conditions in which microbial taxa 

have to be able to survive (Schimel et al. 2007). In dry soils, nutrients become unavailable for 

microbial uptake and microbes must be able to divert resources toward physiological protection 

from desiccation. In saturated soils, oxygen is used up quickly, and microbial taxa must be able 

to switch to less efficient anaerobic respiration. There is often a transition region in floodplain 

wetlands were soil conditions alternate between dry and saturated. Past research has already 

demonstrated that this transition region contains a unique community compared to the relatively 

constant upland and lowland regions (Peralta et al. 2014, Peralta et al. 2016). In Ch. 4: 

Environmental variability shapes microbial community response to altered hydrology, I 

experimentally tested the functional stability of the unique community in the transition region of 

a wetland. Compared to communities from the relatively constant upland and lowland regions, 

this community was both compositionally resistant to altered hydrology in a two-month 

mesocosm experiment and remained more functionally stable than the communities from the 

other two regions. The historical flood regime of a wetland seems to be a powerful structuring 

force on the composition and function of soil denitrifier communities, and this may limit the 

future restoration of denitrification services in wetland. 

 However, potential denitrification is also influenced by abiotic factors like soil texture 

and nutrient profile (Groffman and Tiedje 1989, Burgin et al. 2010), and these factors also 

influence denitrifier community composition (Foulquier et al. 2013, Morrissey and Franklin 

2015). It is difficult to truly isolate the effects the abiotic and biotic components of an ecosystem 

have on its function. Many have used statistical modeling techniques to quantify the relative 
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contribution of abiotic and biotic factors to process rates (Foulquier et al. 2013, Jones et al. 2014, 

Morrissey and Franklin 2015, Graham et al. 2016), and some of these attempts have served as 

inspiration for the statistical modeling techniques utilized in Ch. 2 and Ch. 3. Statistical 

modeling can have limited power, though, when it comes to identifying causal relationships 

rather than correlative relationships. In order to determine whether differences in composition 

directly influence potential denitrification rates, there is a need to conduct experiments that are 

designed to control for differences in soil texture and chemistry. In Ch. 5: Historical flood 

patterns drive microbial community composition in restored wetlands but not the functional 

response to altered hydrology, I established an experiment that evaluated the functional response 

to different hydrologic treatments of microbial communities from wetlands that possess 

contrasting historical flood patterns. These communities were all placed in a similar soil 

environment with similar texture and chemistry to eliminate the effect of the local soil 

environment on denitrification function. I combined an observational field study investigating 

wetland microbial composition with an experimental approach inspired by plant-soil feedback 

experiments (Bever et al. 1997), where sterilized soil was inoculated with live wetland soil. The 

two-month experiment included a range of hydrologic treatments from full saturation to 

fluctuating to fully dry conditions. The most surprising result was that hydrologic treatment was 

a far stronger influence on potential rates than differences in the starting community 

composition. However, the microbial communities from wetlands with high variability in flood 

intensity from year to year consistently showed lower rates than communities from wetlands 

with more consistent flood patterns from year to year. These results mean that differences 

microbial community composition that arose from past hydrologic filtering can influence the 
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maximum rate of potential denitrification, but potential denitrification activity is far more 

strongly influenced by recent fluctuations in water availability. 

 

Significance:  

 Restored wetlands do not always produce the rates that would be expected based on 

manipulation of abiotic factors alone (Orr et al. 2007, Hossler et al. 2011, Marton et al. 2014). 

Existing research on microbial controls of denitrification has yielded mostly correlative 

information, and these studies do not always agree with each other (Flanagan 2009, Manis et al. 

2014). My dissertation has demonstrated that potential denitrification rates in wetlands are 

strongly influenced by recent hydrologic events (either drought or intense flooding in the 

environment, as well as experimental hydrologic manipulation), and I have provided 

experimental evidence demonstrating that differences in microbial composition do influence 

potential denitrification rates to some degree. This experimental evidence can be used to confirm 

the correlative modeling approaches that have been attempted on large datasets, which show that 

microbial denitrification activity in wetlands is controlled by both biotic and abiotic factors 

(Foulquier et al. 2013, Graham et al. 2016). 
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Table 

Table 1.1. Complete list of the names and sequences of the PCR primers used in this dissertation. 
Primer name Sequence Target gene Reference Primer was used 

for sequencing 
Primer was used 
for qPCR 

515F 5’-GTGYCAGCMGCCGCGGTAA-3’ 16S rRNA Caporaso et al. (2011) Ch. 3, 4, 5  
806R 5’-GGACTACVSGGGTATCTAAT-3’ 16S rRNA Caporaso et al. (2011) Ch. 3, 4, 5  
Arch349F 5’-GYGCASCAGKCGMGAAW-3’ Archaeal 16S rRNA Takai and Horikoshi (2000) Ch. 4  
Arch806R 5’-GGACTACVSGGGTATCTAAT-3’ Archaeal 16S rRNA Takai and Horikoshi (2000) Ch. 4  
Arch-amoAF 5'-STAATGGTCTGGCTTAGACG-3' Archaeal amoA Francis et al. (2005)  Ch. 4 
Arch-amoAR 5'-GCGGCCATCCATCTGTATGT-3' Archaeal amoA Francis et al. (2005)  Ch. 4 
amoA-1F 5'-GGGGTTTCTACTGGTGGT-3’ Bacterial amoA Rotthauwe et al. (1997) Ch. 4 Ch. 4 
amoA-2R 5’-CCCCTCKGSAAAGCCTTCTTC-3’ Bacterial amoA Rotthauwe et al. (1997) Ch. 4 Ch. 4 
nirK876 5’-ATYGGCGGVCAYGGCGA-3’ nirK Henry et al. (2004) Ch. 3, 4, 5 Ch. 2, 3, 4 
nirK1040 5’-GCCTCGATCAGRTTRTGGTT-3’ nirK Henry et al. (2004) Ch. 3, 4, 5 Ch. 2, 3, 4 
nirSCd3aF 5’-AACGYSAAGGARACSGG-3’ nirS Kandeler et al. (2006) Ch. 3, 4, 5 Ch. 2, 3, 4 
nirSR3cd 5’-GASTTCGGRTGSGTCTTSAYGAA-3’ nirS Kandeler et al. (2006) Ch. 3, 4, 5 Ch. 2, 3, 4 
nosZ1F 5'-WCSYTGTTCMTCGACAGCCAG-3' Clade I nosZ Henry et al. (2006) Ch. 3, 5 Ch. 2, 3 
nosZ1R 5'-ATGTCGATCARCTGVKCRTTYTC-3' Clade I nosZ Henry et al. (2006) Ch. 3, 5 Ch. 2, 3 
nosZ-II-F 5'-CTIGGICCIYTKCAYAC-3’ Clade II nosZ Jones et al. (2014)  Ch. 2, 3 
nosZ-II-R 5'-GCIGARCARAAITCBGTRC-3’ Clade II nosZ Jones et al. (2014)  Ch. 2, 3 
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CHAPTER 2:  

EXTENDED DROUGHT LIMITS POTENTIAL DENITRIFIER ACTIVITY IN 

RESTORED AND REFERENCE FRESHWATER WETLANDS EQUALLY 

 

Abstract 

A valuable function of wetlands is to remove nitrate pollutants via the anaerobic 

microbial process of denitrification. Previous research has determined that current restoration 

practices fail to reproduce denitrifier communities with potential function equivalent to that of 

reference wetlands. Further, increased drought as a consequence of climate change is likely to 

interrupt anaerobic processes like denitrification, and little is known about the long-term effects 

on wetland denitrifier communities, which may possess a range of physiological tolerance to 

drought stress. Restoration practitioners need to understand which factors promote the greatest 

response of denitrification rates once anaerobic conditions favorable to denitrification return 

after post-drought floods. In this study, we seek to understand if restoration practices have been 

effective in promoting denitrification function that is comparable to the wetlands they were 

intended to mimic, especially following an extreme drought. We measured potential 

denitrification rates in 30 restored and 15 reference wetlands in 2012 during a drought, and again 

in 2013 after the drought. Denitrification rates were similar between restored and reference 

wetlands both years, but potential rates were an order of magnitude greater during the following 

year after unusually intense spring floods. We conclude that restoration practices seem to 

reproduce wetlands of equivalent functional potential after 8 to 20 years post restoration, but not 

all restored wetlands were able to reach equivalently high rates once saturated conditions 

returned after a drought year. Statistical modeling demonstrated that potential denitrification 
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rates during the year following the drought were strongly influenced by both wetland soil and 

microbial characteristics, namely soil pH and abundance of nirS-containing denitrifiers. Future 

research efforts should focus on examining the potentially causal relationships and interactions 

between pH, denitrifier composition, and denitrification capacity in a wetland following drought. 

 

Introduction 

 Restoration of denitrification function in wetlands is contingent on restoring both the 

physical and biological components of an ecosystem. Drought events can alter abiotic properties, 

such as oxygen availability and nutrient flux, and changes in abiotic properties would impose 

physical stress on the microbial organisms responsible for denitrification. Flood regimes are 

expected to change due to altered precipitation regimes, and this will lead to extended periods of 

drought, especially in the Midwestern United States (Hey and Philippi 1995, IPCC 2014). This is 

only one example for how climate change is quickly altering the playing field, and restoration 

practitioners now must aim to reach moving a target to achieve desired ecosystem characteristics 

(Suding 2011).   

Restoration practitioners often aim to restore hydrology to create the saturated conditions 

that facilitate anaerobic microbial denitrification activity (Zumft 1997, Wallenstein et al. 2006). 

Simply restoring the flood pulse has not predictably returned function to a desired level at the 

scale of an entire wetland (Orr et al. 2007, Peralta et al. 2010). Direct comparisons between 

denitrification rates in restored and reference wetlands have revealed that restoration does not 

result in similar rates as would be desired (Hossler et al. 2011). Most concerning, even potential 

rates of denitrification under identical laboratory conditions fail to show similar functional 

capacity between restored and reference wetlands (Flanagan 2009, Marton et al. 2014). 
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Microbial function and the delivery of ecosystem services appear to remain limited by intrinsic 

factors, as well as by extrinsic environmental factors related to the hydrology and flood pulse. 

Differences in potential function may be partially explained by differences in microbial 

community composition. Denitrifiers encompass a wide diversity of organisms with a range of 

metabolic capabilities (Zumft 1997, Schimel and Gulledge 1998). Denitrifier composition and 

richness are often correlated with differences in denitrification rates (Philippot et al. 2013, 

Morrissey and Franklin 2015, Powell et al. 2015, Graham et al. 2016). Further, denitrifier 

communities in wetlands are quite different from one another in general (Peralta et al. 2012), and 

differences in potential denitrification in restored and reference wetlands has been directly linked 

to denitrifier composition (Flanagan 2009). The denitrifier community composition of a site 

intended for future wetland restoration may remain constrained by priority effects, which prevent 

these communities from producing similar rates to reference wetlands even once soils are treated 

to identical potential microbial activity rate assays. 

Wetlands are likely to experience major disturbances from altered precipitation patterns, 

especially from increased drought intensity. Community assembly processes are altered by 

drought conditions in wetlands (Chaparro et al. 2016), which would complicate any efforts to 

restore belowground communities in wetlands. Current restoration practices often already 

overlook microbial community characteristics (Harris 2009, Bodelier 2011, Griffith 2012), 

despite how important these communities are for a wide range of ecosystem services (Knelman 

and Nemergut 2014, Delgado-Baquerizo et al. 2016, Graham et al. 2016, Laforest-Lapointe et al. 

2017).  

Extended drought presents an additional challenge for microbial populations in soil 

because these taxa must possess physical or molecular machinery to protect themselves from 
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desiccation in order to persist and become active again once the flood returns (Fierer and 

Schimel 2003, Schimel et al. 2007, Evans and Wallenstein 2012). Low activity in general is 

expected to occur under drought conditions (Gleeson et al. 2008, Zeglin et al. 2010, Estop-

Aragonés and Blodau 2012, Buelow et al. 2016, Goordial et al. 2016). Drying of soils can limit 

microbial activity by physically inducing dormancy (Jones and Lennon 2010, Angel and Conrad 

2013) or through immobilization of nutrients (Davidson 1993, Stark and Firestone 1995, Buelow 

et al. 2016). Most importantly, desiccation has long-lasting effects on the microbial community, 

where greater intensity of drought conditions affect the response of the community to altered 

conditions (Fierer and Schimel 2002, Alster et al. 2013, Meisner et al. 2017) and may change the 

mechanisms by which microbial taxa utilize available resources (Zeglin et al. 2013). Drying and 

subsequent re-wetting can alter the active portion of the community (Aanderud et al. 2015) and 

eliminate specific taxa that do not possess physiological tolerance to a rapid transition from oxic 

to anoxic. This type of disturbance alters the community over a longer time period (Evans and 

Wallenstein 2012, Placella et al. 2012, Brower et al. 2017). Droughts are expected to become 

more frequent and persist for a greater duration as global precipitation regimes change (IPCC 

2014). In general, microbial communities tend to be sensitive to disturbances in terms of both 

altered composition and function (Allison and Martiny 2008, Shade et al. 2012a). Thus, it 

important to understand whether denitrifier communities in restored wetlands can achieve 

denitrification capacity following a drought that is equivalent to those in reference wetlands in 

order to determine whether drought has long-term effects that limit the recovery of function 

during the years following the drought. This will become even more important to understand as 

restoration practitioners attempt to recreate wetlands in the greater context of a changing climate 

and properly replace the ecological function of wetlands that have been destroyed. 



 25 

In 2012, the Midwestern U.S. experienced one of the most intense droughts on record 

(Mallya et al. 2013, Hoerling et al. 2014) with negative consequences for U.S. agriculture and 

the economy in the region (Al-Kaisi et al. 2013). In the summer of 2012, a large survey was 

conducted comparing dozens of restored wetlands located across the state of Illinois with 

reference wetlands (Jessop et al. 2015). This drought offered an opportunity to study the 

recovery of the belowground wetland community and denitrification capacity following drought, 

and to compare that recovery in both restored and reference wetlands, so soil sampling was 

conducted again from the same wetlands again the next year, immediately following record-

breaking spring floods. Using this dataset, we asked whether denitrifier communities in restored 

wetlands differed in their recovery from extended drought compared to reference wetlands. We 

hypothesize that current restoration practices fail to replicate a belowground community whose 

denitrification function is equally as resilient or resistant to intense drought as those in reference 

wetlands. A suite of environmental factors were also quantified for each wetland, including 

published information about the vegetation (Jessop et al. 2015) and additional information about 

soil chemistry and denitrifier abundance in the soil. Using these factors, we further asked 

whether the denitrification capacity that was achieved following the drought could be correlated 

to characteristics of the wetland itself. 

 

Methods 

Study sites and sampling design 

Wetlands in this study were located in 23 different Illinois counties and represent a range 

of environmental variability present across the entire state. In total, 45 wetlands were included, 

which consisted of 30 restored wetlands and 15 reference wetlands that were each geographically 
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adjacent to a restored site. In 2012, sampling transects were established as described previously 

(Jessop et al. 2015). Out of the ten plant community quadrats along each of the four transects, 

soil cores were collected from two randomly selected 1-m2 quadrats along each transect, yielding 

eight technical replicates per wetland for microbial and soil analysis. The location of each 

sampling quadrat was recorded via GPS, and soil cores were collected from the same 

approximate locations in 2013. Following each sampling event, soil cores were placed in plastic 

bags and put on ice for transportation back to the laboratory for analysis.  

Soil chemistry analysis 

Soil pH was determined using a 1:1 dried soil:deionized water. Concentration of 

available ammonium (NH4+), combined nitrate (NO3-) and nitrite (NO2-), and inorganic 

phosphate (PO4-) in soil extracts was determined using a Lachat QuikChem (Lachat Instruments, 

Loveland, CO, USA) following the Berthelot method as described previously (Sims et al. 1995, 

Rhine et al. 1998). Total organic carbon and nitrogen were determined using combustion 

analysis (ECS 4010, COSTECH Analytical Instruments, Valencia, CA, USA). Gravimetric water 

content was also determined for every sample. 

Potential denitrification enzyme assays 

Potential denitrification was determined using a laboratory assay to measure the amount 

of nitrogen gas produced per hour under ideal conditions. The assay protocol was similar to the 

assay described by Peralta et al. (2016), except the media contained an added carbon source and 

nitrate. Soil slurries were made by combining 25 g soil with 25 mL media containing 45.83 mM 

dextrose, 14.28 mM nitrate, and 10 mg/L chloramphenicol to inhibit denitrifier cell division. The 

bottles were purged with helium gas to create anaerobic conditions. Acetylene gas was added to 

prevent the reduction of N2O to N2. Gas samples were collected at the beginning and after three 
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hours. Gas samples were collected at the beginning and after three hours. This denitrification 

assay protocol uses the initial gas sample as the assay control, which is analogous to the frozen 

control in the nitrification assay, and no technical replicates were established. The concentration 

of N2O was determined using a gas chromatograph (GC-2014 with ECD, Shimadzu Corp., 

Kyoto, Japan). The concentration of N2O was used as a proxy for N2 concentration under the 

assumption that it would be reduced under natural conditions (Groffman et al. 2006). The same 

soil used for the assays was oven dried, and the final denitrification rate was corrected by the dry 

weight of the soil. 

Soil DNA extraction and purification 

Genomic DNA was extracted from 0.5 g freeze-dried soil using a FastDNA kit (MP 

Biomedicals, Solon, OH, USA) according to the manufacturer’s instructions. Humic acids were 

removed using cetyl trimethyl ammonium bromide (CTAB) purification (Sambrook and Russell 

2001). CTAB is a cationic surfactant that solubilizes complex carbohydrates and secondary 

metabolites that might interfere with PCR (Azmat et al. 2012). Following CTAB purification, the 

absorbance ratio at 260:230 nm was determined on a NanoDrop spectrophotometer 

(ThermoFisher Scientific, Waltham, MA, USA), and purified DNA samples with a 260:230 nm 

ratio greater than 1.5 were used for qPCR.  The purified DNA was adjusted to approximately 20 

ng/µL and stored at -20˚C until further microbial community analysis.  

Quantitative PCR of microbial denitrification genes 

Quantitative PCR (qPCR) was used to determine the number of nirS and nirK genes 

present in each community as a measurement of N2O producer abundance, and N2O consumer 

abundance was measured by quantifying the number of Clade I nosZ genes and Clade II nosZ 

genes present in the community.  
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In order to quantify gene copy number in each of the qPCR assays, replicate serial 

dilutions of standard template were amplified simultaneously with the samples to produce a 

standard curve. The template DNA for these standards were generated by first amplifying the 

gene of interest from a mixed wetland soil sample using PCR without fluorescent dyes: 

Reactions were carried out in a 50µL volume and contained 50 mM Tris (pH 8.0), 25 µg/mL of 

T4 gene 32 protein, 1.5 mM MgCl2, 200 µM of each dNTP, 20 pmol of each primer (four 

separate reactions: nirK, nirS, Clade I nosZ, and Clade II nosZ), 2.5 U of Taq polymerase 

(Promega, Madison, WI, USA), and 100 ng of extracted soil DNA. PCR conditions included 

initial denaturation at 95 °C for 5 min, followed by 30 cycles of 94 °C for 45 s, 53 °C for 1 min, 

and 72 °C for 1 min, with a final extension at 72 °C for 15 min. Next, the amplicons were 

separated from primer dimers using a QIAquick gel extraction kit according to the 

manufacturers’ protocol (Qiagen, Valencia, CA, USA). The concentration of purified amplicon 

was determined using a Qubit DNA fluorometer (ThermoFisher Scientific, Waltham, MA, 

USA), and the exact copy number of the gene of interest in each the standard could be calculated 

from the concentration. The final copy number of each gene in the unknown soil samples was 

normalized by the ng of template DNA used in the qPCR reaction. The MIQE guidelines 

(Minimum Information for qRT-PCR Experiments) explained by Bustin et al. (2009) were used 

to evaluate assay performance based on the standard curves for the nirK, nirS, Clade I nosZ, and 

Clade II nosZ qPCR assays, and the results of this analysis are summarized in Table A.1 and Fig 

A.1. All gene copy numbers calculated in unknown wetland soil DNA samples were within the 

range of the respective standard curve for each gene. 

PCR amplification reactions were carried out in triplicate in a 5 µL volume containing 

1X FastStart Universal SYBR Green master mix (Roche Applied Science, Germany) with 125 
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µg T4 gene 32 protein (Roche Applied Science, Germany), and 0.4 µM of each forward and 

reverse primers was added to their respective reactions. The nirK gene was amplified using the 

primers nirK876 and nirK1040 (Henry et al. 2004), and the nirS gene was amplified using the 

primers, nirSCd3aF and nirSR3cd (Kandeler et al. 2006). The following protocol was used to 

amplify both nirK and nirS genes: 5 min initial denaturation at 95˚ C and then 40 cycles of 95˚ C 

for 45 sec, 54˚ C for 1 min, and 72˚ C for 1 min. The Clade II nosZ gene was amplified using the 

primers nosZ-II-F and nosZ-II-R (Jones et al. 2014) according to the following protocol: 5 min 

initial denaturation at 95˚ C and then 40 cycles of 95˚ C for 45 sec, 54˚ C for 1 min, and 72˚ C 

for 1 min. The Clade I nosZ gene was amplified using the primers, nosZ1F and nosZ1R (Henry 

et al. 2006), and a touchdown protocol was used: 15 minutes initial denaturation at 95˚ C, 2 

cycles of 95˚ C for 15 sec, 68˚ C for 1 min, and 72˚ C for 30 sec, 2 cycles of 95˚ C for 15 sec, 66˚ 

C for 1 min, and 72˚ C for 30 sec, 2 cycles of 95˚ C for 15 sec, 64˚ C for 1 min, and 72˚ C for 30 

sec, and ending with 35 cycles of 95˚ C for 15 sec, 62˚ C for 1 min, and 72˚ C for 30 sec. The 

primer sequences are shown in Table 1.1 (Chapter 1). All reactions were carried out separately 

for each target sequence in a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster 

City, CA). The quantitative cycle threshold (Cq) was determined using SDS software v 2.4 

(Applied Biosystems, Foster City, CA). Gene copy number was quantified by comparing Cq of 

samples against those produced by a standard curve constructed from gel-purified environmental 

amplicons for each gene. For all reactions, 1 µL of template was used, which contained 

approximately 10-15 ng genomic DNA. Primer sequences are shown in Table 1.1 (Chapter 1). 

Statistical analyses 

To determine differences between variables described for both 2012 and 2013 (e.g. 

denitrification rates, gene copy numbers), a paired Student’s t-test was used, while unpaired t-
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tests were used to determine any differences between restored and reference wetlands due to the 

inclusion of some restored wetlands that were not paired to a reference wetlands. All tests were 

performed using the entire wetland as a single sampling unit (nref = 15 reference wetlands, nres = 

30 restored wetlands). Post-hoc power analyses were performed using the R package “pwr” 

(Champely 2009) to determine if there was adequate statistical power to detect differences in 

potential denitrification in restored and reference wetlands. Power was calculated for a two-tailed 

t-test, significance was set to 0.05, and the effect size was determined by dividing the difference 

in means by the pooled variance. 

In order to visualize differences in denitrifier composition, a principle component 

analysis (PCA) ordination was constructed with the “rda” function in the R package “vegan” 

(Oksanen et al. 2013, R Core Team 2014) using the standardized copy number of each of the 

four denitrification genes quantified, as well as the standardized log ratio of nirK:nirS, the 

standardized log ratio of Clade I nosZ:Clade II nosZ, and the standardized log ratio of total nir 

genes (nirK+nirS) to total nos genes (Clade I nosZ + Clade II nosZ). The function “envfit” was 

used to evaluate whether this ordination displayed significant differences in denitrifier gene 

composition between restored and reference wetlands and between 2012 and 2013. All univariate 

linear regression and ANCOVA models were constructed using the “lm” function in R. 

In order to determine which variables were associated with wetlands that are likely to 

achieve the highest denitrification function following a drought, we created four models where 

the response variable was the average potential denitrification rate from each wetland in 2013. 

Each of the four models was linear model with multiple predictor variables including (1) plant 

community characteristics, (2) surrounding land use, geography and hydrology, (3) soil 

chemistry, and (4) microbial community characteristics. Correlated predictor variables 



 31 

(Pearson’s r > 0.8) were removed before the analysis. We used the “dredge” function in the 

“MuMIn” package in R to generate all possible models from each data set, and we selected a 

subset of models with delta AICc values that were no more than four times the AICc of the 

model with the lowest AICc value (Burnham and Anderson 2004). The “model.avg” function in 

R was used to calculate average estimates for each variable from this subset, producing an 

average model for each data set. We report the adjusted R2 for each average model to show 

explanatory power. Increasing the number of variables can artificially increase R2, so we also 

report average AICc values for each model because AICc faces a penalty increase when more 

variables are added. The average AICc reported was the weighted average of each AICc for the 

subset of models used to generate the final model.  

 

Results 

Drought effects on denitrification function and denitrifier composition in restored wetlands 

No difference in potential denitrification rates was observed between restored and 

reference wetlands under drought conditions or during the following year, but rates were an 

order of magnitude lower during the drought in 2012 (Fig. 2.1A). The statistical power was 

remarkably low (<10% in both 2012 and 2013), which can be expected because there was no 

difference between rates in restored and reference wetlands. Half of the 30 restored wetlands 

were paired with geographically adjacent reference wetlands, so a paired-test was also conducted 

only using rates generated from the 15 paired wetlands, but still no difference was detected. The 

paired t-tests exhibited greater statistical power than the unpaired t-tests with unequal sample 

size, but power was quite low overall. The paired t-test power was calculated to be 19% in 2012 

and 16% in 2013. There was a significant log linear relationship between wetland soil moisture 
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(gravimetric water content) and potential denitrification (adjusted R2 = 0.18, p < 0.001; Fig. 

2.1B), despite the completely saturated assay conditions employed to generate these rates during 

both years.  

Overall, the relative proportions of denitrifier gene copies were affected by year (envfit 

R2 = 0.09, p < 0.001), but did not differ between restored and reference wetlands (Fig. 2.2). 

However, gene abundances were often lower in 2013 when greater activity was observed than in 

2012, and the individual abundances of denitrification genes in restored wetlands generally did 

not differ across years (Fig. A.2). The only gene that differed between restored and reference 

wetlands was Clade I nosZ in 2013, but there was a far lower abundance of Clade I nosZ than 

any of the other genes quantified (Fig. A.2D). 

Factors associated with denitrification potential during the year following the drought 

Four separate multiple linear regression models were generated using different sets of 

predictor variables in order to identify factors that may predict the ability of wetland denitrifier 

communities to achieve high function following a severe drought. One model built from 

explanatory variables relating hydrology and geography found a positive relationship between 

potential denitrification rates and latitude (Table 2.1). Another model built on vegetative 

community metrics found a relationship between potential denitrification rates and invasion by 

reed canary grass (Phalaris arundinacea) (Table 2.2). The rates were significantly correlated 

with the percent cover of reed canary grass in the PCoA ordination, providing additional support 

for this relationship with reed canary grass invasion (Fig. A.3). The model using only soil 

variables found a significant positive relationship between potential denitrification rates and 

phosphate (Table 2.3). The two microbial variables that significantly correlated with potential 

denitrification was the nirS and Clade I nosZ gene copy numbers (Table 2.4).  
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Discussion 

Many restoration ecologists have evaluated the performance of denitrifying services in 

restored wetlands and found them to be lacking when compared to reference wetlands (Peralta et 

al. 2010, Hossler et al. 2011, Marton et al. 2014). However, the current study was able to employ 

a greater number of replicate wetlands than were included many of those studies. Further, the 

drought in 2012 provided the unusual opportunity to study how drought affects the restoration of 

denitrification and denitrifier communities. Here, we report that denitrification function in 30 

restored freshwater wetlands and 15 reference freshwater wetlands were equally limited by 

intense drought conditions. The ability to recover function appears to be associated with 

geography, as well as soil nutrients, like phosphate, and with the abundance of nirS- and Clade I 

nosZ-containing denitrifiers in the microbial community. Differences between restored and 

reference wetlands made little difference to the maximum rate achieved during the year 

following drought.  

The restored wetlands in this study ranged from 8 to 20 years post-restoration by the time 

the drought occurred in 2012. Many restoration ecologists are interested in the question ‘how 

long is enough?’ when it comes to restoration (Matthews et al. 2009) or whether there are 

permanent barriers to achieving restoration goals (Suding 2011). Wetland plant communities 

exhibit stochastic trajectories following restoration (Trowbridge 2007, Matthews and Spyreas 

2010), especially within the first 10 years. Marsh chronosequences have provided evidence to 

show that potential denitrification may increase continuously with age over 100 years (Salles et 

al. 2017) but not within a 14-year range (Smith and Ogram 2008). Contrary to saltwater coastal 

marshes, we found that the freshwater inland wetlands are too diverse to coerce into a 



 34 

chronosequence framework. Potential denitrification showed no relationship with restoration age 

(data not shown). A previous study found that a subset of these paired restored and reference 

wetlands showed functional differences in potential denitrification rates 4 to 10 years post-

restoration (Flanagan 2009). Contrary to preliminary findings, we conclude that 8 to 20 years 

post-restoration might be enough time to restore denitrifying services in freshwater wetlands.  

There may be differences that persist within the microbial community despite functional 

similarity between restored and reference sites. Our results suggest that the abundance of some 

denitrifiers may respond to drought differently in restored than reference wetlands. For example, 

abundance of both Clade I and Clade II nosZ was greater in the reference wetlands during the 

drought than during the following year, while the restored wetlands showed little change 

between the two years. Other studies that more directly investigated differences in restored 

communities compared to a reference are often in agreement that restoration does not result in an 

identical community (Flanagan 2009, Peralta et al. 2010, Bernhard et al. 2012, Murphy and 

Foster 2014, Bernhard et al. 2015). A recent study shared strong evidence that microbial 

communities in restored Appalachian forests follow a trajectory of convergence toward an 

undisturbed metacommunity over 30 years post-restoration (Sun et al. 2017). Microbial 

community composition may follow some sort of successional trajectory following restoration, 

yet remain functionally redundant in the face of environmental stressors, such as drought. It is 

possible that the restored wetlands in our study were in the process of converging, but were 

strongly influenced by the effects of the drought.  

Most interestingly, microbial assemblages in restored and reference wetlands were 

influenced by drought equally, where drought conditions experienced in the environment 

decreased the ability of soil communities to transform nitrate even under ideal saturated 
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conditions in a laboratory. Certainly, antecedent effects of recent oxygen availability are known 

to have a strong influence on denitrification rates even once anoxic conditions are returned 

(Scholefield et al. 1997, Attard et al. 2011, Bergstermann et al. 2011). This could be due to 

physical changes to the soil brought on by desiccation that trap nutrients in inaccessible forms 

(Stark and Firestone 1995, Buelow et al. 2016), short term changes to the microbial community 

(Shade et al. 2012b, Youngblut et al. 2013), or even drought-induced metabolic changes in the 

present community, thus altering activity in general (Zeglin et al. 2013). In our study, we 

actually found denitrifier populations tended to decrease in abundance during the year following 

the drought, possibly reflecting a lag response to drought stress. Even if microbial community 

composition is different between restored and reference wetlands, the microbial assemblages of 

restored wetlands are capable of equivalent denitrification capacity as those in the reference 

wetlands.  

Potential denitrification rates can be influenced by different environmental factors, and 

historically these have been difficult to disentangle (Groffman et al. 2006). Here, we were 

interested in using these variables to explain the variability in potential denitrification rates in 

2013 only. Dry conditions will limit denitrification rates, so a useful trait to focus on is the 

maximum denitrification rates that can be achieved during the year following drought. We 

established four separate models in order to evaluate the relative contribution of wetland 

characteristics that may be informative for restoration ecologists performing future research: (1) 

wetland hydrology and restoration history, (2) vegetative quality indicators, (3) soil 

characteristics, and (4) microbial community metrics.  

(1) We did not find a difference between floodplain vs. depressional wetlands or between 

wetlands restored via intentional vegetation planting vs. excavation. Previous comparisons found 
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that restored floodplain (i.e. riparian) wetlands performed similarly to corresponding reference 

riparian wetlands, while restored depressional wetlands exhibited lower potential denitrification 

rates compared to their reference ecosystem (Marton et al. 2014). The Olentangy wetlands in 

Ohio offer an interesting case study for the comparison of wetlands restored via intentional 

planting or by ’self-design’ (Mitsch and Wilson 1996, Mitsch et al. 1998), where two floodplain 

wetlands fed by the same river source were restored according to each method and monitored 

over more than 20 years. The naturally colonized wetland had lower vegetation richness but 

greater productivity, N and P retention, and C sequestration compared to the planted wetland, but 

denitrification was most strongly influenced by temperature and historic saturation levels 

(Mitsch et al. 2014, Song et al. 2014). In our study, we found neither distinction to have a 

significant effect on magnitude of potential denitrification. Geography (i.e. latitude) most 

strongly influenced rates, but variability among rates could not be explained by differences in 

surrounding land use type (data not shown), and thus ‘geography’ likely incorporates many 

interacting controlling variables.  

(2) Plant community indicators were not strongly correlated with potential denitrification 

rates either, with the exception of percent cover of reed canary grass (Phalaris arundinacea). 

Previous work established that potential denitrification rates were inversely correlated with 

indicators of vegetation quality (e.g. floristic quality index - FQI), and the authors hypothesized 

that this represents an indirect effect of nutrient runoff (Jessop et al. 2015). Excess nutrients 

often favor the growth of a monoculture of P. arundinacea (Zedler and Kercher 2005, Martina et 

al. 2014), and excess soil nitrate can stimulate microbial denitrification even when the potential 

rate assay incubation includes a non-limiting amount nitrate (Hanson et al. 1994). It is possible 
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that the relationship observed between P. arundinacea and potential denitrification is simply 

because both variable would be elevated in wetlands that typically receive more nitrate runoff.  

(3) The strongest influence of soil on the increase in potential denitrification rates was 

seen in phosphate, with pH as a strong but not significant factor. Phosphate is also commonly 

found in runoff containing nitrate (Hubbard et al. 1989, Shuman 2002), and this may represent a 

similar relationship as observed with P. arundinacea (though these were not correlated variables 

- data not shown). Soil pH can influence denitrification rates from soil organisms grown in 

culture (Saleh-Lakha et al. 2009, Dörsch et al. 2012), and has been observed to influence rates in 

the environment as well (Van den Heuvel et al. 2011). Both pH and soil nutrients are strong 

variables driving differences in microbial communities as well (Bárta et al. 2010, Griffiths et al. 

2011, Peralta et al. 2012).  

(4) The microbial model revealed that both nirS gene abundance and Clade I nosZ gene 

abundance in the microbial community were primary factors influencing potential denitrification 

rates. Previous literature has suggested that the specific hydrology of the environment influences 

denitrifier composition, where nirS-containing denitrifiers tend to dominate in constantly 

saturated regions of wetlands (Ligi et al. 2014), but greater abundance of nirS genes does not 

always correlate to greater potential denitrification rates (Song et al. 2010). Others have found 

that the diversity of nirS gene sequences influences rates (Salles et al. 2012, Morrissey and 

Franklin 2015). There has been some indication that greater abundance of denitrifier genes in 

general corresponds to higher denitrification rates (Chroňáková et al. 2009), but many have 

determined that denitrifier abundance is simply a secondary controlling factor when also 

considering hydrology or variables pertaining to the soil environment (Attard et al. 2011, Baxter 

et al. 2012, Manis et al. 2014). Using the modeling approach reported in this study, soil variables 
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and microbial abundance variables each explained 43% and 49% of the variability in potential 

denitrification rates, respectively. This adds to a growing body of evidence for the importance of 

considering both soil and microbial variables as controlling factors of microbially-mediated 

ecosystem processes (Graham et al. 2016).  

The study we describe here shows that drought can alter the ability of wetland soil 

microbes to respond to ideal conditions in a laboratory assay. One year later, the microbial 

community recovered this ability, but there may still be long-term consequences of the drought 

on the community because abundance of the denitrifier population was greatly decreased by 

then. Most surprisingly, we found that restored and reference wetland communities did not differ 

in potential function, contrary to previous studies (Peralta et al. 2010, Hossler et al. 2011, Marton 

et al. 2014). Potential denitrification was strongly influenced by both soil chemistry and 

microbial community, so we agree with previous studies that calling for careful selection of the 

soil environment when restoring wetlands (Peralta et al. 2012, Peralta et al. 2016), especially for 

mitigation purposes. We further report a relationship between nirS- and Clade I nosZ-containing 

denitrifiers, in particular, with the ability of a wetland microbial community to recover 

denitrification function following a drought, and this potentially causal relationship warrants 

further investigation. 
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Tables 

Table 2.1. Geographic and hydrologic variables that predict potential denitrification rates 
generated in 2013. Estimates generated from the average of 12 models selected based on having 
AICc no larger than four times the AICc of the best model. Significant predictors (p < 0.05) are 
indicated in bold text. 
 Estimate Importance No. of models 
(Intercept) *** 747.52   
Latitude *** 576.49 1 12 
Floodplain (yes/no) 159.82 0.48 6 
Excavated (yes/no) -146.99 0.44 6 
Gravimetric soil moisture -66.15 0.21 4 
Longitude 44.31 0.20 4 
Adjusted R2 0.46   
Mean AICc 718.54   

* p < 0.05, ** p < 0.01, *** p < 0.001 
 
 
 
Table 2.2. Plant community variables that predict potential denitrification rates generated in 
2013. Estimates generated from the average of 15 models selected based on having AICc no 
larger than four times the AICc of the best model. Significant predictors (p < 0.05) are indicated 
in bold text. 
 Estimate Importance No. of models 
(Intercept) *** 801.22   
% Reed Canary Grass *** 499.67 1.00 15 
% Native Perennial -345.93 0.60 8 
% Native -164.08 0.34 6 
% Perennial 217.33 0.31 6 
Richness -130.45 0.23 4 
Floristic Quality Index -73.76 0.14 3 
Adjusted R2 0.45   
Mean AICc 660.79   

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 2.3. Soil variables that predict potential denitrification rates generated in 2013. Estimates 
generated from the average of 13 models selected based on having AICc no larger than four 
times the AICc of the best model. Significant predictors (p < 0.05) are indicated in bold text. 
 Estimate Importance No. of models 
(Intercept) *** 747.52   
Phosphate  ** 409.54 0.95 12 
pH § 230.14 0.65 7 
Ammonium 171.76 0.49 7 
Nitrate 65.79 0.22 5 
Total C 84.94 0.21 4 
Adjusted R2 0.43   
Mean AICc 720.24   

§ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
 
 
 
Table 2.4. Microbial variables (based on quantitative PCR of denitrification genes) that predict 
potential denitrification rates generated in 2013. Estimates generated from the average of 14 
models selected based on having AICc no larger than four times the AICc of the best model. 
Significant predictors (p < 0.05) are indicated in bold text. 
 Estimate Importance No. of models 
(Intercept) *** 747.52   
nirS *** 799.94 1 14 
Clade I nosZ ** -387.37 0.97 13 
log(nir:nos) 168.84 0.39 6 
log(Clade I:II nosZ) 108.43 0.28 5 
Clade II nosZ -19.19 0.15 3 
nirK 1.23 0.14 3 
log(nirK:nirS) 31.97 0.14 3 
Adjusted R2 0.49   
Mean AICc 715.95   

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figures 

 

Figure 2.1. (A) Comparison of mean potential denitrification rates in reference wetlands (n = 15) 
and restored wetlands (n = 30) determined during a year with intense drought conditions, 2012, 
and during the year after when conditions returned to a more typical wet state. Error bars show 
standard error of the mean. Lower case letters indicate significant grouping. (B) Linear 
relationship between original soil moisture (gravimetric water content) and log denitrification 
rates (R2 = 0.18, p < 0.001). Potential denitrification rates were determined under identical 
saturated conditions for all soil assays. 
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Figure 2.2. Principle component analysis (PCA) ordination based on standardized gene 
abundance values and standardized log ratios of total nir genes to total nos genes, nirK to nirS, 
and Clade I to Clade II nosZ. Axes for the seven variables are plotted as black arrows. “Year” 
was significantly correlated to the ordination (p < 0.05) using the ‘envfit’ function, and axes for 
both years are plotted as grey arrows. Wetland “type” (reference vs. restored) was not 
significantly correlated to this ordination. 
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Figure 2.3. Location of 45 wetlands used in this study. Size of circle represents relative potential 
denitrification rates produced from soil collected in 2013. Filled circles represent reference sites, 
and open circles represent restored wetlands. Counties are shaded if they include at least one 
wetland used in this study. 
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CHAPTER 3:  

TRACKING TEMPORAL PATTERNS IN DENITRIFICATION AND MICROBIAL 

COMMUNITY COMPOSITION FOLLOWING WETLAND RESTORATION IN 

ILLINOIS 

 
Abstract 

During restoration, ecological concepts like succession and community assembly are 

utilized to alter a damaged ecosystem and restore it to a desired state. Some functions have 

proven difficult to control using current restoration practices, such as denitrification, which is an 

important ecosystem function performed by wetland microbial communities. Microbial 

communities are strongly influenced by abiotic soil properties like texture, pH, and organic 

matter, and soil properties develop quite slowly. It is possible that denitrifier communities in 

restored sites simply need time to develop to a fully functional state. To characterize the 

trajectory of wetland soil communities post restoration, soil samples were first collected in 2007 

from four restored wetlands (7 to 10 years post restoration) that were paired with geographically 

adjacent reference wetlands, and annual sampling continued from 2012 to 2015. Potential 

denitrification assays were performed annually, and changes in the overall microbial and 

denitrifier communities were determined using DNA sequencing. The ratio of N2O producing 

and consuming denitrifiers was also monitored annually by quantitative PCR. During this study, 

there was a drought in 2012, which was followed by unusually intense flooding in 2013. 

Potential denitrification was strongly influenced by the external conditions experienced before 

the assay, where the highest rates were observed in 2013. We also observed high variability in 

the maximum denitrification capacity of these communities, where two of the reference wetlands 

achieved greater rates in 2013 than the other wetlands. These two reference wetlands exhibited 
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unique soil community composition compared to the other wetlands in the study. Composition 

changed temporally in all of the restored and reference wetlands, but communities in the restored 

wetlands did not follow a trajectory toward the communities in their respective reference 

wetlands. The persistent differences between restored and reference wetland communities may 

have led to the observed variation in maximum denitrification rates. This suggests that the 

restoration practices employed did not restore the belowground ecology found in the damaged or 

destroyed wetlands these were meant to replace. 

 

Introduction 

Trajectories of community development and the delivery of ecosystem services can be 

stochastic following wetland restoration, causing problems for restoration ecologists who aim for 

a specific outcome. Wetland community development is likely influenced by a variety of 

external environmental factors, which can lead to alternative ecosystem states instead of the 

target ecosystem (Trowbridge 2007, Matthews et al. 2009, Hall and Zedler 2010). Belowground 

ecosystem processes that support the delivery of services, such as denitrification and nitrate 

removal, are not often monitored in practice (Matthews and Endress 2008). Studies have 

demonstrated that restored wetlands rarely exhibit denitrification rates that are comparable to 

rates observed in reference wetlands (Hossler et al. 2011, Marton et al. 2014), indicating that this 

service in particular is not truly replaced once a wetland is restored to mitigate wetland losses. 

Differences in denitrifier community composition are associated with differences in rates of 

denitrification function (Flanagan 2009, Peralta et al. 2010), and microbial community 

trajectories may influence ecosystem services over time (Salles et al. 2017). Studies that 

investigate the development of the microbial community over time following restoration, in 
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conjunction with the assessment of process rates, should be able to identify whether differences 

in function arise due to an ecological constraint associated with the microbial community.  

A possible constraint on functional capacity in wetlands could arise from random 

trajectories of microbial community development following restoration. Matthews and Spyreas 

(2010) developed a framework in the context of plant community restoration that juxtaposes four 

different possible outcomes of community succession following restoration: (1) convergence of 

multiple restored communities toward a single desired state, (2) convergence of communities 

toward an undesired state, (3) divergence of communities toward multiple acceptable states, and 

(4) divergence of communities toward undesirable states. The authors found that wetland plant 

communities in restored wetlands exhibited convergence over the first four years, but remained 

quite distinct from the reference wetlands that were used as targets to identify what a desired 

community might look like. For microbial ecologists, characterization of a natural wetland 

community has only recently become a possibility, and restoration of the microbial community 

itself is a relatively new idea (Cockell and Jones 2009, Harris 2009, Bodelier 2011, Griffith 

2012). Since microbial taxa vary in stress tolerance (Potts 1994, Schimel et al. 2007, Orwin et al. 

2016) and denitrifier taxa vary in function due to physiological diversity (Bakken et al. 2012, 

Dörsch et al. 2012, Suenaga et al. 2018), it may be possible to identify specific taxa or specific 

combinations of taxa that result in desirable denitrification function. Communities that contain 

these taxa could be considered “target” communities for restoration. The characterization of such 

a reference community might allow restoration practitioners to manipulate abiotic drivers to 

favor colonization and establishment of these taxa following restoration.  

Since the ability to participate in the process of denitrification is found in a wide 

phylogenetic range of microbial taxa (Schimel and Gulledge 1998), there may be multiple 
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combinations of taxa that are capable of performing similar rates of denitrification in restored 

wetlands. Experimental evidence has demonstrated that denitrification rates are at least partially 

controlled by denitrifier richness (Philippot et al. 2013) and composition (Morrissey and Franklin 

2015), indicating that communities that contain different denitrifier taxa will exhibit different 

rates. Alternatively, other studies have observed that functional redundancy can occur between 

different denitrifier communities (Mustafa and Scholz 2011, Manis et al. 2014). The taxonomic 

diversity among denitrifiers as a functional group could explain discrepancies between the 

conclusions of these studies, where some communities exhibit low rates but multiple denitrifier 

communities are capable of high rates. 

Microbial community composition is likely to change slowly regardless of whether 

restored wetland communities converge toward a target “reference” community or diverge 

toward multiple states that are functionally equivalent. Microbial community composition is 

strongly affected by the local soil environment (Griffiths et al. 2011, Peralta et al. 2012, 

Foulquier et al. 2013, Jones et al. 2014, Peralta et al. 2014) and soil development occurs slowly 

over time (Ballantine and Schneider 2009). The process of restoration can be seen as an event 

that initiates ecological secondary succession (Odum 1969, Zedler and Callaway 1999, Hall and 

Zedler 2010), where the ecosystem is altered by the removal of undesired vegetation and 

modified hydrology. Studies on successional processes that occur following glacial retreat have 

demonstrated that slow changes in soil communities mirror the slow building of soil over time 

(Kandeler et al. 2006, Schütte et al. 2009). In wetland plant communities, indicators of desired 

vegetation characteristics, like floristic quality index and native species richness, can increase 

after only a few years post restoration (Matthews et al. 2009). While changes in the above-

ground plant community may influence belowground community composition to some degree 
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(Cline and Zak 2015, Reese et al. 2018), a long-term prairie restoration study demonstrated that 

the microbial community is more strongly influenced by the soil than by the development of the 

aboveground community (Murphy and Foster 2014).  

A 2007 study involving geographically adjacent, paired restored and reference wetlands 

found that denitrifying services differed between the two types of wetlands, even up to 10 years 

post restoration (Flanagan 2009). However, a follow-up study conducted 5 years later found that 

rates were actually similar between restored and reference wetlands (Ch. 2 - Extended drought 

limits potential denitrifier activity in restored and reference freshwater wetlands equally). While 

the follow-up study involved a much larger dataset, it contained limited information about 

microbial community composition. It is possible that microbial communities in the restored 

wetlands are transitioning toward the communities in the reference wetlands over time, and 

denitrification services are also approaching similar rates.  

The approach used here involves a small case study to determine if the microbial 

communities in the restored wetlands have begun to approach the compositional state of those in 

the reference wetlands, and if any differences in composition are linked to differences in function 

across a 4-year time series. During the time series, the Midwestern U.S. experienced one of the 

most intense droughts on record (Mallya et al. 2013, Hoerling et al. 2014), while the following 

year was characterized by usually intense floods. Belowground soil organisms can become 

stressed by desiccation during the drought or by anoxic conditions that arise during floods 

(Schimel et al. 2007). The flooding could also be expected to carry high nutrient loads (Jordan et 

al. 2010), which might favor fast-growing taxa (Gobler et al. 2016). Thus, we also aim to 

determine if trajectories of compositional change were altered by these extreme weather events. 

Further, we seek to identify specific denitrifier taxa whose relative abundance is 
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correlated to denitrification capacity, and determine whether the abundance of these taxa change 

through time. The possibility that dissimilar microbial communities may still exhibit similar 

denitrification rates also leads to the question of whether a typical reference wetland community 

can be characterized, or if it is important to make such a distinction. The primary aim of our 

study is to lay the groundwork to establish whether microbial communities in restored wetlands 

are changing in composition over time and to relate changes in composition to changes in 

potential denitrification activity. 

 

Methods 

Sampling and field sites 

Four geographically adjacent pairs of reference and restored wetlands were selected for 

this study, and the four pairs are located in three different Illinois counties (Fig. 3.1). Sites A, B, 

and D exhibit floodplain hydrology while the pair of wetlands at Site C are depressional 

wetlands, and the soil texture at these sites ranged from clay loam to silt loam (Table 3.1). Eight 

replicate soil samples were collected in the summer of 2007 from each wetland as described 

previously by Flanagan (2009) when the restored sites were 7 – 10 years old (Table 3.1). Eight 

replicate soil samples were collected from each wetland again in the summers of 2012, 2013, 

2014, and 2015, when the restored sites were 15 – 18 years old. Soil from the paired wetlands at 

Site C was not collected in 2014 due to logistic complications. In 2012, the 8 replicate soil 

samples from each wetland were selected randomly using the method described in Ch. 2. In 

2013, 2014, and 2015, a handheld GPS unit was used to collect samples from the same 

approximate locations as in 2012.  
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Potential denitrification activity assays 

In 2007, potential denitrification rates were determined using soil collected from the field 

as described previously by Flanagan (2009). In 2012-2014, potential rates of denitrification were 

determined using a similar assay with minor changes. For these rates, 25 g of field moist soil was 

placed into 125-mL Wheaton jars with 25 mL of deionized water with chloramphenicol as 

described by Peralta et al. (2016). In 2012-2015, separate potential denitrification assays were 

performed with added 45.83 mM dextrose and 14.28 mM nitrate to generate the maximum 

possible rates under excess nutrients. In 2015, in order to quantify how much N2O may be 

released by incomplete denitrification, a second assay was performed simultaneously with inert 

helium added instead of acetylene. Thus, potential rates of N2O-producing incomplete 

denitrification activity could be determined as well. Gas samples were collected at the beginning 

and after three hours. The concentration of N2O was determined using a gas chromatograph (GC-

2014 with ECD, Shimadzu Corp., Kyoto, Japan). The final denitrification rate was corrected by 

the dry weight of the soil. 

DNA extraction 

Genomic DNA was extracted from 0.5 g freeze-dried soil using a FastDNA kit (MP 

Biomedicals, Santa Ana, California) according to the manufacturer’s instructions. Humic acids 

were removed using cetyl trimethyl ammonium bromide (CTAB) purification (Sambrook and 

Russell 2001). CTAB is a cationic surfactant that solubilizes complex carbohydrates and 

secondary metabolites that might interfere with PCR (Azmat et al. 2012). Following CTAB 

purification, the absorbance ratio at 260:230 nm was determined on a NanoDrop 

spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA), and purified DNA samples 
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with a 260:230 nm ratio greater than 1.5 were used for qPCR. The purified DNA was adjusted to 

approximately 20 ng/µL and stored at -20˚C until further microbial community analysis.  

Microbial community composition analysis 

Illumina sequencing was used to target bacterial and archaeal rRNA genes, as well as 

nirS, nirK, and Clade I nosZ genes (Illumina, San Diego, CA). Sequencing amplicons were 

prepared by PCR using a Fluidigm Access Array IFC chip, which allowed simultaneous 

amplification of each target gene (Fluidigm, San Francisco, CA). Initial reactions were carried 

out according to a 2-step protocol using reagent concentrations specified by the manufacturer 

(FastStart High Fidelity PCR System, dNTPack (Roche, PN 04-738-292-001). The first PCR was 

performed in a 100-µL reaction volume using 1 ng DNA template and an annealing temperature 

of 58˚C, and this PCR amplified the target DNA region using both the gene-specific primers with 

Fluidigm-specific amplification primer pads CS1 (5’-ACACTGACGACATGGTTCTACA-3’) 

and CS2 (5’-TACGGTAGCAGAGACTTGGTCT-3’), which produced amplicons comprised of 

(1) CS1 Fluidigm primer pad, (2) 5’-forward PCR primer, (3) amplicon containing the region of 

interest, (4) 3’-reverse PCR primer, and (5) CS2 Fluidigm primer pad. A secondary 30-µL PCR 

used 1 µL of 1:100 diluted product from the first PCR as template, and added Illumina-specific 

sequencing linkers P5 (5’-AATGATACGGCGACCACCGAGATCT-3’) and P7 (5'-

CAAGCAGAAGACGGCATACGAGAT-3’), along with a 10-bp sample-specific barcode 

sequence, so the final construct consisted of (1) Illumina linker P5, (2) CS1, (3) 5’-primer, (4) 

amplicon containing the region of interest, (5) 3’-primer, (6) CS2, (7) sample-specific 10-bp 

barcode, and (8) the Illumina linker P7. Final amplicons were gel-purified, quantified (Qubit; 

Invitrogen, Carlsbad CA, USA), combined to the same concentration, and then sequenced from 

both directions on an Illumina HiSeq 2500 2x250 bp Rapid Run. Fluidigm amplification and 
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Illumina sequencing was conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, 

USA).  

Overall community composition was assessed by sequencing the bacterial and archaeal 

16S ribosomal rRNA gene V4 region using the forward primer 515F and reverse primer 806R 

(Caporaso et al. 2011). The NO2- reducing denitrifier composition was assessed by sequencing 

both nirK, with forward primer nirK876 and reverse primer nirK1040 (Henry et al. 2004), as 

well as nirS, with forward primer nirSCd3aF and reverse primer nirSR3cd (Kandeler et al. 2006). 

The N2O reducing denitrifier composition was assessed by sequencing Clade I nosZ with 

forward primer nosZ1F and reverse primer nosZ1R (Henry et al. 2006). Primer sequences are 

listed in Table 1.1 (Chapter 1).  

Paired-end 16S sequences were merged using Fast Length Adjustment of SHort reads 

(FLASH) software v. 1.2.11 (Magoč and Salzberg 2011). Only the first end of the sequences 

(“Read 1”) was used for analysis of the functional genes. Quality filtering of fastq files was 

performed using software in the FASTX-Toolkit (Gordon and Hannon 2010). Sequences with 

fewer than 90% of bases showing at least 99.9% base accuracy were removed. The nirK 

sequences were shorter than 300-bp, so they were trimmed to the appropriate size using the 

FASTX-Toolkit. The fastq files were then converted to fasta format, and sequences were binned 

into discrete OTUs based on 97% similarity using USEARCH v. 8.1.1861 (Edgar 2010). 

Taxonomic assignments were made using QIIME software (Caporaso et al. 2011). For 16S gene 

assignments, the GreenGenes database v. 13.5 was used (McDonald et al. 2012) with the 

UCLUST algorithm (Edgar 2010). Functional gene databases were created by downloading 

sequences from the RDP FunGene website (Fish et al. 2013), and assignments were made in 

QIIME with the BLAST algorithm (Altschul et al. 1990). 
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Quantification of N2O producing and consuming denitrifiers 

Quantitative PCR (qPCR) was used to determine the number of nirS and nirK genes 

present in each community as a proxy for N2O producer abundance, and N2O consumer 

abundance was measured by quantifying the number of Clade I and II nosZ genes present in the 

community.  

In order to quantify gene copy number in each of the qPCR assays, replicate serial 

dilutions of standard template were amplified simultaneously with the samples to produce a 

standard curve. The template DNA for these standards were generated by first amplifying the 

gene of interest from a mixed wetland soil sample using PCR without fluorescent dyes: 

Reactions were carried out in a 50µL volume and contained 50 mM Tris (pH 8.0), 25 µg/mL of 

T4 gene 32 protein, 1.5 mM MgCl2, 200 µM of each dNTP, 20 pmol of each primer (four 

separate reactions: nirK, nirS, Clade I nosZ, and Clade II nosZ), 2.5 U of Taq polymerase 

(Promega, Madison, WI, USA), and 100 ng of extracted soil DNA. PCR conditions included 

initial denaturation at 95 °C for 5 min, followed by 30 cycles of 94 °C for 45 s, 53 °C for 1 min, 

and 72 °C for 1 min, with a final extension at 72 °C for 15 min. Next, the amplicons were 

separated from primer dimers using a QIAquick gel extraction kit according to the 

manufacturers’ protocol (Qiagen, Valencia, CA, USA). The concentration of purified amplicon 

was determined using a Qubit DNA fluorometer (ThermoFisher Scientific, Waltham, MA, 

USA), and the exact copy number of the gene of interest in each the standard could be calculated 

from the concentration. The final copy number of each gene in the unknown soil samples was 

normalized by the ng of template DNA used in the qPCR reaction. The MIQE guidelines 

(Minimum Information for qRT-PCR Experiments) explained by Bustin et al. (2009) were used 

to evaluate assay performance based on the standard curves for the nirK, nirS, Clade I nosZ, and 
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Clade II nosZ qPCR assays, and the results of this analysis are summarized in Table B.1 and Fig 

B.1. All gene copy numbers calculated in unknown wetland soil DNA samples were within the 

range of the respective standard curve for each gene. 

PCR amplification reactions were carried out in triplicate in a 5 µL volume containing 

1X FastStart Universal SYBR Green master mix (Roche Applied Science, Germany) with 125 

µg T4 gene 32 protein (Roche Applied Science, Germany), and 0.4 µM of each forward and 

reverse primers was added to their respective reactions. The nirK gene was amplified using the 

same primers used for sequencing, nirK876 and nirK1040 (Henry et al. 2004), and the nirS gene 

was also amplified using the same primers as used for sequencing, nirSCd3aF and nirSR3cd 

(Kandeler et al. 2006). The following protocol was used to amplify both nirK and nirS genes: 5 

min initial denaturation at 95˚ C and then 40 cycles of 95˚ C for 45 sec, 54˚ C for 1 min, and 72˚ 

C for 1 min. The Clade II nosZ gene was amplified using the primers nosZ-II-F and nosZ-II-R 

(Jones et al. 2014) according to the following protocol: 5 min initial denaturation at 95˚ C and 

then 40 cycles of 95˚ C for 45 sec, 54˚ C for 1 min, and 72˚ C for 1 min. The Clade I nosZ gene 

was amplified using the same primers as used for sequencing, nosZ1F and nosZ1R (Henry et al. 

2006), and a touchdown protocol was used: 15 minutes initial denaturation at 95˚ C, 2 cycles of 

95˚ C for 15 sec, 68˚ C for 1 min, and 72˚ C for 30 sec, 2 cycles of 95˚ C for 15 sec, 66˚ C for 1 

min, and 72˚ C for 30 sec, 2 cycles of 95˚ C for 15 sec, 64˚ C for 1 min, and 72˚ C for 30 sec, 

and ending with 35 cycles of 95˚ C for 15 sec, 62˚ C for 1 min, and 72˚ C for 30 sec. All 

reactions were carried out separately for each target sequence in a 7900HT Fast Real-Time PCR 

System (Applied Biosysterms, Foster City, CA). The quantitative cycle threshold (Cq) was 

determined using SDS software v 2.4 (Applied Biosysterms, Foster City, CA). Gene copy 

number was quantified by comparing Cq of samples against those produced by a standard curve 
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constructed from gel-purified environmental amplicons for each gene. For all reactions, 1 µL of 

template was used, which contained approximately 10-15 ng genomic DNA. 

Statistical analyses 

The microbial community was analyzed separately in three different components: The 

total microbial community based on 16S rRNA gene sequences, the N2O producing denitrifiers 

based on a concatenated OTU table of nirK and nirS sequences, and the N2O consuming 

denitrifiers based on Clade I nosZ sequences. Principle coordinate analysis (PCoA) ordinations 

were used to visualize differences among communities using the ‘cmdscale’ function in the 

‘vegan’ package in R (Oksanen et al. 2013, R Core Team 2014). In order to determine whether 

the microbial communities in the restored sites were converging toward the communities in the 

reference wetlands, the average Bray-Curtis distance between replicate samples collected in the 

two communities was calculated for each pair individually in each year, and Bray-Curtis distance 

was calculated using the ‘vegdist’ function also in the ‘vegan’ package. Bray-Curtis distance was 

also used to calculate how much the reference communities themselves changed over time by 

comparing the reference community year to the initial reference community observed in 2007. 

Permutational analysis of variance (PERMANOVA) models were built using the ‘adonis’ 

function in ‘vegan’ in order to determine the relative proportion of variability in composition 

explained by year of sampling, wetland site, and type of wetland (reference or restored). 

Analysis of variance (ANOVA) models were constructed using the ‘aov’ function in R to 

determine the differences among univariate data, such as Bray-Curtis distances, denitrification 

rates, or qPCR-based gene abundances. Specific differences between groups were identified 

using Tukey’s honest significant difference test using the ‘TukeyHSD’ function. Simple linear 

regression models were built using the ‘lm’ function in R. 
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Separate analyses were used to identify two sets of “indicator denitrifier taxa” based on 

two different traits: (1) “High functioning” denitrifier OTUs whose relative abundances 

correlated to potential denitrification rates and (2) “Flood sensitive” denitrifier OTUs that 

changed in relative abundance (either by decrease or increase) in 2013 when unusually intense 

flooding occurred across central Illinois. 

In order to identify denitrifier OTUs correlated with potential denitrification rates, a 

redundancy analysis (RDA) ordination was created with the ‘rda’ function in ‘vegan’ using a 

concatenated OTU table including nirK, nirS, and nosZ sequences and setting potential 

denitrification rates as the constrained RDA axis. The OTUs with RDA axis loadings within the 

highest 30% of all RDA values were selected as “indicator denitrifiers”. This was done 

separately for rates generated without excess nutrients and for rates generated with excess 

nutrients.  

In order to identify specific changes in the denitrifier community that arose in response to 

particularly large floods that occurred during the spring before sampling in 2013, a similarity 

percentage (SIMPER) analysis was conducted using the ‘simper’ function in ‘vegan’ on the 

concatenated OTU table based on nirK, nirS, and nosZ sequences. A new categorical variable 

was created where data collected in 2007 and 2012 were assigned to “Pre-Flood”, data collected 

in 2013 were assigned to “Flood”, and data collected in 2014 and 2015 were assigned to “Post-

Flood”. The top 12 denitrifier OTUs identified to drive compositional differences either between 

“Pre-Flood” and “Flood” or between “Flood” and “Post-Flood” were selected. Average relative 

abundance during “Pre-Flood” and “Post-Flood” was then calculated as the mean of the mean 

abundances detected during both years included in for each group, and relative abundance during 

“Flood” as the mean abundance detected during 2013 only. Heatmaps were created using the 
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‘heatmap’ function in R based on one large matrix of mean relative abundance values in order to 

keep the color scale consistent between all 12 OTUs. 

 

Results 

Change in microbial community composition over time 

We detected 11,645 different microbial OTUs from 16S rRNA gene sequencing, and the 

total number of reads was over 9.5 million. For the N2O producing denitrifiers, 7547 OTUs were 

observed from the nirK sequences with more than 5 million nirK reads in total, and 2613 OTUs 

were observed from the nirS sequences with more than 775,000 nirS reads in total. For the N2O 

consuming denitrifiers, 2509 OTUs were observed from the Clade I nosZ sequences with more 

than 2 million nosZ reads in total. 

Overall microbial composition and the composition of both N2O producing and 

consuming denitrifiers significantly varied across years, though composition also remained 

distinct between wetlands sites and between restored and reference wetlands (Table 3.2). PCoA 

ordinations showed that the overall community and the N2O producing denitrifiers in the restored 

wetland at Site B remained similar to the community in the paired reference wetland, while the 

communities in the paired wetlands at the remaining three sites remained distinct from one 

another throughout the study (Fig. 3.2A & 3.3A; Table 3.2). The ordination of the N2O 

consuming denitrifier communities did not reveal strong site-to-site differences, and instead 

showed the restored wetland communities clustering distinctly from the reference wetland 

communities (Fig. 3.4A; Table 3.2). The reference communities changed through time (Fig. 

B.2), where simple linear regression showed a significant effect of time on the distance between 

the overall microbial community in each reference and the initial community (R2 = 0.53, p < 
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0.001), as well as for the N2O producing and consuming denitrifiers (R2 = 0.67, p < 0.001; R2 = 

0.81, p < 0.001; respectively). 

Using the reference community of each pair for comparison for each wetland community, 

we were able to show that communities in the restored wetlands are not converging toward the 

communities in the reference wetlands. The overall microbial community in the restored 

wetlands did not become any more similar to the community in the reference wetlands by the end 

of the time series than was observed at the beginning (Fig. 3.2B), and time was not a significant 

factor in the ANOVA model intended to explain these differences. For both the N2O producing 

and consuming denitrifier communities, the communities in the restored wetlands were almost 

entirely dissimilar from the communities in the reference wetlands, where the Bray-Curtis 

distances were greater than 0.9 for most of the pairs at the beginning and remained equally as 

distant throughout the time series (Fig. 3.3B & 3.4B). 

Potential denitrification activity over time 

Individual wetland pairs at Sites A, C, and D showed differences between rates observed 

in the restored and reference wetland throughout the study (Table 3.3). There were no significant 

differences between mean rates in restored and reference wetlands, contrary to results observed 

in 2007 by Flanagan (2009). Potential denitrification peaked in 2013 for some wetlands but not 

all (Fig. 3.5), which shows that wetland soil communities varied in their maximum potential 

denitrification.  

Indicator denitrifier OTUs correlated with potential denitrification 

Six denitrifier OTUs were identified as “indicator taxa” correlated with potential 

denitrification rates based on their placement within the top 70th percentile of redundancy 

analysis axis loadings. Six OTUs were found to correlate with rates generated without excess 
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nutrients. Two OTUs were correlated with the rates generated with excess nutrients, and these 

were also included in the first six. Thus these six OTUs were selected as “indicator denitrifiers” 

for potential denitrification in general. Two Azoarcus-like OTUs, one Azospira-like OTU, and an 

OTU that was identified as Arenimonas donghaensis were identified from nirS sequences, one 

Alcaligenes-like OTU was identified from its nirK sequence, and a nosZ sequence-based OTU 

was identified as Rhodopseudomonas palustris. ANOVA models showed that time was a 

significant factor influencing the relative abundances of one of the Azoarcus-like OTUs, the 

OTU identified as Arenimonas donghaensis, and the Alcaligenes-like OTU. Tukey’s HSD test 

revealed that abundance did not increase consistently over time and the relative abundances of 

indicator denitrifier taxa did not follow the same patterns (Fig. 3.6). Further, these taxa showed 

different patterns in different wetlands, which shows that there was a random pattern of 

community development over the duration of this study. 

Denitrifier OTUs driving changes in composition before and after the flood in 2013 

SIMPER analyses revealed that 12 denitrifier OTUs explained a small proportion of the 

compositional changes between both “Pre-Flood” (2007+2012) and “Flood” (2013) and between 

“Flood” and “Post-Flood” (2014+2015). These 12 OTUs explained 6.5% of the difference 

between “Pre-Flood” and “Flood” and 7.1% of the difference between “Flood” and “Post-

Flood”. Though it is clear that these OTUs were sensitive to flood conditions in some sites (e.g. 

OTU “LTTS_nirS_0007” in the reference wetland at Site C), the change in relative abundance 

did not follow a consistent pattern across all eight wetlands throughout the study (Fig. 3.7). 
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Change in ratio of N2O producing and consuming denitrifiers and relationship with potential 

N2O emissions 

The log ratio of N2O producers to consumers significantly increased through time 

(ANOVA: Year, F = 13.4, df = 4, p < 0.001). The ratio differed between wetland sites (ANOVA: 

Site, F = 3.3, df = 3, p = 0.02), such that Site B showed a lower ratio than Sites A and C. This 

ratio was not significantly different between wetland types (p = 0.07), but the reference wetlands 

tended to have a greater log ratio of N2O producers to consumers, especially by the end of the 

study in 2014 and 2015 (Fig. 3.8). There was no significant correlation between the log ratio of 

N2O producers to consumers and potential N2O production during the denitrification assays 

performed in 2015, and N2O production was not correlated to the ratio of nirK to nirS, ratio of 

Clade I nosZ to Clade II nosZ, or total nir gene copies or total nos gene copies. There was a 

significant negative linear relationship between the number of Clade I nosZ gene copies per ng 

total soil DNA and the proportion of N2O produced by denitrification during the potential 

activity assays (linear regression: adjusted R2 = 0.66, p < 0.01; Fig. B.3), but there was no 

relationship with Clade II nosZ gene copies or with nirK or nirS gene copies. Restored and 

reference wetlands did not significantly differ in total potential denitrification rates, incomplete 

denitrification rates, or in the proportion of N2O produced during the potential activity assays. 

 

Discussion 

In our study, microbial community composition in restored wetlands appears to be 

dynamic, even up to 18 years after restoration, but the restored wetland communities remained 

dissimilar from the reference wetlands over time. Further, reference wetlands also changed in 

composition over time, and we observed high variation between reference wetland communities. 
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Thus, we were not able to identify a single “target” reference microbial community. In this 

system, we acknowledge that multiple community types may serve the same purpose, where 

denitrifiers could be equally as active in a restored wetland as those in a reference wetland 

despite differences remaining in the composition of the microbial community. However, 

potential denitrification rates were often greater in the reference wetlands by the end of the time 

series, which is consistent with published literature (Hossler et al. 2011, Marton et al. 2014). 

The findings reported previously in Chapter 2 suggest that reference and restored 

communities would exhibit equivalent function, even if wetlands difference in community 

composition. The study described in Chapter 2 encompasses a greater number of replicate 

wetlands but lacks fine scale details about the microbial community. The study described in the 

current chapter serves as more of a case study to observe possible restoration outcomes for the 

microbial community. We conclude that these particular restored communities exhibited 

divergence toward undesirable states (Matthews and Spyreas 2010) since the microbial 

communities in the restored wetlands in this study followed unique trajectories and did not 

exhibit equivalent function compared to the reference wetlands. 

Evidence from the literature suggests that microbial communities are strongly influenced 

by soil properties (Foulquier et al. 2013, Murphy and Foster 2014, Morrissey and Franklin 2015), 

and this likely leads to the slow development of the microbial community, which mirrors soil 

development (Kandeler et al. 2006, Schütte et al. 2009, Ferrenberg et al. 2013). It is possible that 

the communities in restored wetlands exhibited divergent behavior due to environmental 

differences that remained in the soil itself, despite similar hydrology and aboveground vegetation 

as in the reference wetlands. Soil texture was fairly homogenous across all of the study sites in 

our system, but the reference wetlands typically had greater total soil N and total soil C than the 
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restored wetlands (Fig. B.4). The restored wetlands may not have accumulated equivalent 

organic matter in the soil by the time our study was conducted, and this may have allowed 

differences in microbial community composition to persist in the restored wetlands. 

Dynamic conditions, like seasonal flood intensity and corresponding redox conditions 

may affect both reference and restored communities equally but not enough to drive composition 

toward a similar state. We identified specific denitrifier taxa whose relative abundance changed 

during a year that experienced particularly large floods across the entire state. Taxa closely 

related to Rhodopseudomonas palustris and Azoarcus increased in abundance in that year. R. 

palustris is commonly found in saturated sediments (Harwood and Gibson 1988) and it was not 

unexpected to observe such a response to flood conditions. Azoarcus has the cellular machinery 

to participate in denitrification though it is typically known for being an associative N-fixer (Liu 

et al. 2006). This particular Azoarcus OTU may an opportunist that can switch from aerobic 

respiration to denitrification under flooded anaerobic conditions (Fernández et al. 2014). Other 

denitrifiers decreased in relative abundance in 2013 and then rebounded during the following 

years, such as taxa related to Ensifer adhaerens and Pseudomonas. E. adhaerens is another N-

fixer that possesses the ability to carry out denitrification (Rudder et al. 2014), while the 

Pseudomonas genus includes well-known denitrifiers that can carry out denitrification under 

aerobic conditions (Davies et al. 1989, Su et al. 2001). The fact that this taxon was in greater 

abundance both before and after the particularly intense flood year, at least in Site A, may reflect 

some type of competitive advantage over other denitrifiers regardless of O2 availability. Most 

notably, some of the unique denitrifier OTUs that were determined to drive compositional 

changes in response to flood conditions exhibited conflicting behavior in different wetlands, such 

as one of the denitrifier taxa related to Paracoccus. This demonstrates that hydrologic 
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disturbances have a highly stochastic effect on restoration trajectories, as has been suggested 

before for wetland plant communities (Richardson et al. 2007, Trowbridge 2007, Matthews and 

Spyreas 2010). 

Only three of the four paired wetlands in this study showed a significant difference 

between denitrification potential in the restored and reference wetlands throughout the time 

series, and restored and reference wetlands did not significantly differ in rates overall, though 

this result may have been due to high variability in rates between each of the pairs (e.g. Site A 

pair vs. Site B pair) and high variability among years. Contrary to our results, we expected a 

clear difference between restored and reference wetlands because numerous studies have 

reported some sort of limitation of denitrification rates in restored wetlands (Orr et al. 2007, 

Flanagan 2009, Hossler et al. 2011, Marton et al. 2014). However, there was a striking difference 

in the potential denitrification rates observed in restored and reference wetlands in 2013, when 

data were collected following a spring season with intense flooding, and rates increased the most 

from the reference wetlands in Site A and Site C. These rates were generated in anaerobic 

laboratory assays, so oxygen availability in the environment should have no effect on the 

denitrification potential reported in this study. The seasonal flood conditions in 2013 must have 

either altered the community or induced dormant individuals into an active state so they were 

better able to take advantage of the ideal conditions provided in the laboratory than the soil 

communities collected during the other years of the study.  

A previous study found that potential denitrification rates in restored wetlands decreased 

from spring to summer in a single year, even though denitrifier composition remained constant 

during that time (Peralta et al. 2016). Results of studies that investigate functional differences 

among restored and reference wetlands at only a single time point may change depending on 
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environmental conditions that year or even on the time of year in which sampling occurred, and 

the link between composition and function may also change. By identifying indicator denitrifier 

taxa, we were able to observe differences in relative abundance of important denitrifying taxa 

throughout the experiment, but these relative abundances did not increase or decrease linearly 

over time. Rather, abundance appeared to respond to changes in external weather conditions, 

such as the flooding the occurred in 2013. This could either mean that the actual abundance of 

these taxa is changing in response to external conditions, or the abundance of these taxa 

remained steady while the abundance of the rest of the community fluctuated. Thus, subtle 

differences in composition occurred, but the process of community development did not follow a 

smooth trajectory following restoration, and the reference wetland community was also changing 

over time. This is consistent with the broad differences observed earlier in the overall community 

and the denitrifier communities across the study, and further shows that the community response 

to environmental cues but may be transient. 

We have shown that microbial communities in 7- to 18-year-old restored freshwater 

wetlands are not converging toward a desired reference community, and the soil community 

present in the restored sites will not always be able to achieve similar rates of denitrification as 

the reference communities even under identical conditions. The soil environment itself may be 

physically constraining the development of community composition toward a reference state. For 

example, the reference wetlands were observed to have greater organic matter, which could be a 

filter on community composition. Thus, we reiterate calls for careful management of the soil, and 

selection of sites that already exhibit soil properties similar to wetlands that have been damaged 

or destroyed, in order to rapidly replace these wetlands (Flanagan 2009, Peralta et al. 2012). We 

further caution that it may take decades to truly replace wetlands of equivalent function. 
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Tables 
 
Table 3.1. Site description for paired restored and reference wetlands that were sampled during 
the summers in 2007, 2012, 2013, 2014 (except for the Site B pair), and 2015. Soil texture data 
came from the USDA Web Soil Survey online tool (Soil Survey Staff).  

Pair Illinois County Longitude Latitude Age in 2007 (years) 
Site A Sangamon -89.67 39.88 7 
Site B Pike -91.35 39.73 10 
Site C Stephenson -89.65 42.46 7 
Site D Sangamon -89.65 39.84 10 
 Restored Site: Reference Site: 
Pair Hydrology Soil Texture Hydrology Soil Texture 
Site A Floodplain Silt Loam Floodplain Silty Clay Loam 
Site B Floodplain Clay Loam Floodplain Silt Loam/Clay Loam 
Site C Depressional Silt Loam Depressional Silt Loam 
Site D Floodplain Silty Clay Loam Floodplain Silty Clay Loam 
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Table 3.2. PERMANOVA results from the ‘adonis’ function showing the proportion of 
variability explained (PERMANOVA R2 statistic) by Site, Type (reference or restored), Year, 
and all possible interactions in the overall microbial community, N2O producing denitrifier 
community, and N2O consuming denitrifier community.  
 Overall microbial 

community 
PERMANOVA R2 

N2O producing 
denitrifier community 
PERMANOVA R2 

N2O consuming 
denitrifier community 
PERMANOVA R2 

Site *** 0.165 *** 0.072  *** 0.057  
Type *** 0.088 *** 0.035 *** 0.036 
Year *** 0.010 *** 0.006 ** 0.006 
Site X Type *** 0.111 *** 0.045 *** 0.042 
Site X Year *** 0.014 ** 0.011 * 0.011 
Type X Year ** 0.005 ** 0.004 * 0.004 
Site X Type X Year ** 0.010 ** 0.011 ** 0.012 
Residuals 0.597 0.814 0.832 
Total 1.000 1.000 1.000 
Significance: *** p < 0.001, ** p < 0.01, * p < 0.05 
 
 
 
 
Table 3.3. F-values from ANOVA models explaining denitrification rates for each wetland pair.  
  Potential denitrification without excess 

nutrients 
Potential denitrification with excess nutrients 

 df Site A Site B Site C Site D Site A Site B Site C Site D 
Year 3 *** 461.3 *** 10.8 *** 14.1 *** 7.4 *** 56.3 *** 226.2 *** 684.4 *** 29.3 
Type 1 *** 478.4 0.3 * 5.6 *** 30.2 ** 9.8 1.2 *** 303.7 *** 89.9 
Year X 
Type 

3 *** 281.8 2.2 ** 4.7 *** 13.8 * 4.0 0.5 *** 130.1 *** 13.4 

Significance: *** p < 0.001, ** p < 0.01, * p < 0.05 
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Figures 
 

 
Figure 3.1. Map of Illinois with counties containing paired restored and reference wetlands 
shaded grey. Symbol shapes are overlaid on approximate location of corresponding wetlands. 
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Figure 3.2. (A) Principle Coordinate Axis (PCoA) ordination of the microbial community 
generated from16S rRNA gene sequences. (B) Bray-Curtis distance between the restored and 
reference wetland in each pair over time. Symbols correspond to wetland pair, and shading 
indicates year, where the lightest color is from 2007 and the darkest represent data collected in 
2015. Error bars show standard error of the mean. 
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Figure 3.3. A) Principle Coordinate Axis (PCoA) ordination of the nitrite reductase-containing 
denitrifier community generated from nirK and nirS gene sequences. (B) Bray-Curtis distance 
between the restored and reference wetland in each pair over time. Symbols correspond to 
wetland pair, and shading indicates year, where the lightest color is from 2007 and the darkest 
represent data collected in 2015. Error bars show standard error of the mean. 
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Figure 3.4. (A) Principle Coordinate Axis (PCoA) ordination of the nitrous oxide reductase-
containing denitrifier community generated from Clade I nosZ gene sequences. (B) Bray-Curtis 
distance between the restored and reference wetland in each pair over time. Symbols correspond 
to wetland pair, and shading indicates year, where the lightest color is from 2007 and the darkest 
represent data collected in 2015. Error bars show standard error of the mean. 
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Figure 3.5. (A) Potential denitrification rates generated in a laboratory environment without any 
added nutrients. (B) Potential denitrification rates generated in a laboratory environment with 
excess potassium nitrate and dextrose added. Symbols correspond to wetland pair, and shading 
indicates year, where the lightest color is from 2007 and the darkest represent data collected in 
2015. Error bars show standard error of the mean. 

2008 2010 2012 2014

0
10

0
20

0
30

0
40

0

Year

Po
te

nt
ia

l D
en

itr
ifi

ca
tio

n 
Ra

te
  -

 w
ith

ou
t e

xc
es

s n
ut

rie
nt

s 
(n

g 
N

2O
 g

-1
 h

r-1
)

2012 2014

0
50

0
10

00
15

00

Year

Po
te

nt
ia

l D
en

itr
ifi

ca
tio

n 
Ra

te
 - 

w
ith

 e
xc

es
s n

ut
rie

nt
s

(n
g 

N
2O

 g
-1

 h
r-1

)

2013 2015

Site A Restored Site A Reference
Site B Restored Site B Reference
Site C Restored Site C Reference
Site D Restored Site D Reference



 81 

 
Figure 3.6. Relative abundance of the top six denitrifier OTUs found to correlate with potential 
denitrification rates using redundancy analysis (RDA) ordinations with rates as the constrained 
axis. Shading indicates year of sampling, symbols correspond to wetland pair, and error bars 
show standard error of the mean. Lower case letters indicate significant groupings between years 
determined by Tukey’s HSD test. 
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Figure 3.7. Heatmaps showing average relative abundance of the top 12 denitrifier OTUs found 
to drive changes in composition between “Pre-flood” (2007+2012) and “Flood” (2013) and 
between “Flood” and “Post-flood” (2014+2015) using a similarity percentage (SIMPER) 
analysis. Denitrifier OTUs that were undetected are shown as black, and those in higher 
abundance are indicated in white or lighter shades of grey. Sequence ID is shown at the top and 
the closest taxonomic identification found is directly below. 
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Figure 3.8. Change in the log ratio of genes present in N2O producers (“NIR”) and consumers 
(“NOS”) over time. Shading indicates year of sampling, symbols correspond to wetland pair, and 
error bars show standard error of the mean. Lower case letters indicate significant groupings 
between years determined by Tukey’s HSD test. 
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CHAPTER 4:  

ENVIRONMENTAL VARIABILITY SHAPES MICROBIAL COMMUNITY RESPONSE 

TO ALTERED HYDROLOGY IN A FLOODPLAIN WETLAND ECOSYSTEM 

 

Abstract 

 Wetland soil communities that experience frequent flooding may also exhibit high 

functional stability. The dynamic environment itself might act as a filter that selects for microbial 

taxa with a unique physiological tolerance to both dry and saturated conditions. Soil 

communities in wetlands are responsible for nitrogen cycling functions, such as nitrification and 

denitrification. Most denitrifiers are facultative anaerobes and should exhibit high tolerance to 

both aerobic and anaerobic conditions, while nitrifiers are strict aerobes predicted to have limited 

tolerance for saturate anaerobic conditions. To test whether variability acts a filter and influences 

functional stability, soils were collected from upland, lowland, and hydrologically variable 

regions of a restored floodplain along the Illinois River, and each was subjected to dry, saturated, 

and variable hydrologic manipulation in a mesocosm experiment. Potential rates of nitrification 

and denitrification were generated, and the 16S ribosomal RNA gene and diagnostic functional 

genes amoA, nirK, and nirS were sequenced. Communities were distinct between the three 

regions with different hydrologic regimes. As predicted, the community present in the variable 

region exhibited the greatest functional stability and displayed the smallest degree of 

compositional change following the experiment compared to the other two communities, 

suggesting that this community included a high proportion of physiologically tolerant taxa. Most 

surprisingly, nitrification and denitrification activity showed similar responses to altered 

hydrology despite contrasting physiology of the functional groups. Historical variability filters 
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the community and influences microbial functional stability, and this might be able to further 

inform predictions about the effects of global change on the nitrogen cycle.  

 

Introduction 

 Ecosystem stability is often attributed to species richness (Naeem and Li 1997) because 

high diversity means there is low probability that an entire functional group will be removed by a 

disturbance. Microbial communities are predicted to have high functional redundancy in general 

because the number of microbial taxa far outnumber the processes they perform (Torsvik and 

Øvreås 2002, Franklin and Mills 2006). However, if this were true, then compositional 

differences between communities would have little influence on the provisioning of microbially 

mediated ecosystem functions such as nutrient cycling. Since soil functional rates are often 

correlated to differences in the richness or composition between microbial communities 

(Nemergut et al. 2014, Graham et al. 2016), this idea more ore less represents a null hypothesis. 

The null hypothesis can be used to answer questions about when composition matters for 

function and which traits of the microbial community correspond to high functional stability. 

Richness certainly contributes to predictions of functional rates, and possibly functional stability 

(Griffiths et al. 2000, Bell 2010, Tardy et al. 2014). However, the taxonomic identity and 

physiology of individual taxa present in the community is likely to be important when richness 

alone fails to explain functional stability. 

Most microbial communities are sensitive to a wide range of different types of 

disturbances, where composition is altered by the disturbance (Allison and Martiny 2008, Shade 

et al. 2012). This raises a question about why a few communities do exhibit compositional 

stability. Microbial taxa vary in physiological tolerance to environmental stress (Potts 1994, 
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Schimel et al. 2007, Placella et al. 2012). Because individual taxa vary in tolerance, communities 

should vary in stability, depending on the proportion of taxa that are particularly tolerant to the 

stress. In the face of a disturbance, communities that contain a high proportion of “tolerant taxa” 

will exhibit high compositional and functional stability, while functional stability might be lower 

for communities with a low proportion of tolerant taxa. This idea further predicts that two 

communities with different proportions of tolerant taxa will not be functionally redundant with 

one another, even if those communities exhibit similar taxonomic richness. 

If high taxonomic richness provides a sort of “insurance” for functional stability through 

functional redundancy, then specific microbial functions should exhibit high stability because 

they are performed by diverse phylogenetic groups (Schimel and Gulledge 1998, Schimel et al. 

2007). For example, microbial taxa involved with denitrification, the multistep reduction of 

nitrate to dinitrogen gas, are found among the Proteobacteria, as well as Verrucomicrobia, 

Gemmatimonadetes, Chloroflexi, Firmicutes, Bacteroidetes, and Spirochaetes (Jones et al. 2014). 

The ability to participate in the denitrification pathway has also been documented in archaea 

(Philippot 2002, Kraft et al. 2011) and eukaryotes (Seo and DeLaune 2010, Higgins et al. 2016). 

In contrast, nitrification, the conversion of ammonium to nitrate, is a process limited to a handful 

of bacterial genera in the b- and γ-Proteobacteria, as well as a small group of archaea, which 

perform the initial, rate-limiting step, ammonia oxidation (Prosser and Nicol 2008). If high 

diversity within a group confers high functional redundancy, then we would expect 

denitrification to exhibit greater functional stability than nitrification. This may also be reflected 

by a positive relationship between denitrifier richness and stability, while nitrifier richness and 

nitrification stability would not exhibit a relationship due to the limited diversity available to 

begin with. 
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Fluctuation between extreme states, such as oxic-anoxic fluctuations experienced by 

microbial communities in soils, is a particularly acute stressor (Pett-Ridge and Firestone 2005, 

Pett-Ridge et al. 2013). Either oxic or anoxic soil conditions alone present a strong 

environmental filter on community composition. The soils that regularly experience fluctuation 

between oxic and anoxic conditions may filter taxa that possess unique physiological tolerance to 

a range of redox conditions. Floodplain wetlands provide a study system to evaluate the effects 

of historical redox regimes on the functional stability of microbial processes due to the existence 

of the natural flood pulse (Odum et al. 1995, Hernàndez and Mitsch 2006, Altor and Mitsch 

2008). Floodplains include a dry upland and flooded lowland, while the transition region 

between experiences regular intervals of oxic-anoxic fluctuation. This transition region 

sometimes harbors a unique community when compared to either the upland or lowland (Peralta 

et al. 2014, Peralta et al. 2016). The community present in the transition region may include an 

unusually large proportion of microbial taxa that are tolerant to both extremes, and thus uniquely 

tolerant to fluctuating oxic and anoxic conditions.  

Both nitrification and denitrification are important wetland processes because they 

influence the pool of nitrate, a pollutant that leads to eutrophication in aquatic ecosystems, and 

they both produce N2O, a potent greenhouse gas (Jordan et al. 2010, Batson et al. 2012). 

Previous work by Peralta et al. (2013) has established that nitrification and denitrification 

activity in wetland soils are both affected by changes in hydrologic conditions. We theorize that 

the distinct microbial assemblages observed across different regions of a floodplain reflect 

selective pressures from the hydrologic disturbance regime, and this should influence functional 

stability. In this study, we expect that communities from a naturally fluctuating environment will 

contain a high proportion of taxa that can tolerate hydrologic disturbances, which would result in 
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a more resistant or resilient response of the community compared to those that originate from a 

more constant environment. We also expect denitrifier activity to be more stable than nitrifier 

activity, as has been predicted for microbial functional groups with high and low diversity 

(Schimel and Gulledge 1998, Schimel et al. 2007). Denitrifiers should also exhibit greater 

stability than nitrifiers due to their flexible metabolic strategy (Wallenstein et al. 2006), while 

nitrifiers are aerobic organisms that would be highly stressed under anaerobic conditions (Francis 

et al. 2007). Experiments such as the one in this study are essential to investigate the effects of 

global change. Flood regimes in the Midwestern United States are expected to become more 

variable because climate change is expected to alter precipitation patterns in this region (IPCC 

2014). The results of this study could provide valuable information for current predictive models 

of changing ecosystem processes. 

 

Methods 

Site description and sampling 

Soil was collected in July 2012 from the La Grange wetland mitigation bank in Brown 

Co., IL, which is located adjacent to the Illinois River (39.97˚ N, 90.52˚ W). The La Grange site 

is a 1645-acre mitigation bank that was established by the Illinois Department of Transportation 

(IDOT) in 2004 to mitigate for impacts on other wetlands from road construction, and the 

majority of the site consists of former wetland area that has been restored (Brooks 2005, Plocher 

et al. 2009). The wetland is almost fully separated from the river by a levee, with the exception 

of a breach in the southeastern area that allows seasonal flooding. Triplicate samples were 

collected from three locations representing distinct hydrologic settings: “Upland Source 1” was 

collected from in an upland region that was flooded for an average of 0-1 days per year from 
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2003 to 2011. “Variable Source 2” was collected from a region located toward the middle of the 

wetland where seasonal floods occur (average annual flood duration was 90-111 days per year). 

“Lowland Source 3” was collected from a region located near the breach in the levee where the 

soil is typically flooded (flooded for >125 days per year on average; Fig. C.1). Sources 1 and 3 

are considered to have relatively stable hydrologic conditions (dry and saturated, respectively), 

while Source 2 represents a hydrologically variable environment. Soil was collected from the top 

10 cm with an ethanol-sterilized metal spade, and stored in a covered ethanol-sterilized 5-gal 

bucket. The triplicate samples collected from each source was collected from locations 

approximately 5 m away from each other. Soil was transferred to the laboratory on the same day 

of sampling, and stored in a cool, dark room before the soil experiment was set up on the day 

that immediately followed sampling. 

Hydrologic disturbance experiment 

In order to isolate the effect of altered flood regimes on microbial composition and 

function, a fully factorial mesocosm experiment was established in a greenhouse environment, 

where soil from each source location was subjected to every hydrologic treatment. All source 

soil was kept separate and was first processed using identical methods before being placed into 

identical mesocosms, which restricted any migration that may otherwise occur between different 

source soil communities had they been connected hydrologically. Soil was sieved to 2 mm and 

divided into experimental mesocosms constructed out of 6" plastic horticultural pots with drain 

holes at the bottom. Mesocosms that were subjected to saturation for any duration of the 

experiment were placed inside of larger plastic buckets that lacked drain holes to maintain the 

hydrological treatments. Autoclaved deionized water was used to manipulate water levels 

according to three treatments: (1) "Dry" mesocosms were not placed inside a larger bucket and 
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were kept dry for the full two months of the experiment. (2) "Variable" mesocosms were allowed 

to dry for one week, then placed inside a larger bucket and saturated up to 1 inch above the 

surface of the soil for one week. This was repeated three more times for a total of four two-week 

cycles. (3) "Saturated" mesocosms were placed inside of buckets and kept saturated up to 1 inch 

above the surface of the soil for the full two months of the experiment. In order to ensure that 

each hydrologic treatment fostered redox conditions that would be expected, one Indicator for 

Reduction in Soils (IRIS) tube (InMass Technologies, West Lafayette, IN, USA) was placed in a 

representative replicate mesocosm for each of the nine source soil ´ hydrologic treatment 

combinations for the two-month duration of the experiment. Daily monitoring was performed to 

ensure that evaporated water was replaced immediately. All mesocosms were located on the 

same bench in the same room in the greenhouse. Greenhouse temperature was maintained at 

29˚C during the day and 25˚C during the night, and day length was set to 14 hours. Both 

immediately before and at the end of the experiment, a representative portion of soil was set 

aside for soil chemistry analyses and potential nitrification and denitrification assays, and a small 

portion of freeze-dried soil was stored at -20˚C for microbial analyses.  

Soil chemical analyses 

In order to determine whether some functional rates were strongly controlled by abiotic 

factors, a suite of soil chemistry data was collected before and after the experiment. Soil pH was 

determined using a 1:1 soil:deionized water slurry for each sample before and after treatment. 

Available ammonium (NH4+) and combined nitrate (NO3-) and nitrite (NO2-) were extracted from 

soil using 2M KCl and a ratio of 5 mg soil to 50 mL KCl. The concentration of extracted NH4+ 

and NO3-/NO2- was determined using a Lachat QuikChem (Lachat Instruments, Loveland, CO, 

USA) following the Berthelot method as described previously (Sims et al. 1995, Rhine et al. 
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1998). Total organic carbon and nitrogen were determined using combustion analysis (ECS 

4010, COSTECH Analytical Instruments, Valencia, CA, USA). Gravimetric water content was 

also determined for every sample.  

Soil N cycling enzyme activity assays 

Potential rate assays were conducted in order to quantify the maximum rate that each 

community was capable of performing before and after the experiment. Since this study builds 

on work published by (Peralta et al. 2013, Peralta et al. 2016), the protocols for both potential 

nitrification and denitrification were similar to the protocols used in the previous studies.  

The potential nitrification assay determined the rate of ammonium transformation into 

nitrite following a 5-hour incubation. First, assays were conducted where 5 g soil was made into 

a slurry with 20 mL 1M (NH4)2SO4 and 0.1 mL 2M NaClO3 to inhibit NO2- oxidation. Duplicate 

assays were conducted at room temperature under oxygenated conditions, while a third was kept 

frozen at -20˚C. Next, the concentration of NO2- was determined using colorimetric methods 

(Kandeler and Margesin 1996), and the rate reported is the average of the duplicate assays at 

room temperature with the concentration in the frozen control subtracted.  

Potential denitrification was determined using a laboratory assay to measure the amount 

of nitrogen gas produced per hour under ideal conditions. The assay protocol was similar to the 

assay described by Peralta et al. (2016), except the media contained an added carbon source and 

nitrate. Soil slurries were made by combining 25 g soil with 25 mL media containing 45.83 mM 

dextrose, 14.28 mM nitrate, and 10 mg/L chloramphenicol to inhibit denitrifier cell division. The 

bottles were purged with helium gas to create anaerobic conditions. Acetylene gas was added to 

prevent the reduction of N2O to N2. Gas samples were collected at the beginning and after three 

hours. Gas samples were collected at the beginning and after three hours. The concentration of 
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N2O was determined using a gas chromatograph (GC-2014 with ECD, Shimadzu Corp., Kyoto, 

Japan). The concentration of N2O was used as a proxy for N2 production under the assumption 

that it would be fully reduced in the absence of acetylene (Groffman et al. 2006). The same soil 

used for the assays was oven dried, and the final denitrification rate was corrected by the dry 

weight of the soil. 

Soil DNA extraction 

Genomic DNA was extracted from 0.5 g freeze-dried soil using a FastDNA kit (MP 

Biomedicals, Santa Ana, California) according to the manufacturer’s instructions. Humic acids 

were removed using cetyl trimethyl ammonium bromide (CTAB) purification (Sambrook and 

Russell 2001). CTAB is a cationic surfactant that solubilizes complex carbohydrates and 

secondary metabolites that might interfere with PCR (Azmat et al. 2012). Following CTAB 

purification, the absorbance ratio at 260:230 nm was determined on a NanoDrop 

spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA), and purified DNA samples 

with a 260:230 nm ratio greater than 1.5 were used for sequencing and qPCR. The purified DNA 

was adjusted to 20 ng/µL and stored at -20˚C until further microbial community analysis.  

Microbial community composition analysis 

Illumina sequencing was used to target bacterial and archaeal rRNA genes, as well as 

amoA, nirS, and nirK genes (Illumina, San Diego, CA, USA). Sequencing amplicons were 

prepared by PCR using a Fluidigm Access Array IFC chip, which allowed simultaneous 

amplification of each target gene (Fluidigm, San Francisco, CA). Initial reactions were carried 

out according to a 2-step protocol using reagent concentrations according to Fluidigm 

recommended parameters, and an annealing temperature of 55°C was determined to be optimal 

for the combined set of primers. The first PCR was performed in a 100-µL reaction volume using 
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1 ng DNA template, and this PCR amplified each target DNA region using the gene-specific 

primers with Fluidigm-specific amplification primer pads CS1 (5’-

ACACTGACGACATGGTTCTACA-3’) and CS2 (5’-TACGGTAGCAGAGACTTGGTCT-3’), 

which produced amplicons including (1) CS1 Fluidigm primer pad, (2) 5’-forward PCR primer, 

(3) amplicon containing the region of interest, (4) 3’-reverse PCR primer, and (5) CS2 Fluidigm 

primer pad. A secondary 30-µL PCR used 1 µL of 1:100 diluted product from the first PCR as 

template, and PCR primers with CS1 and CS2 sequences and Illumina-specific sequencing 

linkers P5 (5’-AATGATACGGCGACCACCGAGATCT-3’) and P7 (5'-

CAAGCAGAAGACGGCATACGAGAT-3’), along with a 10-bp sample-specific barcode 

sequence, so the final construct consisted of (1) Illumina linker P5, (2) CS1, (3) 5’-primer, (4) 

amplicon containing the region of interest, (5) 3’-primer, (6) CS2, (7) sample-specific 10-bp 

barcode, and (8) the Illumina linker P7. Final amplicons were gel-purified, quantified (Qubit; 

ThermoFisher Scientific, Waltham, MA, USA), and then sequenced from both directions on an 

Illumina HiSeq 2500 2x250 bp Rapid Run. Fluidigm amplification and Illumina sequencing were 

conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, USA).  

Overall microbial community composition was characterized by sequencing the bacterial 

and archaeal 16S ribosomal RNA gene V4 region using the forward primer 515F and reverse 

primer 806R (Caporaso et al. 2011). Bacterial nitrifier composition was assessed by sequencing 

the bacterial amoA gene using the forward primer amoA-1F and reverse primer amoA-2R 

(Rotthauwe et al. 1997). Archaeal nitrifier composition was assessed by specifically targeting the 

archaeal 16S rRNA gene using the forward primer Arch349F and reverse primer Arch806R 

(Takai and Horikoshi 2000). Illumina sequencing of the archaeal amoA gene via the Fluidigm 

chip yielded an uneven distribution of reads from each sample in this study, where some of the 
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communities produced only 3 reads, and most of the Source 3 Lowland communities produced 

fewer than 100 reads (data not shown). A wealth of published sequence data has informed us that 

only a limited number of different archaeal species have the capacity for ammonia oxidation 

(Prosser and Nicol 2008, Alves et al. 2018). Over 60,000 amoA sequences have been published 

on GenBank as of 2018, and there are over 9,000 Thaumarchaea 16S rRNA sequences included 

in the Ribosomal Database Project (Cole et al. 2014). Based on this information, taxonomic 

identity determined by 16S rRNA gene sequences can be used to distinguish nitrifier archaea 

from non-nitrifier archaea. Denitrifier composition was assessed by sequencing the nirK gene 

using the forward primer nirK876 and reverse primer nirK1040 (Henry et al. 2004), and by 

sequencing the nirS gene using the forward primer nirSCd3aF and reverse primer nirSR3cd 

(Kandeler et al. 2006). Primer sequences are listed in Table 1.1 (Chapter 1). 

Paired-end sequences were merged using Fast Length Adjustment of SHort reads 

(FLASH) software (v. 1.2.11) for both the bacterial and archaeal 16S rRNA gene sequences as 

the archaea-specific 16S rRNA gene sequences (Magoč and Salzberg 2011). Only Read 1 

sequences were used for the functional gene sequences. Some of the amplicons would not have 

produced overlapping reads, and Read 1 was selected to be used for consistency. Quality filtering 

of fastq files was performed using software in the FASTX-Toolkit (Gordon and Hannon 2010). 

Sequences with fewer than 90% of bases showing at least 99.9% base accuracy were removed. 

The nirK primers encompass a 165-bp region, which is shorter than the 250-bp reads produced 

by Illumina HiSeq, so the nirK Read 1 sequences were trimmed to 165-bp also using FASTX-

Toolkit software. The fastq files were then converted to fasta format. Sequences were binned into 

discrete OTUs based on 97% similarity using USEARCH v. 8.1.1861 (Edgar 2010). For the 16S 

rRNA gene sequences, taxonomic assignments were made using QIIME software (Caporaso et 
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al. 2011) with the UCLUST algorithm (Edgar 2010) and GreenGenes database v. 13.5 

(McDonald et al. 2012). For functional genes, taxonomic identity was assigned by QIIME using 

with the BLAST algorithm (Altschul et al. 1990) and custom gene-specific databases compiled 

from the FunGene repository (Fish et al. 2013). 

Quantification of N cycling functional group abundance 

Broad differences in abundance of microbial functional groups may also determine 

potential functional rates so we quantified diagnostic genes for ammonia oxidation and nitrite 

reduction. Quantitative PCR (qPCR) was used to determine the number of both archaeal and 

bacterial amoA genes present in each community, and denitrifier abundance was determined by 

quantifying the number of nirS and nirK genes.  

In order to quantify gene copy number in each of the four qPCR assays, replicate serial 

dilutions of standard template were amplified simultaneously with the samples to produce a 

standard curve. The template DNA for these standards were generated by first amplifying the 

gene of interest from a mixed wetland soil sample using PCR without fluorescent dyes: 

Reactions were carried out in a 50µL volume and contained 50 mM Tris (pH 8.0), 25 µg/mL of 

T4 gene 32 protein, 1.5 mM MgCl2, 200 µM of each dNTP, 20 pmol of each primer (four 

separate reactions: archaeal amoA: amoA-1F/ amoA-AR; bacterial amoA: amoA-1F/ amoA-2R’; 

nirK: nirK876/nirK1040; nirS: nirSCd3aF/nirSR3cd; Table 1.1), 2.5 U of Taq polymerase 

(Promega, Madison, WI, USA), and 100 ng of extracted soil DNA. PCR conditions included 

initial denaturation at 95 °C for 5 min, followed by 30 cycles of 94 °C for 45 s, 53 °C for 1 min, 

and 72 °C for 1 min, with a final extension at 72 °C for 15 min. Next, the amplicons were 

separated from primer dimers using a QIAquick gel extraction kit according to the 

manufacturers’ protocol (Qiagen, Valencia, CA, USA). The concentration of purified amplicon 
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was determined using a Qubit DNA fluorometer (ThermoFisher Scientific, Waltham, MA, 

USA), and the exact copy number of the gene of interest in each the standard could be calculated 

from the concentration. The final copy number of each gene in the unknown soil samples was 

normalized by the ng of template DNA used in the qPCR reaction. The MIQE guidelines 

(Minimum Information for qRT-PCR Experiments) explained by Bustin et al. (2009) were used 

to evaluate assay performance based on the standard curves for the archaeal amoA, bacterial 

amoA, nirK, and nirS qPCR assays, and the results of this analysis are summarized in Table C.1 

and Table C.2. All gene copy numbers calculated in unknown wetland soil DNA samples were 

within the range of the respective standard curve for each gene. 

For qPCR amplification of archaeal and bacterial amoA, reactions were carried out in 

triplicate technical replicates in a 10 µL volume containing 1X FastStart Universal SYBR Green 

master mix (Roche Applied Science, Germany) with 250 µg T4 gene 32 protein (Roche Applied 

Science, Germany). The archaeal amoA gene was amplified using 0.4 µM of forward primer 

Arch-amoAF and 0.4 µM of reverse primer Arch-amoAR (Francis et al. 2005) using the 

following protocol: 5 min initial denaturation at 95˚ C and then 40 cycles of 95˚ C for 45 sec, 51˚ 

C for 1 min, and 72˚ C for 1 min. The bacterial amoA gene was amplified using 0.4 µM of the 

same forward primer used for sequencing, amoA-1F (Rotthauwe et al. 1997), and 0.4 µM of 

reverse primer amoA-2R' (Okano et al. 2004) using the following protocol: 5 min initial 

denaturation at 95˚ C and then 40 cycles of 95˚ C for 45 sec, 56˚ C for 1 min, and 72˚ C for 1 

min. Both reactions were carried out in a 7900HT Fast Real-Time PCR System (Applied 

Biosysterms, Foster City, CA, USA). The quantitative threshold cycle (Cq) was determined using 

SDS software v 2.4 (Applied Biosysterms, Foster City, CA, USA). Gene copy number was 

quantified by comparing Cq of samples against those produced by a standard curve. For all 
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reactions, 2 µL of template was used, which contained approximately 20-30 ng genomic DNA, 

and triplicate reactions were carried out for each sample.  

For qPCR amplification of nirS and nirK, a microfluidic Fluidigm Gene Expression chip 

was used to quantify both genes simultaneously, and 10 technical replicates per sample were 

used for this qPCR assay. Both genes were amplified using the same primer sets used for 

sequencing: nirK876 and nirK1040 (Henry et al. 2004) and nirSCd3aF and nirSR3cd (Kandeler 

et al. 2006). In order to increase the amount of template DNA, a specific target amplification 

(STA) reaction was performed similar to previously described (Ishii et al. 2014), except with 0.5 

µM of each primer, and 1.25 µl of the DNA template in a 5 µL reaction volume. The following 

program was used: 95 ºC for 10 min followed by 14 cycles of 95 ºC for 15 sec and 58 ºC for 4 

min. A 5-µL mixture was then prepared with a final concentration of 1X SsoFast EvaGreen 

Supermix with Low Rox (Bio-Rad Laboratories, Hercules, CA, USA), 1X DNA Binding Dye 

Sample Loading Reagent (Fluidigm, San Francisco, CA, USA), and 2.25 µl pre-amplified 

product. A separate master mix was prepared with a final concentration of 1X Assay Loading 

Reagent (Fluidigm, San Francisco, CA, USA), 0.5X DNA Suspension Buffer (Teknova, 

Hollister CA), and 50 µM of each forward and reverse primer. Each 5-µL mixture containing 

product was mixed with 5 µL of master mix and loaded onto a 96.96 Fluidigm Gene Expression 

chip. Amplification was performed according to the following program: 70 ºC for 40 min, 58 ºC 

for 30 sec, 95 ºC for 1 min followed by 30 cycles of 96 ºC for 5 sec, 58 ºC for 20 sec, and 

followed by dissociation curve. All the samples and standards were analyzed in 12 replicates. 

The Cq was determined using Fluidigm Real-Time PCR Analysis software version 4.1.3, and 

gene copy number was quantified by comparing Cq of samples against those produced by a 
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standard curve. Fluidigm qPCR was conducted at the Roy J. Carver Biotechnology Center 

(Urbana, IL, USA). 

Statistical analysis 

The overall microbial community was analyzed as a table of the relative abundances of 

16S rRNA gene sequences. The nitrifier community was represented as a concatenated table of 

relative abundance of bacterial and archaeal ammonia oxidizers. The denitrifier community was 

represented as a concatenated table of relative abundance of nirS sequences and relative 

abundance of nirK sequences in each sample.  

The goal of this study was to determine whether hydrologic variability itself favors a 

unique community that includes taxa that are physiologically tolerant to a range of hydrologic 

conditions, but first we needed to verify that the variable region of the wetland harbored a unique 

community. We used Venn diagrams to examine the number of microbial OTUs present only in 

this community and compared that to the number of OTUs that are present in all of the sites. 

Venn diagrams were created using the ‘venneuler’ function in the ‘venneuler’ package in R 

(Wilkinson and Urbanek 2011), and the number of OTUs reported in the Venn diagrams 

represent the total unique OTUs detected in at least one replicate within each group in the 

comparison (either soil source or treatment). Next, we used principle coordinate analysis (PCoA) 

ordinations calculated from Bray-Curtis distances to visualize community differences among 

sites, as well as changes in composition that may have occurred following experimental 

treatments. PCoA plots were created with the ‘cmdscale’ function in the ‘vegan’ package in 

R (Oksanen et al. 2013, R Core Team 2014). Relative effects of soil source and treatment on 

community composition were assessed by creating permutational analysis of variance 

(PERMANOVA) models with the ‘adonis’ function, which is also in the ‘vegan’ package. In 
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order to determine which specific OTUs differed between the three source communities, an 

indicator species analysis was performed using the ‘multipatt’ function in the ‘indicspecies’ 

package in R (De Cáceres and Legendre 2009). The top 20 most abundant “indicator OTUs” for 

each of the three sources were identified. Since richness can also influence functional stability if 

functional redundancy is high, the Chao1 index was calculated using the function ‘estimateR’ in 

‘vegan’, and compared among source communities and treatments.  

If the community from the variable region harbored an unusually large number of taxa 

that are physiologically tolerant to a range of hydrologic conditions, then we would expect this 

particular community to change the least when compared to communities from more stable 

regions, especially when compared across the range of hydrologic treatments to which these 

communities were exposed. To directly compare the magnitude of change from initial to final 

composition among these communities, the ‘vegdist’ function in ‘vegan’ was used to calculate 

Bray-Curtis dissimilarity values between the initial source soil community composition and the 

composition following each hydrologic manipulation.  

Redundancy analysis (RDA) was carried out as a “follow up analysis” to identify whether 

changes in relative abundance of individual microbial OTUs could be correlated to changes in 

potential nitrification or denitrification rates. Two separate analyses were conducted using the 

‘rda’ function in the ‘vegan’ package in R: (1) Concatenated table of bacterial and archaeal 

ammonia oxidizer OTUs using potential nitrification as the constrained axis, and (2) 

concatenated table of nirK- and nirS-containing denitrifier OTUs using potential denitrification 

as the constrained axis. The OTUs with RDA axis loadings within the highest 30% of all RDA 

values were selected as “indicator OTUs” for nitrification or denitrification. 
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For pairwise comparisons among univariate measurements (e.g. Chao1, gene copy 

numbers, or soil chemistry measurements), significant differences were determined by a two-

tailed paired t-test at a significance level of 0.05. Error for all values reported was calculated as 

the standard error of the mean. Significant differences in soil factors and microbial functional 

gene abundances among multiple soil sources or treatments were determined by creating an 

ANOVA model using the ‘aov’ function, and specific differences were identified using the 

‘TukeyHSD’ function, both of which are in the ‘stats’ package (R Core Team 2014).  

 

Results 

Environmental differences among sites and changes in physical properties 

Initially, the three regions with distinct hydrologic history also differed in soil properties 

(Table 4.1). Significant differences were detected among sources in terms of gravimetric water 

content (GWC), pH, extractable NH4+, extractable combined NO2- and NO3-, total proportion of 

soil C (total C), total proportion of soil N (total N), and C:N ratio. Generally speaking, moisture, 

pH, and nutrients were greatest in the saturated lowland, while the upland was drier, more acidic, 

and had the lowest total C and lowest total N. However, both ammonium and nitrate were 

greatest in the upland compared to the other two, where both potential nitrification and 

denitrification rates were also the lowest.  

Most of the soil variables that were tested remained unaffected by the hydrologic 

treatments in the two-month mesocosm experiment (Fig. C.2). However, pH in the Source 1 

Upland soils increased (became more neutral) following the Variable and Saturated treatments 

(Tukey’s HSD, p < 0.05), and the concentration of soil NH4+ and combined NO2- and NO3- 

differed considerably between treatments. The Saturated treatment led to a significant increase in 
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soil NH4+ across all three source soils when compared to what was extracted from the initial soil 

(Tukey’s HSD, p < 0.05), where the biggest increase was seen following saturation of the Source 

1 Upland soils. The combined concentration of NO2- and NO3- tended to decrease, especially 

following the Variable and Saturated treatments of the Source 1 Upland and Source 2 Variable 

soils (Tukey’s HSD, p < 0.05). Combined NO2-/NO3- was low in the Source 3 Lowland soils 

initially, but significantly increased following the Variable treatment (Tukey’s HSD, p < 0.05).  

The IRIS tubes placed in the mesocosms that were subjected to the Dry treatment 

indicated that they had remained aerobic because none of the initial ferrous coating was reduced 

and lost. The IRIS tubes in mesocosms subjected to the Saturated treatment lost all of the ferrous 

coating, indicating that sustained anaerobic conditions were achieved with this treatment. The 

Variable treatment fostered an environment where some of the ferrous paint was reduced and 

flaked off, but approximately half of the paint remained by the end of the experiment. 

Functional stability in the three source soil communities 

Both potential nitrification and denitrification rates were influenced by the hydrological 

treatments (nitrification ANOVA, Treatment: F = 12.82, df = 3, p < 0.001; denitrification 

ANOVA, Treatment: F = 23.51, df = 3, p < 0.001). Nitrification and denitrification rates 

exhibited similar patterns as each other in response to hydrologic treatments (Fig. 4.7). Rates 

observed in the Upland Source 1 soils decreased following the Saturated treatment, while rates in 

the Lowland Source 3 soils decreased following the Dry treatment. Nitrification rates from the 

Variable Source 2 community decreased following the intense drying but denitrification rates 

from the same source did not decrease increased following any of the treatments, and both rates 

increased following the Variable treatment.  
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Microbial community differences among sites  

We detected 1736 different microbial OTUs from 16S rRNA gene sequencing, and the 

total number of reads was over 290,000. For the nitrifier analysis, there were 6655 archaeal 

ammonia oxidizer reads pulled from the archaeal 16S rRNA gene sequences, and 6432 bacterial 

ammonia oxidizer reads generated by sequencing the bacterial amoA gene. For the denitrifier 

analysis, more than 113,000 nirK reads were generated, and more than 57,000 nirS reads were 

generated. 12-23% of the OTUs detected in each source community were unique to one of the 

three regions, and 18-30% of nitrifier OTUs and 27-33% of denitrifier OTUs were unique to one 

of the three regions (Fig. 4.1). 

The source communities from the three hydrologically distinct regions differed in overall 

microbial richness calculated as the Chao1 index, but richness did not differ among sources in 

either the nitrifier or denitrifier communities (Table 4.1). Microbial community composition 

significantly differed among the three source soils as well, and the nitrifier and denitrifier 

communities differed (Table 4.2). Before the experiment, the overall microbial community from 

Variable Source 2 had the greatest number of OTUs overall (1214). The Lowland Source 3 

showed the second highest number of OTUs (1007), while the Upland Source 1 had the lowest 

number of OTUs (817). The nitrifier and denitrifier communities from the Variable Source 2 also 

had the greatest number of OTUs (14 nitrifier OTUs and 450 denitrifier OTUs).  

Community resistance or resilience following the hydrologic experiment 

Bray-Curtis comparisons between initial and final composition revealed that the Variable 

Source 2 community changed the least over the 2-month experimental treatments compared to 

both the Upland Source 1 and Lowland Source 3 communities (Fig. 4.5A and 4.5B). For the 

denitrifier community, both the Variable Source 2 and Lowland Source 3 denitrifier communities 
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experienced a smaller degree of change than the Upland Source 1 community (Fig. 4.5C). A 

relatively small degree of change following the experiment as a whole (indicated by a small 

Bray-Curtis distances from the initial community) suggests that the community may be resistant 

or resilient to disturbances (Allison and Martiny 2008, Shade et al. 2012). Communities were 

strongly influenced by the original source location, and PERMANOVA also revealed a 

significant effect of hydrologic treatments on the composition of the overall community but not 

the nitrifiers or denitrifiers (Table 4.2). The PCoA ordination further shows that the experimental 

long-term saturation treatment led to a change in the Upland Source 1 community (Fig. 4.2). The 

nitrifier community and denitrifier community differed among the three source soils (Table 4.2, 

Fig. 4.3, and Fig. 4.4). 

The Chao1 richness index of the overall microbial community (based on 16S rRNA 

sequences) differed among treatments (ANOVA, Treatment: F = 3.768, df = 3, p = 0.024; Fig. 

C.3), and this result was solely driven by a decrease in richness in the Upland Source 1 

community following the Saturated treatment. The Chao1 richness of the denitrifiers also 

differed by treatment (ANOVA, Treatment: F = 3.424, df = 3, p = 0.033), but this was driven by 

greater richness in the Upland Source 1 denitrifiers following the Variable treatment compared to 

the Saturated treatment. There was no significant difference between initial denitrifier richness 

and denitrifier richness after any of the treatments. Neither source nor treatment affected the 

nitrifier Chao1 index. 

Differences in functional gene copies belonging to AOA, AOB, nirK denitrifiers, and 

nirS denitrifiers were observed between sites, but gene copy number was relatively unaffected by 

hydrologic treatment. In general, there were fewest ammonia oxidizers in the lowland region and 

more upland, while denitrifiers showed the opposite pattern and there were more in the lowland 
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than in the upland region (Table 4.1). The nirS gene was the only gene where the abundance was 

significantly affected by treatment (ANOVA, Treatment: F = 3.858, df = 3, p = 0.022). This was 

driven by a decrease in nirS copy numbers present in the Upland Source 1 community following 

all three treatments (Fig. 4.6). No significant differences were observed among archaeal amoA, 

bacterial amoA, or nirK copy numbers. 

Relationship between individual microbial OTUs and N cycling activity rates 

Redundancy analysis (RDA) identified one nitrifier OTU whose relative abundance 

positively correlates to potential nitrification rates, a taxon in the Gammaproteobacteria genus 

Nitrosococcus, referred to as “Nitrifier OTU” below (accession number: KY802142). There were 

two denitrifier OTUs whose relative abundance correlated with potential denitrification rates, 

and both were identified from nirK sequences: A taxon in the Betaproteobacteria genus 

Alcaligenes (“Denitrifier OTU 1”; accession number: KY803903) and the Alphaproteobacteria 

Starkeya novella (“Denitrifier OTU 2”; accession number: KY803905). The relative abundance 

of the Nitrifier OTU differed among sources (ANOVA, Source: F = 20.573, df = 2, p < 0.001), 

but it did not differ among treatments. Both of the denitrifier OTUs also differed among sources 

(Denitrifier OTU 1 ANOVA, Source: F = 6.404, df = 2, p < 0.01; Denitrifier OTU 2 ANOVA, 

Source: F = 7.435, df = 2, p < 0.01) but not among treatments (Fig. C.7). 

 

Discussion 

The central question of this study was whether historical environmental variability selects 

for individuals that are physiologically tolerant to a range of conditions. Many microbial 

communities are sensitive to disturbances (Allison and Martiny 2008, Shade et al. 2012), which 

means disturbances can have consequences for important functions performed by the community 
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(Mendes et al. 2015, Delgado-Baquerizo et al. 2016, Gravuer and Eskelinen 2017). However, 

functional stability can also occur when there is a shift in composition but functional capacity of 

the new individuals is similar to those who were there before (“redundancy” between initial and 

final community composition), or composition itself might remain similar to what is was before. 

The latter scenario would suggest that the community is comprised of physiologically tolerant 

individuals. Our results showed that potential activity rates from the community unique to the 

transition region of a floodplain were the least likely to decrease following experimental 

hydrologic manipulation, which indicates a higher degree of functional stability compared to the 

upland and lowland communities. The microbial community in this region also changed in 

composition by the smallest degree compared to the other two. Together, this evidence supports 

our hypothesis that variability itself is an environmental filter that selects for individuals that are 

unusually tolerant of changing conditions. 

High diversity in a community may either mean there is a high chance that particularly 

resistant or resilient taxa will be present and can remain in the community following a 

disturbance (Chaer et al. 2009, Royer-Tardif et al. 2010), or that multiple microbial taxa perform 

the same level of function as one another (Yuste et al. 2014). Experimental reduction of diversity 

has been shown to decrease functional stability, but the functional response greatly depends on 

the type of disturbance (e.g. high richness is more likely to rescue function from heat stress than 

from inorganic metal contamination) (Griffiths et al. 2000, Tardy et al. 2014). We found that the 

overall microbial community (based on 16S) in the Source 2 Variable region exhibited 

significantly greater richness than those in the Source 1 Upland and Source 3 Lowland regions. 

In combination with the high functional stability of potential nitrification and denitrification from 

this region, this implies that overall richness may contribute to functional stability. However, we 
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did not find differences in the richness of functional groups between each of the three regions. 

Richness is only one dimension that can be used to characterize a microbial community, where 

taxonomic composition is another. Biodiversity may be important for the stability of overall 

community function (Isbell et al. 2011, Bradford et al. 2014), while differences in composition 

can determine the stability of individual processes. Microbial composition contributes to 

differences between functional rates even when richness is determined to be most important 

(Bell et al. 2005, Graham et al. 2016, Orwin et al. 2016). Since the microbial functional groups 

in this study differed in composition between the three regions, but not in richness, this can be 

interpreted as evidence that the effects of microbial richness on functional stability are 

moderated by the specific composition of taxa present.  

We also observed a similar functional response pattern between nitrification, a narrow 

process performed by few taxa, and denitrification, a broad process performed by many taxa. 

High diversity within a functional group may mean that functional redundancy is more likely to 

rescue processes like denitrification than processes like nitrification (Schimel and Gulledge 

1998, Schimel et al. 2007), but we did not find evidence to support that idea in this particular 

study. Instead, since both functional groups exhibited unique composition in the Source 2 

Variable region, and the Source 2 communities remained relatively similar to initial composition 

following the experiment, it is more likely that the specific nitrifier and denitrifier OTUs 

observed in that region were physiologically tolerant to the types of disturbances they 

experienced in this study, regardless of functional group richness. Some experimental results 

suggest that the presence of stress first alters the microbial community, and the resulting 

community exhibits greater functional stability than the one before (Philippot et al. 2008, 

Sjöstedt et al. 2018). This phenomenon may reflect the same filtering effect we propose because 
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the fluctuation between oxic and anoxic conditions also represents a “stress”. We further found 

that the community in the Source 2 Variable region was functionally stable in the face of both 

dry and saturated conditions, not just the treatment that presented fluctuating conditions. This 

means these taxa are remarkably tolerant to a range of hydrologic stresses, not just the stress 

under which they were conditioned. 

Given the difference in metabolic strategies between aerobic nitrifiers and facultatively 

anaerobic denitrifiers, we were quite surprised to observe similar patterns between these two 

processes in response to the same altered hydrology, especially from saturated soils. Nitrification 

would not be a favorable process under the anaerobic conditions present at both the Source 3 

Lowland region and in the mesocosms that were kept saturated throughout the experiment, yet 

these soils yielded high potential nitrification rates. The phenomenon of unexpectedly high 

potential nitrification from saturated soils has been observed previously, where lowland wetland 

soils produced greater potential nitrification rates than dry upland soils (Peralta et al. 2013, 

Peralta et al. 2016). Nitrification and denitrification can become coupled in wetlands (Seitzinger 

1988, Vila‐Costa et al. 2016, Racchetti et al. 2017), meaning that aerobic nitrification processes 

physically occur close enough to anaerobic soils to provide the nitrate for denitrification. 

However, coupled processes would not be expected to influence potential rates obtained 

separately during laboratory assays. Also, while high nitrification in situ can stimulate 

denitrification, the high nitrifier activity observed from saturated soils remains unexplained.  

One possibility is that the potential nitrification assay used in this study may have 

inadvertently measured NO2- accumulation from processes other than nitrification, though we 

argue this is also unlikely. There are anaerobic N cycling processes other than the ones addressed 

by this study (e.g. anammox and DNRA), but these processes would not have contributed to the 
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NO2- accumulation that occurred during the nitrification assays. Anaerobic ammonia oxidation 

(anammox) could not have produced NO2- as a byproduct. Instead, NH4+ is oxidized by an 

anaerobic alternative to oxygen, sometimes including NO2- itself, to produce a hydroxylamine 

intermediate and eventually nitrogen gas (van de Graaf et al. 1995, van de Graaf et al. 1997, 

Schmidt et al. 2002, Zhang et al. 2011). On the other hand, NO2- accumulation could arise from 

the dissimilatory reduction of nitrate to ammonium (DNRA). DNRA competes with 

denitrification to reduce NO3-, and NO2- occurs as a byproduct (Kraft et al. 2014, van den Berg et 

al. 2017). The only ATP-generating step of DNRA is the reduction of NO3- to NO2- (Tiedje 

1988, Megonigal et al. 2014) and DNRA processes are just as common in soils as nitrification 

and denitrification processes (Yang et al. 2015). It is entirely possible that there were organisms 

present that were capable of this step. Facultatively anaerobic organisms capable of DNRA could 

have become enriched and remained active in anaerobic microsites in the assay slurries. 

However, the addition of NaClO3 to inhibit nitrite oxidation to nitrate during the nitrification 

assays would have also inhibited the Nap enzyme that performs this initial reduction step of 

DNRA (Rusmana and Nedwell 2004). Thus, we are fairly confident that the accumulation of 

NO2- we measured during the nitrification assays was due to the activity of aerobic ammonia 

oxidizers, even in soils that had been saturated and anaerobic before the assay. 

Another possible explanation for observing unexpectedly high potential nitrifier activity 

is that the few nitrifiers present in the Source 3 Lowland community (based on low amoA gene 

copy numbers) may have been particularly active nitrifiers. This would be consistent with 

findings reported in a recent review, where it was reported that the ammonia oxidizer activity 

observed during studies that utilize stable isotope probing techniques are often attributed to only 

a small handful of archaeal OTUs (Alves et al. 2018). Further, the “rare biosphere” has been 
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suggested to be ecologically important for the overall microbial community (Sogin et al. 2006), 

not just for nitrifiers, and this rare biosphere is possibly even more important than the most 

abundant organisms because the total community often consists of dormant individuals (Jones 

and Lennon 2010, Aanderud et al. 2015). This would suggest that the presence of specific, rare 

taxa within functional groups might be more important for predicting functional rates than 

differences in either taxonomic richness or abundance organisms that possess the corresponding 

diagnostic gene.  

Indicator OTU analyses of the overall microbial community (based on 16S) revealed that 

completely different microbial OTUs were enriched in the communities found at each of the 

three regions, which further reflects environmental filtering. Interestingly, the top 20 most 

abundant indicator OTUs from the Source 2 Variable region were characterized by OTUs that 

belong to Chloroflexi and Cyanobacteria, both of which are primary producers. It is not 

uncommon to detect microbial taxa that belong to either of these phototrophic phyla in wetland 

sediments (Wang et al. 2012, Jin et al. 2017), and we did detect phototrophic OTUs across all 

three regions in this study. The specific OTUs identified as Source 2 indicator taxa may be 

responding to something unique about the Source 2 environment. Microbial primary producers 

will often “bloom” in response to excess nutrients (Gobler et al. 2016, Berry et al. 2017), but the 

Source 2 Variable region did not exhibit high soil nitrate compared to the other two regions. One 

possibility is that each drying or saturation event leads to a process similar to succession, but on 

a very brief time scale. During succession, fast growing r-selected individuals quickly colonize 

open niches in the soil (Odum 1969, Torsvik and Øvreås 2002, Ciccazzo et al. 2016). Microbial 

phototrophs are thought to play a key role in the initial accumulation of soil organic matter 

following glacial retreat (Frey et al. 2013). The phototrophic OTUs identified here may play a 
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similar ecological role following flood withdrawal from a wetland, when dissolved nutrients can 

be exported downstream and away from the wetland. 

Contrary to the indicator taxa identified for Source 2, there were no primary producers 

among the top 20 indicator OTUs for Source 1 Upland and only one phototrophic OTU 

identified for the Source 3 Lowland communities. Instead these groups of indicator taxa were 

characterized by taxa that might be well adapted to constant conditions. The top 20 most 

abundant lowland indicator OTUs were characterized by the presence of sulfate-reducers. Sulfate 

metabolism would be expected to occur in sediments that have been anaerobic for an extended 

period of time, rather than nitrate metabolism, because the more favorable anaerobic electron 

acceptors like nitrate have become unavailable (Kojima and Fukui 2011, Watanabe et al. 2017). 

The top 20 most abundant upland indicator OTUs were characterized by OTUs belonging to the 

acidophilic, desiccation-tolerant Koribacter genus (Ward et al. 2009) and OTUs in the aerobic 

Gaiellaceae family in the Actinomycetes (Albuquerque et al. 2011). Actinomycetes can possess 

high tolerance to drought conditions (LeBlanc et al. 2008), and we speculate that these upland 

Gaiellaceae OTUs also possess high tolerance to drought. 

Microbial community composition is influenced by both random historical dispersal 

events and by many abiotic characteristics of the soil that filter particular taxa with adaptions 

suited to the specific conditions (Webb et al. 2002). Environmental filtering can influence the 

functional stability of the soil community (Sjöstedt et al. 2018). Strong abiotic filters of soil 

communities include soil pH (Lauber et al. 2009, Griffiths et al. 2011) and redox conditions 

(Pett-Ridge and Firestone 2005, Peralta et al. 2014). Here, we suggest that the variability of an 

abiotic filter is also a filter itself. We demonstrated that the microbial community in the Source 2 

Variable region is quite different in composition and exhibited greater compositional and 
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functional stability compared the other two communities. Thus we conclude that microbial 

community composition influenced functional stability in this system, and composition was more 

important that taxonomic richness for predicting function. We further speculate that the historical 

pattern of fluctuation between saturated and dry conditions filtered out microbial taxa that were 

not tolerant to either saturated or dry conditions, leaving behind primarily taxa that possess 

physiological adaptations to both extremes and can switch between them. Historical variability 

should be taken into account in order to predict how microbial functions may respond to a 

rapidly changing environment following global change. 
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Tables 
 
Table 4.1. Initial chemical properties, activity rates, and microbial properties for each of the three source soils.  

 Source 1 – Upland Source 2 – Variable Source 3 – Lowland 
ANOVA F 

(df = 2) p-value 
GWC (w/w %) 2.18 ± 0.38a 14.57 ± 0.22b 48.80 ± 1.68c 578.60 < 0.001 
pH (1 soil: 1 water) 5.60 ± 0.08a 7.84 ± 0.02b 7.78 ± 0.05b 478.30 < 0.001 
Total C (w/w %) 1.42 ± 0.03a 2.21 ± 0.16b 2.38 ± 0.01b 29.86 < 0.001 
Total N (w/w %) 0.13 ± 0.003a 0.19 ± 0.01b 0.23 ± 0.003c 76.00 < 0.001 
C:N 10.65 ± 0.04ab 11.40 ± 0.30a 10.20 ± 0.17b 9.31 0.015 
NH4+ (µg g-1) 4.29 ± 0.43a 0.47 ± 0.007b 3.32 ± 0.45a 30.58 < 0.001 
Combined NO2-+NO3- (µg g-1) 7.97 ± 2.33a 4.25 ± 0.66ab 0.15 ± 0.003b 7.83 0.021 
Potential nitrification (mg NO3- g-1 hr-1) 8.32 ± 1.09a 50.08 ± 1.29b 395.36 ± 48.30c 57.96 < 0.001 
Potential denitrification (µg N2O g-1 hr-1) 13.59 ± 0.48a 56.20 ± 0.71b 268.39 ± 19.44c 119.10 < 0.001 
16S Chao1 Index 756.51 ± 7.29a 1100.37 ± 16.09c 909.10 ± 24.64b 96.86 < 0.001 
AOA (gene copy # per ng DNA) 949.07 ± 316.17a 212.48 ± 30.00a 22.14 ± 2.79b 7.13 0.026 
AOB (gene copy # per ng DNA) 4.59 ± 1.40a 32.16 ± 5.85b 3.54 ± 1.25a 20.91 < 0.01 
Nitrifier Chao1 Index 9.33 ± 0.88 9.44 ± 1.56 7.33 ± 1.45 n.s. n.s. 
nirK (gene copy # per ng DNA) 80.69 ± 40.27a 278.71 ± 30.93b 97.87 ± 4.12a 13.91 < 0.01 
nirS (gene copy # per ng DNA) 3.94 ± 0.08a 169.98 ± 29.19a 616.93 ± 140.09b 14.73 < 0.01 
Denitrifier Chao1 Index 168.25 ± 15.63 234.86 ± 31.55 220.00 ± 3.39 n.s. n.s. 
 
Error was calculated as standard error of the mean. Lower case superscript letters indicate significant grouping. Non-significant 
differences are indicated by an ‘n.s.’ instead of reporting an F statistic. Nitrifier Chao1 was calculated from a composite OTU table 
formed from the archaeal and bacterial ammonia oxidizers. Denitrifier Chao1 was calculated from a composite OTU table formed 
from nirS- and nirK-containing denitrifiers. Abbreviations: ‘GWC’, gravimetric water content; ‘Total C’, total combustible carbon 
content; ‘Total N’, total combustible nitrogen content; ‘C:N’, C to N ratio; ‘AOA’, archaeal amoA gene copy number; ‘AOB’, 
bacterial amoA gene copy number. 
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Table 4.2. PERMANOVA results from the ‘adonis’ function showing the proportion of 
variability explained (PERMANOVA R2 statistic) by source soil and treatment in the overall 
microbial community, nitrifier community, and denitrifier community.  
 Overall microbial 

community 
PERMANOVA R2 

Nitrifier 
community 

PERMANOVA R2 

Denitrifier 
community 

PERMANOVA R2 
Source *** 0.74 *** 0.54 *** 0.27 
Treatment *** 0.06 0.05 0.07 
Source X Treatment *** 0.10 0.10 0.14 
Residuals 0.10 0.31 0.52 
Total 1.00 1.00 1.00 
Significance: *** p < 0.001, ** p < 0.01, * p < 0.05 
 
  



 119 

Figures 
 

 
 
Figure 4.1. Activity rates from each source before and after the experiment. Lower case letters 
indicate significant groupings (p < 0.05), and error bars represent the standard error of the mean. 
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Figure 4.2. Venn diagrams showing microbial OTUs observed in communities in the three 
source soils before the experiment in (A) the overall community based on 16S rRNA gene 
sequences, (B) the nitrifier community based on archaeal ammonia oxidizer 16S rRNA 
sequences and bacterial amoA sequences, and (C) the denitrifier community based on nirS and 
nirK sequences. The one nitrifier OTU that was detected in all three source soils belongs to the 
archaeal genus Nitrososphaera. The one denitrifier OTU detected in all three soils was identified 
as a member of the nirS-containing taxon Prosthecomicrobium hirschii in the 
Alphaproteobacteria. 
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Figure 4.3. Principle coordinate analysis (PCoA) ordination of the overall microbial community 
based on 16S rRNA gene sequences. 
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Figure 4.4. Principle coordinate analysis (PCoA) ordination of the nitrifier community created 
from a concatenated OTU table of archaeal 16S rRNA sequences that were identified as 
ammonia oxidizers and bacterial amoA sequences.  
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Figure 4.5. Principle coordinate analysis (PCoA) ordination of the denitrifier community created 
from a concatenated OTU table from nirS and nirK sequences. 
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Figure 4.6. Change in microbial community composition following hydrologic alteration shown 
as Bray Curtis distance from the initial community. Bray Curtis ranges from 0 (no difference) to 
1 (complete difference). Significant differences were observed in the degree of change in (A) the 
overall microbial community composition, and observed among (B) nitrifier and (C) denitrifier 
communities in the three source soils. Lower case letters indicates significant differences 
between treatments for each source, and significant differences between entire source 
communities are indicated by upper case letters (p < 0.05). Error bars show standard error of the 
mean. 
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Figure 4.7: Gene copy number of (A) archaeal amoA, (B) bacterial amoA, (C) nirK, and (D) nirS. 
Copy number was standardized by the total ng of DNA from which the gene was amplified. Only 
the nirS abundance in the Source 1 soil community was affected by treatment, and significant 
groups (p < 0.05) are indicated by lower case letters. Error bars represent the standard error of 
the mean. 
 

  

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
Source 1: Upland Source 2: Variable Source 3: L owland

A
rc

ha
ea

l a
m

o
A

 c
o

py
 n

u
m

b
er

 /
 n

g
 D

N
A

0
2

0
4

0
6

0
8

0

Source 1: Upland Source 2: Variable Source 3: L owland

B
ac

te
ri

al
 a

m
o

A
 c

o
py

 n
u

m
b

er
 /

 n
g

 D
N

A

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

n
ir

K
 c

o
py

 n
u

m
b

er
 /

 n
g

 D
N

A

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

Initial

Variable T reatm
ent

Dry Treatm
ent

Saturated T reatm
ent

n
ir

S
 c

o
py

 n
u

m
b

er
 /

 n
g

 D
N

A
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0

ba bb

(A ) (B )

(C) (D)



 126 

References 
 

Aanderud, Z. T., S. E. Jones, N. Fierer, and J. T. Lennon. 2015. Resuscitation of the rare 
biosphere contributes to pulses of ecosystem activity. Frontiers in Microbiology 6:24. 

Albuquerque, L., L. França, F. A. Rainey, P. Schumann, M. F. Nobre, and M. S. da Costa. 2011. 
Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching 
phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. 
nov. and Gaiellales ord. nov. Systematic and Applied Microbiology 34:595-599. 

Allison, S. D., and J. B. H. Martiny. 2008. Resistance, resilience, and redundancy in microbial 
communities. Proceedings of the National Academy of Sciences 105:11512-11519. 

Altor, A. E., and W. J. Mitsch. 2008. Pulsing hydrology, methane emissions and carbon dioxide 
fluxes in created marshes: A 2-year ecosystem study. Wetlands 28:423-438. 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment 
search tool. Journal of Molecular Biology 215:403-410. 

Alves, R. J. E., B. Q. Minh, T. Urich, A. Haeseler, and C. Schleper. 2018. Unifying the global 
phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA 
genes. Nature Communications 9:1517. 

Azmat, M. A., I. A. Khan, H. M. N. Cheema, I. A. Rajwana, A. S. Khan, and A. A. Khan. 2012. 
Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica 
L. Journal of Zhejiang University Science B: Biomedicine & Biotechnology 13:239-243. 

Batson, J. A., Ü. Mander, and W. J. Mitsch. 2012. Denitrification and a nitrogen budget of 
created riparian wetlands. Journal Of Environmental Quality 41:2024-2032. 

Bell, T. 2010. Experimental tests of the bacterial distance–decay relationship. The ISME Journal 
4:1357-1365. 

Bell, T., J. A. Newman, B. W. Silverman, S. L. Turner, and A. K. Lilley. 2005. The contribution 
of species richness and composition to bacterial services. Nature 436:1157-1160. 

Berry, M. A., T. W. Davis, R. M. Cory, M. B. Duhaime, T. H. Johengen, G. W. Kling, J. A. 
Marino, P. A. Den Uyl, D. Gossiaux, and G. J. Dick. 2017. Cyanobacterial harmful algal 
blooms are a biological disturbance to western Lake Erie bacterial communities. 
Environmental Microbiology 19:1149-1162. 

Bradford, M. A., S. A. Wood, R. D. Bardgett, H. I. Black, M. Bonkowski, T. Eggers, S. J. 
Grayston, E. Kandeler, P. Manning, and H. Setälä. 2014. Discontinuity in the responses 
of ecosystem processes and multifunctionality to altered soil community composition. 
Proceedings of the National Academy of Sciences 111:14478-14483. 

Brooks, T. C. 2005. The nature of wetland restoration: The LaGrange Wetland Mitigation Bank 
Site, Brown County, IL.in Governor's Conference on the Management of the Illinois 
River System, Peoria, Illinois. 

Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. 
Nolan, M. W. Pfaffl, and G. L. Shipley. 2009. The MIQE guidelines: Minimum 
information for publication of quantitative real-time PCR experiments. Clinical 
Chemistry 55:611-622. 



 127 

Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, C. A. Lozupone, P. J. Turnbaugh, 
N. Fierer, and R. Knight. 2011. Global patterns of 16S rRNA diversity at a depth of 
millions of sequences per sample. Proceedings of the National Academy of Sciences 
108:4516 - 4522. 

Chaer, G., M. Fernandes, D. Myrold, and P. Bottomley. 2009. Comparative resistance and 
resilience of soil microbial communities and enzyme activities in adjacent native forest 
and agricultural soils. Microbial Ecology 58:414-424. 

Ciccazzo, S., A. Esposito, L. Borruso, and L. Brusetti. 2016. Microbial communities and primary 
succession in high altitude mountain environments. Annals of Microbiology 66:43-60. 

Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-
Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Ribosomal Database Project: Data and tools 
for high throughput rRNA analysis. Nucleic Acids Research 42:633-642. 

De Cáceres, M., and P. Legendre. 2009. Associations between species and groups of sites: 
indices and statistical inference. Ecology 90:3566-3574. 

Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffries, J. J. Gaitan, D. Encinar, M. 
Berdugo, C. D. Campbell, and B. K. Singh. 2016. Microbial diversity drives 
multifunctionality in terrestrial ecosystems. Nature Communications 7:10541-10541. 

Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 
26:2460-2461. 

Fish, J. A., B. Chai, Q. Wang, Y. Sun, C. T. Brown, J. M. Tiedje, and J. R. Cole. 2013. FunGene: 
The functional gene pipeline and repository. Frontiers in Microbiology 4:291. 

Francis, C. A., J. M. Beman, and M. M. Kuypers. 2007. New processes and players in the 
nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. The 
ISME Journal 1:19-27. 

Francis, C. A., K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley. 2005. Ubiquity and 
diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. 
Proceedings of the National Academy of Sciences 102:14683-14688. 

Franklin, R. B., and A. L. Mills. 2006. Structural and functional responses of a sewage microbial 
community to dilution-induced reductions in diversity. Microbial Ecology 52:280-288. 

Frey, B., L. Bühler, S. Schmutz, A. Zumsteg, and G. Furrer. 2013. Molecular characterization of 
phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. 
Environmental Research Letters 8:015033. 

Gobler, C. J., J. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow, and D. B. 
Van de Waal. 2016. The dual role of nitrogen supply in controlling the growth and 
toxicity of cyanobacterial blooms. Harmful Algae 54:87-97. 

Gordon, A., and G. Hannon. 2010. Fastx-toolkit. 
Graham, E. B., J. E. Knelman, A. Schindlbacher, S. Siciliano, M. Breulmann, A. Yannarell, J. M. 

Beman, G. Abell, L. Philippot, J. Prosser, A. Foulquier, J. C. Yuste, H. C. Glanville, D. 
L. Jones, R. Angel, J. Salminen, R. J. Newton, H. Bürgmann, L. J. Ingram, U. Hamer, H. 
M. P. Siljanen, K. Peltoniemi, K. Potthast, L. Bañeras, M. Hartmann, S. Banerjee, R.-Q. 
Yu, G. Nogaro, A. Richter, M. Koranda, S. C. Castle, M. Goberna, B. Song, A. 
Chatterjee, O. C. Nunes, A. R. Lopes, Y. Cao, A. Kaisermann, S. Hallin, M. S. 



 128 

Strickland, J. Garcia-Pausas, J. Barba, H. Kang, K. Isobe, S. Papaspyrou, R. Pastorelli, A. 
Lagomarsino, E. S. Lindström, N. Basiliko, and D. R. Nemergut. 2016. Microbes as 
engines of ecosystem function: When does community structure enhance predictions of 
ecosystem processes? Frontiers in Microbiology 7:111. 

Gravuer, K., and A. Eskelinen. 2017. Nutrient and rainfall additions shift phylogenetically 
estimated traits of soil microbial communities. Frontiers in Microbiology 8:1271. 

Griffiths, B., K. Ritz, R. D. Bardgett, R. Cook, S. Christensen, F. Ekelund, S. Sørensen, E. Bååth, 
J. Bloem, and P. De Ruiter. 2000. Ecosystem response of pasture soil communities to 
fumigation‐induced microbial diversity reductions: An examination of the biodiversity–
ecosystem function relationship. Oikos 90:279-294. 

Griffiths, R. I., B. C. Thomson, P. James, T. Bell, M. Bailey, and A. S. Whiteley. 2011. The 
bacterial biogeography of British soils. Environmental Microbiology 13:1642-1654. 

Groffman, P. M., M. A. Altabet, J. Böhlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, 
A. E. Giblin, T. M. Kana, L. P. Nielsen, and M. A. Voytek. 2006. Methods for measuring 
denitrification: Diverse approaches to a difficult problem. Ecological Applications 
16:2091-2122. 

Henry, S., E. Baudoin, J. C. López-Gutiérrez, F. Martin-Laurent, A. Brauman, and L. Philippot. 
2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time 
PCR. Journal Of Microbiological Methods 59:327-335. 

Hernàndez, M. E., and W. J. Mitsch. 2006. Influence of hydrologic pulses, flooding frequency, 
and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands 
26:862-877. 

Higgins, S. A., A. Welsh, L. H. Orellana, K. T. Konstantinidis, J. C. Chee-Sanford, R. A. 
Sanford, C. W. Schadt, and F. E. Löffler. 2016. Detection and Diversity of Fungal Nitric 
Oxide Reductase Genes (p450nor) in Agricultural Soils. Applied and Environmental 
Microbiology 82:2919-2928. 

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 
Intergovernmental Panel on Climate Change, Geneva, Switzerland. 

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-
Lorenzen, B. Schmid, D. Tilman, and J. Van Ruijven. 2011. High plant diversity is 
needed to maintain ecosystem services. Nature 477:199-203. 

Ishii, S., G. Kitamura, T. Segawa, A. Kobayashi, T. Miura, D. Sano, and S. Okabe. 2014. 
Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in 
environmental water samples. Applied and Environmental Microbiology 80:7505-7511. 

Jin, X., Y. Ma, Z. Kong, W. Kou, and L. Wu. 2017. The variation of sediment bacterial 
community in response to anthropogenic disturbances of Poyang Lake, China. 
Wetlands:1-11. 

Jones, C. M., A. Spor, F. P. Brennan, M.-C. Breuil, D. Bru, P. Lemanceau, B. Griffiths, S. 
Hallin, and L. Philippot. 2014. Recently identified microbial guild mediates soil N2O sink 
capacity. Nature Climate Change 4:801-805. 

Jones, S. E., and J. T. Lennon. 2010. Dormancy contributes to the maintenance of microbial 
diversity. Proceedings of the National Academy of Sciences 107:5881-5886. 



 129 

Jordan, S. J., J. Stoffer, and J. A. Nestlerode. 2010. Wetlands as sinks for reactive nitrogen at 
continental and global scales: A meta-analysis. Ecosystems 14:144-155. 

Kandeler, E., K. Deiglmayr, D. Tscherko, D. Bru, and L. Philippot. 2006. Abundance of narG, 
nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a 
glacier foreland. Applied and Environmental Microbiology 72:5957-5962. 

Kandeler, E., and R. Margesin. 1996. Methods in Soil Biology. Springer, Berlin, Germany. 
Kojima, H., and M. Fukui. 2011. Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative 

autotroph isolated from a freshwater lake. International Journal of Systematic and 
Evolutionary Microbiology 61:1651-1655. 

Kraft, B., M. Strous, and H. E. Tegetmeyer. 2011. Microbial nitrate respiration–genes, enzymes 
and environmental distribution. Journal of Biotechnology 155:104-117. 

Kraft, B., H. E. Tegetmeyer, R. Sharma, M. G. Klotz, T. G. Ferdelman, R. L. Hettich, J. S. 
Geelhoed, and M. Strous. 2014. The environmental controls that govern the end product 
of bacterial nitrate respiration. Science 345:676-679. 

Lauber, C. L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of 
soil pH as a predictor of soil bacterial community structure at the continental scale. 
Applied and Environmental Microbiology 75:5111-5120. 

LeBlanc, J. C., E. R. Gonçalves, and W. W. Mohn. 2008. Global response to desiccation stress in 
the soil actinomycete Rhodococcus jostii RHA1. Applied and Environmental 
Microbiology 74:2627-2636. 

Magoč, T., and S. L. Salzberg. 2011. FLASH: Fast length adjustment of short reads to improve 
genome assemblies. Bioinformatics 27:2957-2963. 

McDonald, D., M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis, A. Probst, G. L. 
Andersen, R. Knight, and P. Hugenholtz. 2012. An improved Greengenes taxonomy with 
explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The 
ISME Journal 6:610-618. 

Megonigal, J. P., M. E. Hines, and P. T. Visscher. 2014. Anaerobic metabolism: Linkages to 
trace gases and aerobic processes.in W. Schlesinger, editor. Biochemistry. Elsevier Inc., 
Oxford. 

Mendes, L. W., S. M. Tsai, A. A. Navarrete, M. de Hollander, J. A. van Veen, and E. E. 
Kuramae. 2015. Soil-borne microbiome: Linking diversity to function. Microbial 
Ecology 70:255-265. 

Naeem, S., and S. B. Li. 1997. Biodiversity enhances ecosystem reliability. Nature 390:507-509. 
Nemergut, D. R., A. Shade, and C. Violle. 2014. When, where and how does microbial 

community composition matter? Frontiers in Microbiology 5:342. 
Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262 - 270. 
Odum, W. F., E. P. Odum, and H. T. Odum. 1995. Natures pulsing paradigm. Estuaries 18:547-

555. 
Okano, Y., K. R. Hristova, C. M. Leutenegger, L. E. Jackson, R. F. Denison, B. Gebreyesus, D. 

Lebauer, and K. M. Scow. 2004. Application of real-time PCR to study effects of 
ammonium on population size of ammonia-oxidizing bacteria in soil. Applied and 
Environmental Microbiology 70:1008-1016. 



 130 

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, 
P. Solymos, M. H. H. Stevens, and H. Wagner. 2013. vegan: Community Ecology 
Package. 

Orwin, K. H., I. A. Dickie, J. R. Wood, K. I. Bonner, and R. J. Holdaway. 2016. Soil microbial 
community structure explains the resistance of respiration to a dry–rewet cycle, but not 
soil functioning under static conditions. Functional Ecology 30:1430-1439. 

Peralta, A. L., E. R. Johnston, J. W. Matthews, and A. D. Kent. 2016. Abiotic correlates of 
microbial community structure and nitrogen cycling functions vary within wetlands. 
Freshwater Science 35:573 - 688. 

Peralta, A. L., S. Ludmer, and A. D. Kent. 2013. Hydrologic history influences microbial 
community composition and nitrogen cycling under experimental drying/wetting 
treatments. Soil Biology and Biochemistry 66:29-37. 

Peralta, A. L., S. Ludmer, J. W. Matthews, and A. D. Kent. 2014. Bacterial community response 
to changes in soil redox potential along a moisture gradient in restored wetlands. 
Ecological Engineering 73:246-253. 

Pett-Ridge, J., and M. K. Firestone. 2005. Redox fluctuation structures microbial communities in 
a wet tropical soil. Applied and Environmental Microbiology 71:6998-7007. 

Pett-Ridge, J., D. G. Petersen, E. Nuccio, and M. K. Firestone. 2013. Influence of oxic/anoxic 
fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS 
Microbiology Ecology 85:179–194. 

Philippot, L. 2002. Denitrifying genes in bacterial and archaeal genomes. Biochimica et 
biophysica acta (BBA)-Gene structure and expression 1577:355-376. 

Philippot, L., M. Cregut, D. Chèneby, M. Bressan, S. Dequiet, F. Martin-Laurent, L. Ranjard, 
and P. Lemanceau. 2008. Effect of primary mild stresses on resilience and resistance of 
the nitrate reducer community to a subsequent severe stress. FEMS Microbiology Letters 
285:51-57. 

Placella, S. A., E. L. Brodie, and M. K. Firestone. 2012. Rainfall-induced carbon dioxide pulses 
result from sequential resuscitation of phylogenetically clustered microbial groups. 
Proceedings of the National Academy of Sciences 109:10931-10936. 

Plocher, A., R. Larimore, D. Keene, and B. Zercher. 2009. Wetland mitigation monitoring for the 
La Grange Mitigation Bank Site, Areas 4 and 7 - 2009. Illinois Natural History Survey, 
Champaign, IL. 

Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiological Reviews 58:755-805. 
Prosser, J. I., and G. W. Nicol. 2008. Relative contributions of archaea and bacteria to aerobic 

ammonia oxidation in the environment. Environmental Microbiology 10:2931-2941. 
R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 
Racchetti, E., D. Longhi, C. Ribaudo, E. Soana, and M. Bartoli. 2017. Nitrogen uptake and 

coupled nitrification–denitrification in riverine sediments with benthic microalgae and 
rooted macrophytes. Aquatic Sciences 79:487-505. 



 131 

Rhine, E. D., G. K. Sims, R. L. Mulvaney, and E. J. Pratt. 1998. Improving the Berthelot reaction 
for determining ammonium in soil extracts and water. Soil Science Society of America 
Journal 62:473-480. 

Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural 
gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-
oxidizing populations. Applied and Environmental Microbiology 63:4704-4712. 

Royer-Tardif, S., R. L. Bradley, and W. F. J. Parsons. 2010. Evidence that plant diversity and 
site productivity confer stability to forest floor microbial biomass. Soil Biology and 
Biochemistry 42:813-821. 

Rusmana, I., and D. B. Nedwell. 2004. Use of chlorate as a selective inhibitor to distinguish 
membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of 
dissimilative nitrate reducing bacteria in sediment. FEMS Microbiology Ecology 48:379-
386. 

Sambrook, J., and D. Russell. 2001. Molecular cloning: A laboratory manual. 3rd edition. Cold 
Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

Schimel, J., T. C. Balser, and M. Wallenstein. 2007. Microbial stress-response physiology and its 
implications for ecosystem function. Ecology 88:1386-1394. 

Schimel, J. P., and J. Gulledge. 1998. Microbial community structure and global trace gases. 
Global Change Biology 4:745-758. 

Schmidt, I., O. Sliekers, M. Schmid, I. Cirpus, M. Strous, E. Bock, J. G. Kuenen, and M. S. M. 
Jetten. 2002. Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural 
partners? FEMS Microbiology Ecology 39:175-181. 

Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological 
and geochemical significance. Limnology and Oceanography 33:702-724. 

Seo, D. C., and R. D. DeLaune. 2010. Fungal and bacterial mediated denitrification in wetlands: 
Influence of sediment redox condition. Water Research 44:2441-2450. 

Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Bürgmann, D. H. Huber, S. 
Langenheder, J. T. Lennon, and J. B. Martiny. 2012. Fundamentals of microbial 
community resistance and resilience. Frontiers in Microbiology 3:417. 

Sims, G. K., T. R. Ellsworth, and R. L. Mulvaney. 1995. Microscale determination of inorganic 
nitrogen in water and soil extracts. Communications in Soil Science and Plant Analysis 
26:303-316. 

Sjöstedt, J., S. Langenheder, E. Kritzberg, C. M. Karlsson, and E. S. Lindström. 2018. Repeated 
disturbances affect functional but not compositional resistance and resilience in an 
aquatic bacterioplankton community. Environmental Microbiology Reports:Epub ahead 
of print. 

Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta, 
and G. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare 
biosphere”. Proceedings of the National Academy of Sciences 103:12115-12120. 

Takai, K., and K. Horikoshi. 2000. Rapid detection and quantification of members of the 
archaeal community by quantitative PCR using fluorogenic probes. Applied and 
Environmental Microbiology 66:5066-5072. 



 132 

Tardy, V., O. Mathieu, J. Lévêque, S. Terrat, A. Chabbi, P. Lemanceau, L. Ranjard, and P. A. 
Maron. 2014. Stability of soil microbial structure and activity depends on microbial 
diversity. Environmental Microbiology Reports 6:173-183. 

Tiedje, J. M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. 
Biology of anaerobic microorganisms 717:179-244. 

Torsvik, V., and L. Øvreås. 2002. Microbial diversity and function in soil: From genes to 
ecosystems. Current Opinion in Microbiology 5:240-245. 

van de Graaf, A. A., P. de Bruijn, L. A. Robertson, M. S. Jetten, and J. G. Kuenen. 1997. 
Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a 
fluidized bed reactor. Microbiology 143:2415-2421. 

van de Graaf, A. A., A. Mulder, P. de Bruijn, M. Jetten, L. A. Robertson, and J. G. Kuenen. 
1995. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and 
Environmental Microbiology 61:1246-1251. 

van den Berg, E. M., J. L. Rombouts, J. G. Kuenen, R. Kleerebezem, and M. C. van Loosdrecht. 
2017. Role of nitrite in the competition between denitrification and DNRA in a chemostat 
enrichment culture. AMB Express 7:91. 

Vila‐Costa, M., C. Pulido, E. Chappuis, A. Calvino, E. O. Casamayor, and E. Gacia. 2016. 
Macrophyte landscape modulates lake ecosystem‐level nitrogen losses through tightly 
coupled plant‐microbe interactions. Limnology and Oceanography 61:78-88. 

Wallenstein, M. D., D. D. Myrold, M. Firestone, and M. Voytek. 2006. Environmental controls 
on denitrifying communities and denitrification rates: insights from molecular methods. 
Ecological Applications 16:2143-2152. 

Wang, Y., H.-F. Sheng, Y. He, J.-Y. Wu, Y.-X. Jiang, N. F.-Y. Tam, and H.-W. Zhou. 2012. 
Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and 
marine sediments by using millions of illumina tags. Applied and Environmental 
Microbiology 78:8264-8271. 

Ward, N. L., J. F. Challacombe, P. H. Janssen, B. Henrissat, P. M. Coutinho, M. Wu, G. Xie, D. 
H. Haft, M. Sait, and J. Badger. 2009. Three genomes from the phylum Acidobacteria 
provide insight into the lifestyles of these microorganisms in soils. Applied and 
Environmental Microbiology 75:2046-2056. 

Watanabe, T., A. Miura, T. Iwata, H. Kojima, and M. Fukui. 2017. Dominance of Sulfuritalea 
species in nitrate‐depleted water of a stratified freshwater lake and arsenate respiration 
ability within the genus. Environmental Microbiology Reports 9:522-527. 

Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and 
community ecology. Annual Review of Ecology and Systematics 33:475-505. 

Wilkinson, L., and S. Urbanek. 2011. venneuler: Venn and Euler diagrams. 
Yang, W. H., B. H. Traut, and W. L. Silver. 2015. Microbially mediated nitrogen retention and 

loss in a salt marsh soil. Ecosphere 6:7. 
Yuste, J. C., A. Fernandez-Gonzalez, M. Fernandez-Lopez, R. Ogaya, J. Penuelas, J. Sardans, 

and F. Lloret. 2014. Strong functional stability of soil microbial communities under 
semiarid Mediterranean conditions and subjected to long-term shifts in baseline 
precipitation. Soil Biology and Biochemistry 69:223-233. 



 133 

Zhang, M., P. G. Lawlor, G. Wu, B. Lynch, and X. Zhan. 2011. Partial nitrification and nutrient 
removal in intermittently aerated sequencing batch reactors treating separated digestate 
liquid after anaerobic digestion of pig manure. Bioprocess and Biosystems Engineering 
34:1049-1056. 

 

  



 134 

CHAPTER 5:  

HISTORICAL FLOOD PATTERNS DRIVE MICROBIAL COMMUNITY 

COMPOSITION IN RESTORED WETLANDS BUT NOT THE FUNCTIONAL 

RESPONSE TO ALTERED HYDROLOGY 

 

Abstract 

 Historical flood patterns impose an environmental filter that structures soil microbial 

community composition, and composition can affect ecosystem function. An important microbial 

function in wetlands is the removal of nitrate via denitrification, but restored freshwater wetlands 

sometimes fail to achieve an equivalent rate of denitrification when compared to reference sites, 

even once hydrology of the site has been altered during restoration. It is possible that the 

historical hydrology of a wetland has already selected microbial taxa that differ in denitrification 

capacity, and dispersal limitation between wetlands prevents recruitment of new denitrifier 

taxa. In order to address this, we first surveyed denitrifier community composition in wetlands 

that were categorized to have contrasting historical flood patterns. Next, we established a 

controlled experiment where sterile soil mesocosms were inoculated with denitrifier 

communities from wetlands with contrasting historical flood patterns, and measured the response 

of potential denitrification activity rates to different hydrologic treatments over two months. 

Historical hydrology influenced wetland denitrifier composition at least to some degree but there 

were still strong site-specific differences. The wetland communities that were used to inoculate 

experimental mesocosms exhibited similar functional responses to the hydrologic treatments, 

regardless of contrasting historical flood patterns. In particular, mesocosms subjected to dry 

periods displayed reduced potential rates for the remainder of the experiment. Experimentally 
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removing the dispersal limitation between wetland denitrifier communities did not result in a 

different response to the hydrologic treatments, implying that differences in functional capacity 

at least are not due to dispersal limitation of denitrifier communities in newly restored 

wetlands. Thus, past flood patterns drive microbial composition in restored wetlands, but past 

flood patterns do not necessarily drive the response of denitrifier activity to experimental 

changes in hydrology. 

 

Introduction 

Historical flood patterns drive microbial community assembly by altering oxygen 

availability in the belowground environment, and composition in turn determines the functional 

capacity of these communities. Denitrification, an important microbial-mediated anaerobic 

process in wetlands, is strongly influenced by soil factors like pH and total C, but a need remains 

to determine the extent to which functional potential is further influenced by historical microbial 

assembly processes. The relationship between communities and their associated ecosystem 

process rates has been an ongoing discussion in ecology (Naeem and Li 1997, Tilman et al. 

1997, Tilman et al. 2001). There is mounting correlative evidence to suggest that microbial 

community function is influenced by both the surrounding environment as well as by specific 

components of the microbial community (Bell et al. 2005, Knelman and Nemergut 2014, 

Graham et al. 2016). 

In wetland restoration, denitrifying services have proven difficult to restore (Peralta et al. 

2010, Hossler et al. 2011, Marton et al. 2014), so there is a practical need to identify microbial 

controls on desired ecosystem service rates. Restored wetland denitrifier communities possess 

different composition than those in reference wetlands, and this has been linked to differences in 
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function (Wallenstein et al. 2006a, Flanagan 2009). Microbial community differences in general 

have been correlated to functional rates in a variety of observational studies (Salles et al. 2012, 

Morrissey and Franklin 2015), as well as in controlled experiments (Philippot et al. 2013, 

Aanderud et al. 2015). Denitrifiers are a subset of the overall community that encompasses a 

phylogenetically diverse range of bacterial species (Zumft 1997). These taxa are capable of 

performing at least one step of the denitrification pathway because they harbor either nitrite 

reductase (nir) genes, nitrous oxide reductase (nosZ) genes, or both (Jones et al. 2013, Jones et 

al. 2014). In addition to the observed link in composition and denitrification, studies have also 

found a correlation between potential denitrification rates and the abundance of at least one of 

these denitrification genes (Iribar et al. 2015, Salles et al. 2017).  

Denitrification as an process is also moderated by complex abiotic factors, including 

stress from water availability. Hydrologic stress arises from both the removal of oxygen and 

change in redox conditions that occurs following complete saturation, as well as from drought 

conditions (Zeglin et al. 2009, Song et al. 2010, Wilson et al. 2011). More importantly, the 

community composition can be altered by hydrologic stress because not all microbial taxa 

possess the physiology required to tolerate a range of hydrologic conditions (Schimel et al. 2007) 

and this can indirectly affect rates of activity performed by the community. For example, 

experimental rewetting can increase the abundance of rare taxa that are already present, thus 

altering the composition (Aanderud et al. 2015). The same experiment demonstrated that the rise 

in abundance of rare taxa was concurrent with an increase in respiration, indicating that such 

changes in composition have consequences on function (Aanderud et al. 2015). Historical flood 

regimes, and thus historical patterns in redox conditions, impose an environmental filter on 
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wetland denitrifier community assembly, and could have important implications for the 

functional response of these communities to a changing environment. 

Further, dispersal limitation between sites can affect community assembly patterns 

(Leibold et al. 2004, Vellend 2010), and dispersal limited community assembly patterns have 

been demonstrated to influence microbial activity (Adams et al. 2014). In aquatic systems, 

dispersal is less restricted than in terrestrial systems because sediment communities can disperse 

between sites through attachment to small particles that float from upstream to downstream 

systems (Crump and Baross 2000, Crump et al. 2012). On the other hand, since wetlands are 

terrestrial during periods with low precipitation, it is still possible that denitrifiers in restored 

floodplain wetlands remain dispersal limited between sites (Whitaker et al. 2003, Van der Gucht 

et al. 2007, Kembel 2009, Cline and Zak 2014, Székely and Langenheder 2014). Limitation of 

function in newly restored wetlands may be due to compositional differences that persist in the 

microbial community following restoration, first by previous hydrologic filtering of the soil 

community, and second by dispersal limitation among existing wetlands. 

Composition determines function at least to some degree, as has been demonstrated in the 

literature (Graham et al. 2016), and supported by correlative results in previous chapters of this 

dissertation. In order to further understand abiotic and microbial controls that limit the 

restoration of denitrification function in wetlands, we ask if historical hydrology limits functional 

potential by filtering the community, and whether future functional potential remains limited by 

dispersal limitation to new wetlands. We combined an observational field study approach, and an 

additional experiment to address three hypotheses: (1) If historical hydrology is one of the 

strongest structuring forces on below-ground ecology, and if these wetlands are also 

hydrologically connected, then wetlands with similar historical hydrologic patterns will exhibit 
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similar below-ground communities as one another. (2) If historical hydrology limits the future 

functional potential of belowground communities, then wetland communities with different 

historical hydrologic patterns will exhibit different functional responses to experimentally altered 

hydrology. (3) If microbial dispersal to newly restored wetlands is in fact limited, then removal 

of the dispersal limitation will also alter the functional response of the community to 

experimentally altered hydrology, where function will likely approach an intermediate rate 

compared to rates observed from communities in separate wetlands. 

 

Methods 

Wetland site selection 

In order to categorize wetlands into groups with distinct historical hydrologic regimes, a 

principal component analysis (PCA) ordination was created using flood history data provided by 

the Illinois State Geological Survey. The ISGS records flood frequency, depth, duration, and 

timing for restored compensatory wetlands. There were 23 restored wetlands with flood data 

collected for at least two years, and these 23 wetlands were geographically distributed across the 

state of Illinois. The flood history variables included to construct the PCA were average annual 

flood frequency, average flood depth, average annual maximum flood depth, and average flood 

duration, as well as a coefficient of variation that was calculated for each variable. One outlier 

wetland was removed due to infrequent flooding, and a second wetland was removed because it 

was a floodplain wetland inaccurately grouped due to a levee separating it from the adjacent 

river, which altered the recorded flood data. The resulting PCA is shown in the supplementary 

material (Fig. D.1). The 21 remaining sites fell into three broad categories of flood histories. 

Sites with floods that typically achieve a greater depth were separated on the right side of the 
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ordination, and these sites were also lower in the watershed than the other wetlands. The bottom 

left quadrant of the ordination held sites that displayed the greatest variability in terms of both 

flood depth and duration from year to year. Wetlands located along the top half of the ordination 

experienced the most frequent flooding and the smallest duration, indicating a distinctive 

frequent pulsing flood regime.  

In order to select wetlands that clearly belong within each of the three groups, a k-means 

clustering algorithm was employed. This technique uses an iterative process to assign 

multivariate data to groups based on similarity. The algorithm was set to assign wetlands to three 

groups, and 15 independent trials were run in succession. Sites that grouped together most often 

were selected to represent each of the three groups. Sites labeled as F1, F2, and F3 in the PCA 

ordination belong to the group with frequent, short-duration flood patterns, and these were 

assigned to the same group during all 15 trials of the k-means algorithm. Sites labeled as V1, V2, 

and V3 belong to the group that aligned with the coefficients of variability, and thus were 

determined to have high interannual variability, and these three wetlands were also assigned to 

the same group in all 15 trials. Only two sites clearly aligned with long-duration flood periods in 

the PCA ordination, L1 and L2. These two sites were grouped together in 13 out of the 15 trials, 

but other sites were rarely assigned to the same group as these two. Average values of the 

hydrologic PCA axes for each group are shown in Table 5.1. The eight wetlands selected for this 

study were also distributed across the state of Illinois in order to reduce potential confounding 

effects between geographic region and hydrologic history (Fig. 5.1).  

Field sampling 

 For the initial evaluation of wetland community composition and soil characterization, 

six soil samples were collected from the top 10 cm of soil at the eight selected wetlands in March 
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of 2015. In order to capture within-site variability, two samples were collected from a relatively 

dry region, two samples from a transition region, and two samples were collected from a lowland 

region. Eight soil cores were collected from the top 10 cm at each sampling location and 

homogenized to produce a total of six samples from each wetland. The soil was transported on 

ice to the laboratory. At least 10 g of soil was removed immediately under sterile conditions, 

frozen at -20˚C, and freeze-dried for DNA extraction later. A portion of wet soil was set aside for 

analysis of extractable nutrients, while another portion was air dried for pH analysis, as well as 

analysis of total C and total N via combustion analysis. Sampling was repeated in May 2015, 

August 2015, and October 2015 to evaluate whether temporal changes occurred that might 

influence the planned experiment in terms of the original soil characteristics and microbial 

activity of the source soil. 

Soil for the hydrologic manipulation experiment was collected in June 2015. 

Approximately 3.5 kg of soil was collected from the top 10 cm from each of the two lowland 

locations at each wetland, and transported back to the laboratory on ice. The two 3.5 kg samples 

from each wetland were homogenized before they used to inoculate the sterile experimental 

mesocosms, producing a total of eight separate inocula. 

Experimental mesocosm set-up 

 Denitrification is strongly influenced by both soil properties (Groffman and Tiedje 1989, 

Strong and Fillery 2002, Schaller et al. 2004) and microbial properties (Wallenstein et al. 2006b, 

Foulquier et al. 2013, Iribar et al. 2015, Morrissey and Franklin 2015). In order to set up 

mesocosms with different communities but comparable soil properties, mesocosms were 

constructed from 90% autoclave-sterilized soil and inoculated with 10% live wetland soil. For 

the sterile soil base, a sandy loam mixture (2 parts sand : 1 part potting soil) was pasteurized 
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at 170˚C and further autoclaved at 121˚C. Since some soil enzymes remain active following 

autoclave sterilization (Carter et al. 2007), a simple preliminary experiment was conducted to 

ensure the effectiveness of the pasteurization+autoclave sterilization technique for reducing 

microbial activity. Since soil texture is a strong driver of denitrification activity, this experiment 

was also used to verify the ability of the inoculation technique to produce discernible activity 

rates (Foulquier et al. 2013). It was determined that pasteurization by itself reduced potential 

denitrification activity to 0, but the additional autoclave step would still be included as a 

precaution. The inoculated soils produced 10% of the original denitrification activity observed in 

fresh wetland soil collected from the same source. 

All mesocosms were constructed one at a time by initially wetting the sterile sandy loam 

mixture with autoclaved deionized water, and then mixing in 10% inoculum by volume. 

Following one week of equilibration under moist conditions, the experiment was conducted for 

an additional two months with 9 additional weekly sampling events. There were four hydrologic 

treatments: (1) Stable saturated to mimic wetlands that are not connected directly to a flood 

pulse, (2) saturated for 6 weeks, then allowed to drain for the last two weeks to mimic a long 

early summer flood, (3) short alternating cycles of saturated for a week and dried for a week to 

mimic frequent flood conditions, and (4) a dry control. Destructive sampling of replicate 

mesocosms was conducted the day after establishing the mesocosms, the day after the beginning 

the hydrologic treatments (following one week of equilibration under moist conditions), and then 

on each day following a change in saturated or dry conditions for the third treatment (Fig. 5.2). 

While the long and short flood treatments mimic ‘home’ conditions that might be experienced by 

two of the hydrologic groups (“long flood group” and “frequent flood group”, respectively), a 

two-month experiment could not provide a ‘home’ treatment for the source communities from 
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wetlands that experience high variability from year to year. We anticipate these four treatments 

together to encompass the range of conditions that might be experienced by the “high interannual 

variability” group. 

In order to simulate the removal of dispersal limitation among wetland communities, a 

ninth inoculum was created by homogenizing all eight wetland inocula in equal parts by volume, 

hereafter termed the MIX inocula. There were three replicate mesocosms per treatment per 

sampling event for each of the eight individual wetland inocula. Since we anticipated that mixing 

source communities could lead to particularly high variability among experimental replicates, ten 

replicate mesocosms per treatment per sampling event for the one MIX inoculum in order to 

capture this excess variability. A single uninoculated negative control was sampled for each 

treatment on each sampling event. 

A total of 1400 soil mesocosms were assembled and destructively sampled for this 

experiment. The mesocosms themselves were created from 6" clear plastic tubes with rubber 

caps on the bottoms (VisiPak, Fenton, MO). Saturation was always performed with autoclaved 

deionized water, and the water level was maintained daily to combat evaporation or potential 

leaks in the rubber seal. The mesocosms were allowed to drain by replacing the rubber caps on 

the bottom with a piece of double layer cheesecloth secured with a rubber band. All mesocosms 

were placed in the same room in a greenhouse, and were randomly arranged in a grid. 

DNA extraction and molecular methods 

Total genomic DNA was extracted from freeze-dried wetland soil samples collected in 

March 2015 and May 2015 using the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH). 

Genomic DNA was further purified using a cetyl trimethyl ammonium bromide (CTAB) 
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extraction to remove contaminating humic acids (Sambrook and Russell 2001). DNA 

concentration was adjusted to a standard concentration of 10 ng/µl in each sample.  

 Illumina sequencing was used to target bacterial and archaeal rRNA genes, as well as 

nirS, nirK, and Clade I nosZ genes (Illumina, San Diego, CA). Sequencing amplicons were 

prepared by PCR using a Fluidigm Access Array IFC chip, which allowed simultaneous 

amplification of each target gene (Fluidigm, San Francisco, CA). Initial reactions were carried 

out according to a 2-step protocol using reagent concentrations according to Fluidigm 

parameters. The first PCR was performed in a 100-µL reaction volume using 1 ng DNA 

template, and this PCR amplified the target DNA region using both the gene-specific primers 

with Fluidigm-specific amplification primer pads CS1 (5’-ACACTGACGACATGGTTCTACA-

3’) and CS2 (5’-TACGGTAGCAGAGACTTGGTCT-3’), which produced amplicons including 

(1) CS1 Fluidigm primer pad, (2) 5’-forward PCR primer, (3) amplicon containing the region of 

interest, (4) 3’-reverse PCR primer, and (5) CS2 Fluidigm primer pad. A secondary 30-µL PCR 

used 1 µL of 1:100 diluted product from the first PCR as template, and added Illumina-specific 

sequencing linkers P5 (5’-AATGATACGGCGACCACCGAGATCT-3’) and P7 (5'-

CAAGCAGAAGACGGCATACGAGAT-3’), along with a 10-bp sample-specific barcode 

sequence, so the final construct consisted of (1) Illumina linker P5, (2) CS1, (3) 5’-primer, (4) 

amplicon containing the region of interest, (5) 3’-primer, (6) CS2, (7) sample-specific 10-bp 

barcode, and (8) the Illumina linker P7. Final amplicons were gel-purified, quantified (Qubit; 

Invitrogen, Carlsbad CA, USA), combined to the same concentration, and then sequenced from 

both directions on an Illumina HiSeq 2500 2x250 bp Rapid Run. Fluidigm amplification and 

Illumina sequencing was conducted at the Roy J. Carver Biotechnology Center (Urbana, IL, 

USA).  
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Overall community composition was assessed by sequencing the bacterial and archaeal 

16S ribosomal rRNA gene V4 region using the forward primer 515F and reverse primer 806R 

(Caporaso et al. 2011). The NO2- reducing denitrifier composition was assessed by sequencing 

both nirK, with forward primer nirK876 and reverse primer nirK1040 (Henry et al. 2004), as 

well as nirS, with forward primer nirSCd3aF and reverse primer nirSR3cd (Kandeler et al. 2006). 

The N2O reducing denitrifier composition was assessed by sequencing Clade I nosZ with 

forward primer nosZ1F and reverse primer nosZ1R (Henry et al. 2006). Primer sequences are 

listed in Table 1.1 (Chapter 1).  

Paired-end 16S sequences were merged using Fast Length Adjustment of SHort reads 

(FLASH) software v. 1.2.11 (Magoč and Salzberg 2011). Only the first end of the sequences 

(“Read 1”) were used for analysis of the functional genes. Quality filtering of fastq files was 

performed using software in the FASTX-Toolkit (Gordon and Hannon 2010). Sequences with 

fewer than 90% of bases showing at least 99.9% base accuracy were removed. The nirK 

sequences were shorter than 300-bp, so they were trimmed to the appropriate size using the 

FASTX-Toolkit. The fastq files were then converted to fasta format, and sequences were binned 

into discrete OTUs based on 97% similarity using USEARCH v. 8.1.1861 (Edgar 2010). 

Taxonomic assignments were made using QIIME software (Caporaso et al. 2011). For 16S gene 

assignments, the GreenGenes database v. 13.5 was used (McDonald et al. 2012) with the 

UCLUST algorithm (Edgar 2010). Custom functional gene databases were created by 

downloading sequences from the RDP FunGene website (Fish et al. 2013), and assignments were 

made in QIIME with the BLAST algorithm (Altschul et al. 1990).  

 

 



 145 

Soil chemical analyses 

 Soil pH was determined using a 1:1 soil:deionized water slurry for each sample before 

and after treatment. Concentration of available ammonium (NH4+), combined nitrate (NO3-) and 

nitrite (NO2-), and inorganic phosphate (PO4-) extracted from soil in 2M KCl was determined 

using colorimetric methods in a spectrophotometric microplate reader (Epoch Microplate 

Spectrophotometer, BioTek, Winooski, VT, USA). Available NH4+ was measured at 650 nm 

using a Berthelot method (Weatherburn 1967), NO3-/NO2- was measured at 540 nm by a 

vanadium method (Doane and Horwath 2003), and PO4- was measured at 630 nm using a 

Malachite green method (Lajtha et al. 1999). Total organic carbon and nitrogen were determined 

using combustion analysis (ECS 4010, COSTECH Analytical Instruments, Valencia, CA, USA). 

Gravimetric water content was also determined for every sample. All of these analyses were 

performed for the wetland soils. Almost all of these analyses were performed for the 1400 

mesocosm samples as well, with the exception of total N and total C, which were only 

determined for the initial and final mesocosm soil samples to verify that overall C and N 

remained similar throughout the experiment. 

Potential denitrification assay 

 Potential rates of denitrification were determined under ideal conditions using 25 g of 

either wetland soil or experimental mesocosm soil. Soil was placed into 125-mL Wheaton jars 

with 25 mL of deionized water with chloramphenicol as described by Peralta et al. (2016), 

except with added 45.83 mM dextrose and 14.28 mM nitrate to generate nutrient unlimited rates. 

All jars were purged with He gas to create anoxic conditions. In order to quantify complete 

denitrification, acetylene gas was added to the jar headspace to block the conversion of N2O to 

N2 and allow for detection on a GC. In order to quantify how much N2O might be released via 
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incomplete denitrification, a second assay was performed simultaneously with He gas added 

instead of acetylene. Thus, relative potential rates of N2O-producing incomplete denitrification 

and total denitrification activity could be determined. Gas samples were collected at the 

beginning and after three hours. The concentration of N2O was determined using a gas 

chromatograph (GC-2014 with ECD, Shimadzu Corp., Kyoto, Japan). The final denitrification 

rate was corrected by the dry weight of the soil. 

Statistical analyses 

 For the wetland site selection, the principal component analysis (PCA) ordination was 

constructed using the ‘rda’ function in the ‘vegan’ package in R (Oksanen et al. 2013), and the k-

means clustering was performed using the ‘kmeans’ function in the ‘stats’ package in R (R Core 

Team 2014). Principal coordinate analysis (PCoA) ordinations were created using the ‘cmdscale’ 

function, and significant differences in composition were evaluated using the ‘adonis’ function in 

the ‘vegan’ package to run permutational analysis of variance (PERMANOVA) tests. The “core 

microbiome” for each of the source communities were defined as the microbial taxa detected in 

at least three of the six soil samples collected from each wetland. The “shared core microbiome” 

for each of the three hydrologic groups were defined as the core microbiome taxa that were 

determined for all source communities within each group (i.e. in all three “frequent flood” 

wetland source communities, all three “variable” wetland source communities, or in both of the 

“long flood” wetland source communities). To identify whether there exists particular 

representative taxa for the different flood groups, the ‘multipatt’ function in the ‘IndicSpecies’ 

package (De Cáceres and Legendre 2009) was used to run indicator species on only the most 

abundant taxa, defined as taxa whose total abundance summed to at least 0.05. To determine if 

hydrologic history selected for microbial taxa that belong to particular taxonomic groups, the 
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‘DESeq’ function in the ‘DESeq2’ package was used on the taxa identified from 16S rRNA gene 

sequences (Anders and Huber 2010, Love et al. 2014). To determine whether differences in 

microbial composition and potential denitrification rates were correlated in the source wetlands, 

Mantel correlation tests were run using the ‘mantel’ function in the ‘vegan’ package. 

To determine relative effects of experimental hydrologic treatment and source 

community on univariate variables, the ‘aov’ function was used to run two-way ANOVA tests. 

To determine the effects of time, a repeated measures ANOVA was run, where ‘time’ was a third 

categorical factor that represented the sampling event. Specific differences were determined 

using the ‘TukeyHSD’ function to run Tukey’s HSD test. To test whether denitrification rates 

were influenced by chemical or physical differences that persisted between inoculated 

experimental mesocosms, classification and regression tree (CART) analyses were run using the 

‘rpart’ function in the ‘rpart’ package (Therneau et al. 2015) using all factors that had been 

tracked throughout the two-month experiment: Time, source community, moisture, pH, 

ammonium, nitrate, and phosphate. To detect changes in total C or total N in the mesocosms 

from the beginning of the experiment to the end, a paired t-test was run using the ‘t.test’ function 

in R. To check whether either C or N influenced rates, simple linear regression models were 

constructed using the ‘lm’ function. 

 

Results 

We detected 5423 different microbial OTUs from 16S rRNA gene sequencing, and the 

total number of reads was almost 2 million. For the nitrite reducing denitrifiers, 279 OTUs were 

observed from the nirK sequences with more than 1.6 million nirK reads in total, and 1706 OTUs 

were observed from the nirS sequences with more than 213,000 nirS reads in total. For the 
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nitrous oxide reducing denitrifiers, 1692 OTUs were observed from the Clade I nosZ sequences 

with more than 835,000 nosZ reads in total. Testing with a PERMANOVA model demonstrated 

that community composition did not change between March and May, so the community 

composition data reported in this chapter was generated from soil collected in March. 

The microbial communities differed between the eight source wetlands included in this 

study (Fig. 5.3). The three hydrologic groups of wetlands significantly differed in overall 

microbial composition (PERMANOVAgroup R2 = 0.085, p < 0.01), nitrite reducing denitrifier 

composition (PERMANOVAgroup R2 = 0.075, p < 0.001), and nitrous oxide reducing denitrifier 

composition (PERMANOVAgroup R2 = 0.069, p < 0.001). The eight source communities also 

differed in overall microbial composition (PERMANOVAsource R2 = 0.090, p < 0.001), nitrite 

reducing denitrifier composition (PERMANOVAsource R2 = 0.050, p < 0.001), and nitrous oxide 

reducing denitrifier composition (PERMANOVAsource R2 = 0.042, p < 0.001). Potential 

denitrification rates also differed among the source communities (ANOVAgroup F = 5.3, df = 2, p 

< 0.001), where the frequent flood wetlands exhibited greater rates than the long flood wetlands 

(Tukey’s HSD, p < 0.001). The rates did not significantly differ between source communities 

within the frequent flood group or the long flood group, but they differed between communities 

in the variable flood group (ANOVAsource F = 45.6, df = 2, p < 0.001), where all three source 

wetlands significantly differed in rates (Fig. 5.4). There was a small but significant correlation 

between overall microbial community composition and potential denitrification rates (Mantel R 

= 0.1578, p < 0.01). The same was seen for nitrite reducing denitrifiers (Mantel R = 0.1425, p < 

0.01) and for nitrous oxide reducing denitrifiers (Mantel R = 0.109, p < 0.05). 

 A shared core microbiome was determined for each hydrologic group for the overall 

microbial community, the nitrite reducing denitrifiers, and for the nitrous oxide reducing 
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denitrifiers, though the number of shared denitrifier taxa was much lower than taxa shared in the 

overall community (Fig. 5.5). Of the total core taxa identified from the overall microbial 

community, 32.4% were assigned to only the frequent flood group, 2.6% were assigned to only 

the high interannual variability group, and 10.7% were assigned to only the long flood group. Of 

the nitrite reducing denitrifiers, 14.7% were assigned to only the frequent flood group, 2.9% 

were assigned to only the high interannual variability group, and 64.7% were assigned to only 

the long flood group. Of the nitrous oxide reducing denitrifiers, 12.5% were assigned to only the 

frequent flood group, none were assigned to only the high interannual variability group, and 

66.7% were assigned to only the long flood group. Out of the total core taxa identified for each 

of the eight source communities, 14-59% of the core overall microbial taxa, 1-14% of the core 

nitrite reducing denitrifier taxa, and 0.7-22% of the core nitrous oxide reducing taxa were shared 

by all source communities within each group (Fig. D.2). 

When “indicator taxa” were identified for each group using the “multipatt” function, 

these taxa only displayed high abundance in one or two source communities, and none were in 

high abundance in all source communities within a particular group (Fig. D.3, D.4, and D.5). 

Using the “DESeq2” function to identify and plot some of these taxa by rarified abundance, we 

found a similar result: No taxonomic groups were found to be representative of microbial 

communities in wetlands with similar hydrologic history (Fig. D.6) and taxa abundance in 

individual wetlands drives the differences detected between hydrologic groups. .  

 Using these source communities to inoculate sterile experimental mesocosms, the 

experimental hydrologic treatments most strongly influenced potential denitrification rates, while 

the original hydrologic group of the source community did not strongly influence rates. The time 

of sampling source communities to inoculate the mesocosms would have had little effect on the 
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potential denitrification rates observed during the experiment because there were no temporal 

trends detected in potential activity rates from the original wetlands between late spring and 

summer (Fig. D.7). The MIX treatment showed no differences in rates compared to the single 

source inocula (Fig. 5.6). A two-way repeated measures ANOVA revealed that treatment, 

hydrologic group, and time were all significant factors that influenced denitrification rates. 

Treatment showed the strongest effect (ANOVAtreatment, F = 53.4, df = 3, p < 0.001), where the 

Saturated treatment resulted in greater rates than the other treatments (Tukey’s HSD, p < 0.001, 

for all three comparisons), and all treatments resulted in greater rates than the Dry treatment 

(Tukey’s HSD, p < 0.001, for all three comparisons). This ANOVA model was constructed to 

compare the effect of source communities from wetlands belonging to the three hydrologic 

groups to each other, while simultaneously comparing the effect of mixing all source 

communities together in order to effectively remove dispersal limitation. The “hydrologic group” 

factor had four levels: Frequent flood, high interannual variability, long flood, and MIX. 

Hydrologic groups differed significantly as well (ANOVAgroup, F = 4.0, df = 3, p < 0.01), but the 

only significant pairwise differences revealed were that the high interannual variability group 

showed lower rates than the frequent flood group (Tukey’s HSD, p < 0.05) and also lower rates 

than the long flood group (Tukey’s HSD, p < 0.05). The MIX inocula did not significantly differ 

from mesocosms inoculated with only a single source community. Time was significant 

(ANOVAtime, F = 66.2, df = 9, p < 0.001); Tukey’s HSD showed that rates decreased between 

the fourth and fifth sampling events.  

The ANOVA models were analyzed using “hydrologic group” as a factor instead of 

individual “site” because none of the individual source communities exhibited unique responses 

to hydrologic treatments when compared to the average response of the hydrologic groups (Fig. 
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D.8). Total potential denitrification rates were selected as the response variable, rather than 

potential N2O production, because the rate of N2O released by the experimental mesocosms was 

always much lower than total potential denitrification rates (Fig. D.9). 

 It was determined that the source inocula did not impart chemical or physical differences 

to the experimental mesocosms that might have influenced rates. Mesocosms inoculated by 

different sources may have exhibited differences at the beginning of the experiment, but these 

were not correlated with differences in potential rates throughout the experiment. CART 

analyses showed that both total potential denitrification rates and incomplete denitrification 

(potential N2O production) throughout the experiment were influenced by soil moisture and time, 

such that rates were limited by low moisture and decreased over time, but not by soil nutrients or 

initial source community (Fig. D.10). The soil pH did not differ among mesocosms (Fig. D.11) 

and moisture followed patterns that reflected the treatments (Fig. D.12). Soil ammonium, nitrate, 

and phosphate did change over time (Fig. D.13, D.14, and D.15), but they did not change in a 

way that was correlated with denitrification rates. Total C and N were not included in the CART 

analyses because they were only evaluated at the beginning and end of the experiment, but 

neither total C nor total N influenced denitrification rates in the mesocosms at either sampling 

date. The total soil C in the experimental mesocosms was significantly lower by the end of the 

experiment, but these values were not correlated to rates, and total soil N did not change 

throughout the experiment (Fig. D.16). 
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Discussion 

Hydrologic history effects on denitrifier composition and potential function 

We have demonstrated that historical flood patterns exhibit at least some influence on 

overall microbial community composition, as well as denitrifier composition. There remains a 

large proportion of compositional variability attributed to site-to-site differences. These site-to-

site differences seem to swamp out the influence of hydrologic history, which is likely due to 

additional community assembly processes and additional environmental filters that may not have 

been detected in the current study design. The structuring influence of hydrology has been 

observed before (Peralta et al. 2016), but here we added statistical power by including replicate 

wetlands with similar historical regimes. If flood regimes imposed a predictable filtering effect 

on composition, then we would expect to see particular microbial taxa selected in wetlands with 

similar histories. However, instead we found taxa enriched in individual wetland communities 

rather than across all of the wetlands that share a similar hydrologic history.  

The significant historical hydrologic effect on microbial composition may indicate that 

multiple alternative states can arise from similar environmental drivers. For example, the rapid 

drying and rewetting typical of wetlands with a “frequent” flood pattern may filter out organisms 

that cannot adapt to rapidly changing conditions (Schimel et al. 2007, Buelow et al. 2016), but 

the organisms left would only include taxa that could colonize that site to begin with. There is no 

immediately obvious reason to assume that the same taxa were already present at all the sites 

within each group (Kembel 2009, Székely and Langenheder 2014). An example of this might 

include the taxon belonging to the Flavisolibacter genus that was identified as an indicator of 

species turnover between the three hydrologic groups, which was in high abundance in sites F1 

and F3 but not F2 (Fig. D.6A). Another example includes the taxon in the alphaproteobacterial 
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genus Rhodoplanes identified as an indicator of hydrologic group, though it was only in high 

abundance in the site V3, and not V1 or V2 (Fig. D.6B). Even without dispersal limitation 

between sites with similar historical conditions, there may still be environmental drivers that 

differ between these sites, and those differences could represent a secondary filtering step. Soil 

texture, moisture, and soil C are strong drivers of community composition (Drenovsky et al. 

2004, Cleveland et al. 2007, De Graaff et al. 2010, Foulquier et al. 2013). The soil at site F2 

showed higher % silt, higher moisture, and lower total C than the soil at sites F1 and F3, and the 

soil at V3 showed lower % clay, higher % silt, lower moisture, and lower total C and N than the 

soil at sites V1 and V2 (Table 5.2 and Table 5.3).  

Potential denitrification rates differed among hydrologic groups, and Mantel analyses 

revealed a weak correlation between potential rates and belowground community composition. It 

is difficult to untangle whether differences in rates and composition are simply due to differences 

in soil chemistry and texture or if the community has a directly causal effect on potential 

function. For example, soil C drives potential denitrification rates (Stanford et al. 1975) as well 

as microbial composition, and the wetlands with the greatest potential denitrification rates also 

displayed the greatest total soil C (Table 5.3 and Table 5.4). Other researchers have used 

statistical modeling to isolate the importance of both the environment and the microbial 

community to drive denitrification rates in environmental systems that were equally as complex 

as the wetlands in this study (Foulquier et al. 2013, Morrissey and Franklin 2015, Graham et al. 

2016). We chose to use an additional experimental approach to remove the effect of the 

environment, which is addressed in the following section. Put together, our observational 

findings already suggest that historical flood patterns influence community assembly to some 

degree, and this leads to differences in potential denitrification rates from the soil. 
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Hydrologic history effects on denitrifier response to altered hydrology 

 We were able to isolate the microbial community from the confounding effects of soil 

chemistry and texture by inoculating experimental mesocosms with live wetland soil, and we 

found there was a small difference in the functional response to hydrologic manipulation 

between groups. However, the effect of different soil inocula was greatly overshadowed by the 

effect of the imposed hydrologic treatments. It is certainly possible that the sterile soil base used 

to construct the mesocosms acted as an environmental filter itself, thus altering mesocosm 

community composition to a similar state regardless of starting composition. However, 

reciprocal transplant experiments have demonstrated that the starting community strongly 

influences the final community composition even up to a year after being placed in a new 

environment (Waldrop and Firestone 2006, Reed and Martiny 2013). Instead, we may have 

observed a functionally redundant response, where functional redundancy refers to the situation 

where microbial communities are so diverse that two different communities are still capable of 

performing the same function at the same rate (Torsvik and Øvreås 2002, Allison and Martiny 

2008). It has been speculated that denitrification will exhibit a particularly high degree of 

functional redundancy due to the high diversity or organisms that can participate in the 

denitrification process (Schimel and Gulledge 1998, Schimel et al. 2007). 

Our methods were similar to an approach commonly utilized in plant-soil feedback 

experiments (Mills and Bever 1998, Bever 2002, Kardol et al. 2007, Mangan et al. 2010), where 

individual plant species are grown in controlled systems in order to filter unique soil 

communities for each species, and then those soils are used to inoculate sterilized soils. This 

allows researchers to compare plant growth in “home” and “away” soil communities. In our 

novel experimental approach, we wanted to be able to measure potential denitrification from 



 155 

inoculated soils, but this approach would have led to rates that are sometimes too low to detect. 

Thus, we used a higher percentage by volume (10%) than is typical of plant-soil feedback studies 

(5%). The soil chemistry of experimental units was monitored at each sampling event to ensure 

that different wetland inocula did not impart physical differences that might further confound 

results. We found some chemical differences among mesocosms inoculated with particular 

wetland communities, but none of the chemical differences influenced rates, and thus differential 

responses must be due to differences in the starting community. 

The importance of historical regimes on community composition may be irrelevant if 

different soil communities are equally able to respond to altered hydrologic conditions. 

Historical hydrologic patterns have been demonstrated to influence both composition and 

function in soil communities to some extent (Evans and Wallenstein 2012, Brower et al. 2017). 

Experiments in grassland ecosystems have demonstrated that increased precipitation can lead to 

the development of a soil community that is less resilient to future environmental changes 

(Gravuer and Eskelinen 2017), while extended drought altered the carbon use efficiency (CUE) 

of soil communities (Zeglin et al. 2013). On the other hand, fluctuations in water level and 

associated mobilization of nutrients can have strong effects on the activity of the microbial 

community across many cellular functions, including denitrification (Manis et al. 2014), as well 

as respiration and expression of stress response genes (Buelow et al. 2016). In our study, we 

found that the original hydrologic group of the source community had far less of an influence on 

potential functional rates compared to the experimental treatments, which indicates that wetland 

denitrifier communities in general may either exhibit high functional redundancy with each 

other, or their ability to function is equally susceptible to drought. 
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 However, we detected a small difference in functional response from mesocosms 

inoculated by communities from wetlands with high interannual variability (source communities 

V1, V2, and V3). This group of inocula often displayed lower rates than those from the other two 

hydrologic groups, particularly under the constantly saturated treatment, which should have been 

most favorable treatment for taxa capable of anaerobic respiration, like denitrifiers (Zumft 1997). 

The defining characteristic of this group of wetlands is that they do not experience flooding 

every year, and the floods they experience are not always the same magnitude and at the same 

frequency from year to year. Flood events may be rare enough in these wetlands that they 

represent a disturbance, and thus these source communities may have simply not contained 

denitrifier taxa that were able to respond to the saturated treatment at the same rate as the other 

sources. Some of the denitrifiers that were enriched in this particular group possess the same 

taxonomic identity as those enriched in the other two groups (e.g. Pseudomonas sp., Paracoccus 

sp., and Rhodopseudomonas palustris) and this may indicate that there are physiological 

differences between closely related individuals. However, one OTU in particular, the nirS-

containing denitrifier Polymorphum gilvum, was primarily enriched in the group of wetlands 

with high interannual variability (Fig. D.4C), and enriched in both the high interannual 

variability and long flood groups (Fig. D4B). This taxon has received attention from 

microbiologists because it can degrade a wide variety of hydrocarbons and is tolerant to high 

salinity, but sequencing its genome revealed that it also possesses an unusually high abundance 

of genes for motility proteins (Nie et al. 2012). P. gilvum may be remarkably well adapted to 

changing conditions because it would be able to move to neighboring regions as the surrounding 

soil conditions become less favorable.   
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Removal of dispersal limitation among restored wetland communities 

While the initial community composition of these wetland source communities suggested 

that dispersal limitation was a historical factor driving composition, we did not find evidence that 

the removal of dispersal limitation influenced denitrification capacity in any way. Thus we 

cannot conclude that the limited denitrifier function reported in restored wetlands (Hossler et al. 

2011, Marton et al. 2014) is simply due to dispersal limitation from existing wetlands to newly 

restored sites.  

Dispersal limitation is still an important community assembly process to consider in 

wetland ecology, especially when faced with the challenge of restoring microbial communities 

that are functionally equivalent to those in wetlands that were destroyed or damaged. Dispersal 

can influence composition by rescuing populations of taxa that are particularly sensitive to stress 

(Székely and Langenheder 2017), and most microbial communities are sensitive to stress 

(Allison and Martiny 2008). In general, rare taxa are far more likely to be dispersal limited while 

the majority of the community remains subject to strong habitat filtering (Székely and 

Langenheder 2014), which could explain why dispersal had little effect in an experiment that 

examined the influence of dispersal on functional rates. The rare taxa may have limited 

importance for function on short time scales. However, these taxa would have long term 

consequences on function when opportunistic taxa increase in abundance once conditions are 

favorable (Aanderud et al. 2015, Székely and Langenheder 2017, Shen et al. 2018). 

Experimentally manipulating dispersal rates between leaf litter decomposing 

communities, a dry system where the individual communities are not well connected, showed 

that even slow rates of dispersal alter the final composition (Albright and Martiny 2017). 

Dispersal limitation may not be as important during aquatic or semiaquatic microbial community 
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assembly though. Lake and large order stream microbial communities contain the same 

microbial taxa that are present in low order streams and even in the surrounding soil 

communities (Crump et al. 2012). Fully aquatic ecosystems can contain rare taxa that may not be 

well adapted to that particular region but are nevertheless still present, and if conditions are 

altered in such way that these rare taxa become favored, they increase in abundance and are no 

longer rare (Shen et al. 2018). It is possible that soil microbial community assembly in newly 

restored wetlands is not dispersal limited, and in fact, these communities face strong 

environmental filtering from soil properties that are slow to develop (Ballantine and Schneider 

2009).  

Conclusions 

We were not able to provide evidence that restored wetlands are limited in potential 

function by dispersal limitation of the below-ground community, but our study was able to 

demonstrate that historical hydrology of a wetland certainly leaves a signature on microbial 

community composition. Denitrification in restored wetlands may be limited, to some degree, by 

differences in microbial community composition. Wetland denitrifier communities that 

historically face extended drought conditions may be limited in future functional capacity, even 

if hydrology is restored in a way that favors rapid denitrification.  
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Tables 
 
Table 5.1. Average hydrologic variables used to categorize wetlands into three distinct groups. 
The lower case letters represent significant groupings based on one-way ANOVA and Tukey’s 
HSD (p < 0.05). The standard error of the mean for each variable is given in parentheses. 

Hydrologic 
Group 

Maximum 
Depth (m) 

Mean Depth 
(m) 

Duration (days) Frequency 
(event/year) 

Watershed 
Area (ha) 

Mean CV Mean CV Mean CV Mean CV 
Frequent Flood 
(N=3) 

1.00a 
(0.08) 

0.67 
(0.09) 

0.54a 
(0.04) 

0.75 
(0.04) 

3.85 
(3.05) 

1.05 
(0.09) 

9.50a 
(1.44) 

0.55 
(0.15) 

1,297.97 
(1,011.33) 

High Interannual 
Variability (N=3) 

0.89a 
(0.11) 

1.01 
(0.05) 

0.43a 

(0.03) 
0.80 

(0.21) 
12.75 
(3.43) 

1.30 
(0.21) 

1.88b 
(0.63) 

0.54 
(0.10) 

12,098.80 
(6,439.09) 

Long Flood 
(N=2) 

1.84b 
(0.17) 

0.77 
(0.12) 

0.94b 
(0.04) 

0.70 
(0.08) 

32.77 
(13.27) 

1.07 
(0.28) 

2.82b 
(0.52) 

0.53 
(0.07) 

955,455.90 
(890,458.90) 
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Table 5.2. Wetland location and soil type. Soil information was obtained from the USDA Web 
Soil Survey online tool (Soil Survey Staff). 
Hydrologic 
Group 

Wetland County Latitude Longitude %Clay %Sand %Silt Texture Parent 
Material  

Frequent 
Flood 

F1 Sangamon 39.76 -89.44 31.0 8.0 61.0 Silty clay 
loam 

silty 
alluvium 

F2 Perry 38.04 -89.43 20.0 8.0 72.0 Silt loam alluvium 
F3 Effingham 39.15 -88.57 11.5 32.3 56.2 Silt loam sandy/ 

loamy 
alluvium 

High 
Interannual 
Variability 

V1 Henry 41.55 -90.18 31.0 5.0 64.0 Silty clay 
loam 

silty 
alluvium 

V2 Sangamon 39.88 -89.67 31.0 8.0 61.0 Silty clay 
loam 

silty 
alluvium 

V3 Jackson 37.79 -89.23 18.0 6.0 76.0 Silt loam Loess/ 
silty 

alluvium 
Long 
Flood 

L1 Alexander 37.29 -89.51 31.0 10.0 59.0 Silty clay 
loam 

alluvium 

L2 Brown 39.97 -90.52 43.0/ 
22.5§ 

5.0/ 
24.8§ 

52.0/ 
52.7§ 

Silty 
clay/ Silt 

loam§ 

alluvium 

§The upland region of wetland L2 displayed different values than the rest of the site, and those 
values are reported first, while the values from the lowland region are reported second. The 
source soil that was used to inoculate experimental mesocosms came from the lowland region. 
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Table 5.3. Average soil chemistry variables for each wetland at the time of sampling. The 
standard error of the mean for each variable is given in parentheses. 

Hydrologic 
Group Wetland 

Moisture 
(% w/w) 

Total C 
(% w/w) 

Total N 
(% w/w) C:N 

NH4+ 
(mg/g 
soil) 

NO3-  
(mg/g 
soil) 

PO4-   
(mg/g 
soil) 

Frequent 
Flood 

F1 0.29 
(0.02) 

2.36 
(0.16) 

0.19 
(0.01) 

12.7 
(0.45) 

1.62 
(0.26) 

1.12 
(0.02) 

2.90 
(0.66) 

F2 0.33 
(0.01) 

1.98 
(0.13) 

0.18 
(0.01) 

11.23 
(0.31) 

0.78 
(0.13) 

1.15 
(0.01) 

1.64 
(0.28) 

F3 0.29 
(0.004) 

2.75 
(0.18) 

0.19 
(0.02) 

14.44 
(0.12) 

0.72 
(0.92) 

1.11 
(0.02) 

2.21 
(0.66) 

High 
Interannual 
Variability 

V1 0.33 
(0.02) 

5.13 
(0.1) 

0.37 
(0.01) 

13.89 
(0.11) 

2.93 
(0.24) 

1.20 
(0.03) 

11.43 
(0.30) 

V2 0.29 
(0.01) 

2.37 
(0.12) 

0.19 
(0.01) 

12.50 
(0.28) 

2.20 
(0.47) 

1.12 
(0.02) 

1.57 
(0.33) 

V3 0.27 
(0.02) 

1.28 
(0.24) 

0.11 
(0.02) 

11.26 
(0.17) 

3.33 
(0.19) 

1.08 
(0.05) 

1.75 
(0.21) 

Long 
Flood 

L1 0.25 
(0.01) 

1.92 
(0.13) 

0.13 
(0.004) 

14.69 
(0.51) 

1.30 
(0.02) 

1.05 
(0.02) 

3.35 
(0.35) 

L2 0.31 
(0.01) 

2.30 
(0.30) 

0.21 
(0.02) 

11.09 
(0.47) 

1.04 
(0.02) 

1.18 
(0.03) 

2.06 
(0.56) 
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Table 5.4. Average denitrification rates for each wetland at the time of sampling. The standard 
error of the mean for each variable is given in parentheses. 

Hydrologic 
Group Wetland 

Potential Incomplete 
Denitrification              

(ng N2O g-1 soil hr-1) 

Potential Complete 
Denitrification      

(ng N2O g-1 soil hr-1) 

Proportion 
Incomplete 

Denitrification         
(N2O / N2O+N2) 

Frequent 
Flood 

F1 13.72                   
(3.09) 

94.84                 
(10.83) 

0.16                              
(0.04) 

F2 29.53                  
(1.30) 

95.34                 
(6.82) 

0.31                               
(0.05) 

F3 7.24                    
(1.83) 

80.75                 
(10.78) 

0.15                               
(0.01) 

High 
Interannual 
Variability 

V1 7.17                    
(4.46) 

129.63                 
(8.14) 

0.05                               
(0.09) 

V2 17.19                  
(1.92) 

56.40                 
(3.08) 

0.35                               
(0.07) 

V3 12.60                  
(4.86) 

24.18                 
(4.09) 

0.53                               
(0.12) 

Long 
Flood 

L1 2.91                    
(3.48) 

39.09                 
(8.85) 

0.10                               
(0.03) 

L2 18.37                  
(2.23) 

53.66                 
(18.08) 

0.39                               
(0.06) 

  



 164 

Figures 
 

 
 
Figure 5.1. Map of Illinois showing the approximate location of the eight source wetland. The 
shape of the symbol represents the historical hydrologic group that the wetland was assigned to: 
Wetlands that belong to the “frequent” flood group are shown as squares, those that exhibit high 
variability from year to year (“high interannual variability”) are shown as circles, and those in 
the “long” flood group are shown as triangles. The letter+number inside each shape is the unique 
wetland designation used to refer to each wetland throughout the study.  
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Figure 5.2. Hydrologic manipulation treatments in the experimental mesocosm study. The 
vertical dashed lines represent sampling events that occurred every 7 days, and each sampling 
event occurred one day after any change in hydrology throughout the experiment. The dark grey 
bars show the duration of time that each treatment involved complete saturation. The absence of 
a grey bar shows the duration of time when mesocosms were allowed to drain. All mesocosms 
were treated exactly the same during the first week of the experiment (“Pre-experiment” to 
“Initial”), where they were kept moist but not inundated to allow for equilibration.  
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Figure 5.3. Principal coordinate analysis (PCoA) ordinations of different subsets of the microbial 
communities present at each source wetland: (a) the overall microbial community based on 
sequences of the 16S rRNA gene, (b) the nitrite reducing denitrifiers based on sequences of both 
nirK and nirS genes, and (c) the nitrous oxide reducing denitrifiers based on the Clade I 
nosZ gene. The shape of the symbol represents the historical hydrologic group that the wetland 
was assigned to: Wetlands that belong to the “frequent” flood group are shown as squares, those 
that exhibit high variability from year to year (“high interannual variability”) are shown as 
circles, and those in the “long” flood group are shown as triangles. Points represent the mean 
centroid of six replicates collected from each wetland and error bars are the standard error of the 
mean. 
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Figure 5.4. Potential denitrification rates from soil collected from each source wetland (N = 6 
soil samples per wetland). The asterisks above show significant differences between hydrologic 
groups (** p < 0.01), and the lower case letters show significant differences between source 
wetlands within a group (based on Tukey’s HSD with p < 0.05).  
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Figure 5.5. Number of core microbial OTUs that overlap between the three hydrologic groups.  
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Figure 5.6. Potential denitrification rates from mesocosms. Each panel shows the results from 
different treatments: (a) Fully saturated, (b) long flood treatment — saturated for 6 weeks, 
drained for 2 weeks, (c) short flood treatment — alternating saturated for a week with drained for 
a week, and (d) dry control. The lines show the averages for mesocosms inoculated with wetland 
communities belonging to the distinct hydrologic groups: Solid black lines are mesocosms 
inoculated by the “frequent” flood wetland communities (N = 3 source wetlands), the dashed 
lines are mesocosms inoculated by communities from wetlands with “high interannual 
variability” (N = 3 source wetlands), and the dotted lines are mesocosms inoculated by 
communities from wetlands assigned to the “long” flood group (N = 2 source wetlands). The 
grey lines show the results from inoculating mesocosms with mixed soil from all 8 source 
wetlands (N = 10 replicate mesocosms). Error bars show standard error of the mean. The dark 
grey horizontal bars along the x-axis of each plot are a graphical representation of the hydrologic 
treatment (see Figure 5.2).   
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CHAPTER 6: CONCLUSIONS 

 

 Wetland ecosystems are often complex and serve many ecological and public service 

functions (Rey Benayas et al. 2009, Moreno-Mateos and Comin 2010), and there is limited 

monitoring of the delivery of ecosystem services in restored wetlands that were intended to 

replace those that were damaged or destroyed (Matthews and Endress 2008). The studies that 

exist suggest that mitigation efforts do not effectively replace wetland ecosystem services when 

compared to those delivered by reference wetlands that represent a target ecosystem (Moreno-

Mateos et al. 2012). Wetland ecosystems are also increasingly threatened by drought and 

hydrologic disturbances induced by climate change (Pinay et al. 2002). Thus, restoration efforts 

may be shooting for a moving target (Erwin 2008, Dunwiddie et al. 2009, Suding 2011).  

 This dissertation focused specifically on soil microbial communities in restored 

freshwater wetlands in Illinois, and on the potential for these communities to remove nitrate 

pollutants via denitrification. The existing literature suggests that soil communities in restored 

wetlands do not approach the same potential denitrification rates observed in reference wetlands 

(Hossler and Bouchard 2010, Marton et al. 2014) and sometimes this is coupled with a difference 

in the composition of the microbial community (Flanagan 2009, Peralta et al. 2010). Numerous 

studies have also documented a relationship between denitrifier activity and denitrifier 

composition, abundance, or richness (Morrissey and Franklin 2015, Graham et al. 2016, Salles et 

al. 2017) but these patterns are not always consistent (Chroňáková et al. 2009, Song et al. 2010, 

Philippot et al. 2013, Brower et al. 2017). My results point toward a complicated relationship 

between denitrifier composition and function in wetlands, where potential function is most 

strongly influenced by recent hydrologic events (drought, intense flood disturbance, or 
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experimentally altered hydrologic treatments). Statistical modeling in Chapters 2 and 3 showed 

that characteristics of the microbial community do influence potential rates to a degree. The 

experimental approach in Chapter 5 demonstrated that microbial communities from wetlands that 

experience high variability in flood regimes from year to year are not capable of achieving 

potential rates as high as communities from other wetlands, even once differences in soil texture 

and chemistry were removed.  

 

The following three specific objectives were addressed: 

 (a) Identify correlations between potential rates of denitrification and the abundance of specific 

microbial OTUs or groups of microbes. 

The first study described in Chapter 2 found that functional potential was at least partially 

correlated to the abundance of nirS genes present in a community (see Table 2.4). When I 

proceeded to characterize differences in wetland communities by using DNA sequences, I found 

they exhibit high variability from wetland to wetland (see Figures 3.2, 3.3, 3.4, and Figure 5.3). 

In general, wetlands that have different denitrification potential also have different microbial 

communities, but many wetlands exhibit similar functional potential but different communities. 

Thus, I was unable to identify specific microbial taxa that are consistent indicators of high 

functional capacity (see Figure 3.6, Figure C.7, and Figures D.3, D.4, D.5, and D.6).  

In Chapter 3, I used a redundancy analysis (RDA) to identify taxa whose relative 

abundance correlated with potential denitrification rates over time, including taxa related to 

Rhodopseudomonas palustris, Azoarcus spp., and unidentified denitrifiers. Each of these taxa 

peaked in abundance during 2013 when all of the wetlands peaked in potential denitrification 

rates. However, none of the individual OTUs were in high abundance in more than one wetland, 
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even though two wetlands, Site A reference and Site C reference, both exhibited high potential 

rates. This suggests that functional redundancy is high among wetland denitrifiers. When 

experimentally tested in Chapter 4, however, functional redundancy between wetland denitrifiers 

did not automatically confer functional stability. Instead, the results of Chapter 4 suggest that 

functional stability is determined more by the historical context of the community. 

 

(b) Determine which abiotic characteristics in wetlands drive differences in microbial 

composition, especially between restored and reference wetlands. 

Recent hydrologic conditions at the time of sampling strongly influenced potential rates, 

but I did not find a straightforward effect on microbial composition. Using the study in Chapter 3 

as a small case study, I found that microbial communities in restored wetlands are not exhibiting 

compositional convergence toward their respective reference wetlands, even up to 17 years post 

restoration. This might be related to differences in soil organic matter because these particular 

reference wetlands have greater soil C than the restored wetlands (see Figure B.4). In the same 

study, I found that recent hydrologic events in situ influenced potential rates generated in a 

laboratory, but these events did not result in a clear change in composition. Instead, a few 

specific denitrifier OTUs responded by either increasing or decreasing in relative abundance 

during a year that experienced intense flooding. In Chapter 4, contrasting historical flood 

regimes across a single wetland strongly influenced microbial community composition. In 

Chapter 5, I identified replicate wetlands with similar historical flood regimes, and I found that 

flood patterns do not necessarily yield a predictable influence on microbial composition. 

Composition differed between wetlands with contrasting flood regimes, but composition also 

differed between wetlands with similar flood regimes.  Others have documented that contrasting 
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flood patterns or fluctuating redox states influence microbial composition (Pett-Ridge and 

Firestone 2005, Peralta et al. 2014). I found the hydrologic regime influenced composition to 

some degree, but other environmental filters might have structured composition as well. For 

example, soil texture can drive differences in microbial composition, and one of the “frequent 

flood” wetlands had soil that was 32% sand while the other two in the same group had 8% sand. 

Total C and total N was twice as high in one of the “high interannual variability” wetlands 

compared to the seven other wetlands. 

 

(c) Determine if those differences in composition correlate to differences in potential function. 

In Chapter 2, I observed that average denitrification rates across 45 wetlands were 

equivalent between restored and reference wetlands. Soil moisture at the time of sampling 

strongly influenced potential denitrification rates (see Figure 2.1 B). Other abiotic factors that 

were correlated with rates included phosphate and pH (see Table 2.3). However, soil moisture, 

phosphate, and pH were no different between restored and reference wetlands on average. Using 

a singly wetland in Chapter 4, I found that historical hydrologic variable structured a community 

that was more stable in composition, as well as in rates, compared to other community. In 

Chapter 5, I found that hydrologic manipulation was a far stronger influence on potential rates 

than either community composition or historical flood regimes. Interestingly, the mesocosms 

inoculated by source communities from wetlands with historically variable flood regimes from 

year to year exhibited consistently lower rates than mesocosms inoculated with source 

communities from wetlands with typically flashy or long extended flood patterns.  

It is possible that the timeline along which hydrologic fluctuations occur in an 

environment is an important influence on the functional stability of a soil community. In Chapter 



 180 

4, the transition region of a wetland experienced both dry and flooded conditions within a single 

season, and this structured a community that was relatively stable in function when compared to 

other communities in the same wetland. In Chapter 5, the wetlands with high variability from 

year to year may experience flooding some years, but also experience dry conditions during 

other years, even during the spring flood season. The taxa able to persist between extreme 

fluctuations on a longer timescale than a single season may simply be less active than taxa that 

are adapted to rapid fluctuations in flashy flood wetlands or adapted to extended flood 

conditions. The community in the transition region described in Chapter 4 did not exhibit the 

particularly high potential activity rates either, which is consistent with this hypothesis. This may 

indicate there are tradeoffs, where individual denitrifiers might be either “high functioning” or 

physiologically tolerant to conditions that fluctuate between extreme states (desiccation to 

saturation). 

 

Final remarks 

 My work suggests that that increased drought followed by intense floods will influence 

denitrification function in wetlands. Climate change will likely exacerbate the existing struggle 

to restore wetlands of equivalent ecosystem services to those that were once delivered by 

wetlands. I did not observe a clear relationship between denitrifier community composition and 

functional stability, and this might be due to the high variability among wetland soil 

communities. Wetland communities varied in their ability to remain functional in the face of 

either prolonged drought or stress from fluctuating hydrology, but no single community or 

individual taxa stood out as the being the key to functional stability.  
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 There are at least two possible explanations for the lack of a consistent relationship 

between the denitrifier community and denitrifier function. One possibility is that there was a 

mismatch between the scale at which the community was studied and the scale at which rates 

were quantified. Microbial organisms located even millimeters from one another may never 

interact with each other. When composition and function are examined at such a tiny scale, 

patterns do emerge (Bailey et al. 2013), but the information gained from such studies may not be 

practical for restoration ecology. Another possibility is that the DNA-based methods used in this 

dissertation captured a large proportion of dead and dormant individuals that would not 

contribute to the observed denitrifier rates (Jones and Lennon 2010). This also might explain 

why individual microbial OTUs can be correlated to denitrifier function, but the overall 

community rarely shows a straightforward correlation.  

Future work should also investigate the presence of physiological traits that would allow 

some microbial communities to remain functional. For example, the presence or abundance of 

microbial taxa that produce extracellular polymeric substances (EPS) could extend protection 

from desiccation to the immediately surrounding community, regardless of whether the EPS 

producers are denitrifiers or non-denitrifiers. This type of research would not be easily conducted 

using molecular techniques. Like denitrification, the ability to produce EPS is found in 

phylogenetically diverse microbial taxa (Roberson and Firestone 1992, Dimopoulou et al. 2014, 

Pereira et al. 2015). However, the genetics that underlie EPS production are far more complex 

than those for denitrification, including multiple clusters of different polymorphic genes involved 

in a variety of biosynthetic pathways (Reeves et al. 1996, Schmid et al. 2015). There is no single 

diagnostic gene or set of diagnostic genes conserved across all of these taxa. Instead of using 

PCR assays to target an EPS “functional gene”, this would likely require the use of chemical 
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assays to quantify EPS production across different soil and sediment communities, and correlate 

EPS production to functional stability. Experimental approaches could then be used to determine 

if EPS production by a non-denitrifier contributes to functional stability of the denitrifier 

community. These experiments might involve inoculation of soil communities with two different 

variants of the same bacterial strain, where one produces EPS and the other cannot (Tamaru et al. 

2005). 

The most surprising result was that some restored wetlands are able to reach equivalent 

denitrification rates as those that they were intended to replicate. This is better news for 

restoration ecologists than was expected. However, outcomes of restoration for the microbial 

community are still highly variable and unpredictable. Further manipulative experiments may be 

informative in order to identify why some restoration efforts lead to high functioning and 

functionally stable communities. 
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APPENDIX A:  

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Supplementary tables 
 
Table A.1. Quantitative PCR assay performance values calculated for the standard curves. 
Standard curves included 12 technical replicates on each plate. Samples were analyzed across 
four separate reaction plates, so performance values were calculated separately for each reaction 
plate. Linear dynamic range and limit of detection were the same for each plate. Clade II nosZ 
was quantified using a single standard curve (with 12 technical replicates). Calculations are 
described in the MIQE guidelines (Bustin et al. 2009).  
qPCR Assay Efficiency Linear Dynamic Range Limit of 

Detection 
nirK 0.81 ± 0.02 5.67×103 # copies to 5.67×109 # copies 5.67×103 # copies 
nirS 0.94 ± 0.01 1.06×103 # copies to 1.06×109 # copies 1.06×103 # copies 
Clade I nosZ 1.00 ± 0.03 1.40×103 # copies to 1.08×107 # copies 1.40×103 # copies 
Clade II nosZ 0.63 7.85×102 # copies to 7.85×107 # copies 7.85×102 # copies 
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Table A.2. Wetland age, location, and characteristics. 
Site Type Age in 2012 Latitude Longitude Hydrology Excavated? 
A Restored 17 38.57 -90.13 Depressional Yes 
RefA Reference -- 38.57 -90.13 Depressional No 
B Restored 19 40.41 -90.95 Floodplain No 
RefB Reference -- 40.41 -90.95 Floodplain No 
C Restored 14 40.07 -90.30 Floodplain No 
RefC Reference -- 40.07 -90.30 Floodplain No 
D Restored 14 38.52 -89.63 Floodplain No 
RefD Reference -- 38.52 -89.63 Floodplain No 
E Restored 13 39.84 -89.65 Floodplain Yes 
RefE Reference -- 39.84 -89.65 Floodplain Yes 
F Restored 13 42.42 -90.40 Floodplain No 
RefF Reference -- 42.42 -90.40 Floodplain No 
G Restored 13 41.55 -90.18 Floodplain No 
RefG Reference -- 41.55 -90.18 Floodplain No 
H Restored 13 37.74 -88.69 Depressional Yes 
RefH Reference -- 37.74 -88.69 Depressional No 
I Restored 13 39.73 -91.35 Floodplain No 
RefI Reference -- 39.73 -91.35 Floodplain No 
J Restored 13 41.25 -90.59 Floodplain No 
RefJ Reference -- 41.25 -90.59 Floodplain No 
K Restored 12 42.46 -89.65 Depressional Yes 
RefK Reference -- 42.46 -89.65 Depressional No 
L Restored 11 39.88 -89.67 Floodplain No 
RefL Reference -- 39.88 -89.67 Floodplain No 
M Restored 10 38.01 -89.37 Floodplain No 
RefM Reference -- 38.01 -89.37 Floodplain No 
N Restored 10 37.79 -89.23 Floodplain No 
RefN Reference -- 37.79 -89.23 Floodplain No 
O Restored 7 42.33 -89.39 Floodplain Yes 
RefO Reference -- 42.33 -89.39 Floodplain No 
P Restored 19 42.01 -88.20 Depressional Yes 
Q Restored 16 41.84 -89.70 Depressional Yes 
R Restored 16 41.89 -89.41 Floodplain Yes 
S Restored 16 41.89 -89.41 Floodplain No 
T Restored 15 42.17 -87.97 Depressional Yes 
U Restored 15 41.57 -87.89 Depressional Yes 
V Restored 15 39.95 -88.27 Depressional No 
W Restored 14 38.44 -89.84 Depressional No 
X Restored 14 37.29 -89.51 Floodplain No 
Y Restored 13 40.44 -89.65 Floodplain No 
Z Restored 13 40.82 -91.07 Floodplain Yes 
AA Restored 12 42.46 -89.65 Floodplain No 
AB Restored 10 37.70 -89.22 Floodplain Yes 
AC Restored 10 39.76 -88.98 Depressional Yes 
AD Restored 8 37.26 -89.26 Floodplain No 
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Table. A.3. Vegetation variables included in regression 
Site 

%Perennial 
%Native 
Perennial %Native FQI 

Phalaris arundinacea 
(% cover) 

Plant Species 
Richness 

A 67.24 45.61 31.58 14.20 4.75 13 
RefA 87.50 81.25 75 11.88 0 5 
B 87.50 81.25 75 11.88 0 4 
RefB 84.21 73.21 67.86 19.34 0 15 
C 84.21 73.21 67.86 19.34 0 10 
RefC 66.15 63.08 63.08 18.46 0 4 
D 77.31 62.71 56.78 27.72 20.50 20 
RefD 89.29 81.82 78.18 23.10 0 21 
E 70.42 57.14 52.86 17.99 0 15 
RefE 85.71 74.29 60 15.04 0 13 
F 84.48 70.18 61.40 17.40 52.38 7 
RefF 79.31 63.79 60.34 18.24 47.50 17 
G 78.41 65.52 59.77 25.25 0 23 
RefG 75.41 67.21 60 19.97 0 7 
H 73.68 63.16 52.63 17.25 4.75 10 
RefH 91.07 80.36 71.43 21.78 0 9 
I 84.54 68.75 56.25 24.83 10.63 22 
RefI 81.67 76.67 70 21.57 2.63 15 
J 66.15 63.08 63.08 18.46 0 1 
RefJ 83.33 76.67 66.67 13.28 20.13 11 
K 89.29 81.82 78.18 23.10 8.5 15 
RefK 90 83.33 70 13.34 81.13 9 
L 90.12 70 50.63 19.62 0 28 
RefL 67.39 60 57.78 14.76 8.50 13 
M 64.06 57.14 55.56 15.95 -- -- 
RefM 85.42 78.72 72.34 19.90 0 15 
N 60.24 53.01 50.60 17.60 -- -- 
RefN 84.38 81.25 72.73 19.80 0 11 
O 85.71 74.29 60 15.04 0 18 
RefO 63.16 55.26 44.74 10.96 66.56 4 
P 79.31 63.79 60.34 18.24 17.00 7 
Q 75.41 67.21 60 19.97 70.00 3 
R 91.07 80.36 71.43 21.78 0 10 
S 81.67 76.67 70 21.57 1.88 19 
T 81.48 71.25 71.25 25.83 0.38 18 
U 83.33 76.67 66.67 13.28 20.13 4 
V 90 83.33 70 13.34 12.50 17 
W 77.27 59.09 53.03 17.00 56.88 9 
X 67.39 60 57.78 14.76 0 17 
Y 85.42 78.72 72.34 19.90 10.63 9 
Z 85.86 71.13 65.63 26.04 -- -- 
AA 62.5 52.78 43.66 17.00 -- -- 
AB 84.38 81.25 72.73 19.80 0 23 
AC 82.76 67.06 51.19 23.17 0 23 
AD 81.63 73.47 63.27 17.44 57.81 2 
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Table A.4 Wetland potential denitrification rates and soil chemistry. 
Site Pot. denitrification 

(ng N2O g-1 hr-1) 

Water content 
(w/w %) 

Soil pH 
(1:1 slurry) 

Total C 
(w/w %) 

Total N 
(w/w %) 

Ammonium 
(mg NH4

+ / g soil) 
Nitrate 

(mg NO3
- / g soil) 

Phosphate 
(mg PO4

- / g soil) 
2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

A 52.00 
(9.55) 

24.55 
(5.46) 

0.35 
(0.01) 

0.30 
(0.01) 

6.39 
(0.13) 

6.65 
(0.13) 

2.17 
(0.42) 

1.12 
(0.35) 

0.18 
(0.03) 

0.10 
(0.03) 

5.45 
(1.75) 

7.83 
(2.40) 

0.19 
(0.10) 

0.06 
(0.02) 

2.04 
(0.35) 

0.60 
(0.10) 

RefA 4.00 
(1.45) 

44.32 
(10.60) 

0.43 
(0.02) 

0.38 
(0.01) 

6.05 
(0.10) 

6.11 
(0.07) 

5.02 
(0.60) 

2.83 
(0.21) 

0.39 
(0.05) 

0.21 
(0.02) 

5.62 
(0.52) 

9.52 
(1.84) 

0.01 
(0.004) 

1.00 
(0.18) 

2.52 
(0.12) 

0.83 
(0.22) 

B 70.44 
(6.71) 

886.49 
(76.44) 

0.16 
(0.01) 

0.23 
(0.02) 

7.59 
(0.03) 

7.63 
(0.02) 

1.67 
(0.13) 

1.50 
(0.20) 

0.12 
(0.01) 

0.10 
(0.01) 

5.13 
(0.43) 

8.50 
(1.50) 

5.57 
(2.20) 

4.83 
(1.22) 

2.33 
(0.16) 

1.01 
(0.10) 

RefB 101.16 
(17.13) 

1255.87 
(66.89) 

0.20 
(0.004) 

0.23 
(0.002) 

7.31 
(0.06) 

7.42 
(0.07) 

2.02 
(0.13) 

1.94 
(0.19) 

0.17 
(0.01) 

0.13 
(0.01) 

6.81 
(1.39) 

5.69 
(0.90) 

7.71 
(1.47) 

8.19 
(1.23) 

3.45 
(0.64) 

1.19 
(0.09) 

C 26.61 
(4.72) 

445.98 
(33.53) 

0.14 
(0.005) 

0.26 
(0.004) 

7.86 
(0.03) 

7.95 
(0.01) 

1.71 
(0.16) 

1.84 
(0.07) 

0.11 
(0.01) 

0.10 
(0.01) 

3.84 
(0.28) 

7.47 
(0.73) 

1.49 
(0.38) 

0.66 
(0.26) 

2.46 
(0.25) 

1.02 
(0.07) 

RefC 94.91 
(5.94) 

702.76 
(101.64) 

0.16 
(0.004) 

0.30 
(0.01) 

7.69 
(0.03) 

7.80 
(0.06) 

2.63 
(0.20) 

2.40 
(0.22) 

0.18 
(0.01) 

0.15 
(0.02) 

6.69 
(0.57) 

10.65 
(1.53) 

4.19 
(1.34) 

2.31 
(1.44) 

1.85 
(0.09) 

1.06 
(0.05) 

D 20.29 
(0.76) 

60.75 
(7.11) 

0.15 
(0.003) 

0.29 
(0.01) 

5.88 
(0.07) 

6.15 
(0.07) 

1.95 
(0.12) 

1.78 
(0.25) 

0.17 
(0.01) 

0.15 
(0.02) 

25.62 
(19.62) 

8.37 
(1.68) 

3.26 
(1.39) 

0.61 
(0.27) 

1.55 
(0.31) 

0.36 
(0.09) 

RefD 26.24 
(2.14) 

87.44 
(17.47) 

0.17 
(0.01) 

0.32 
(0.01) 

5.86 
(0.05) 

5.86 
(0.05) 

2.70 
(0.12) 

2.99 
(0.36) 

0.22 
(0.01) 

0.23 
(0.02) 

9.99 
(1.25) 

11.39 
(2.84) 

4.36 
(0.86) 

0.43 
(0.08) 

1.62 
(0.05) 

0.21 
(0.10) 

E 57.41 
(14.52) 

798.28 
(224.83) 

0.10 
(0.002) 

0.23 
(0.01) 

8.10 
(0.05) 

8.08 
(0.04) 

2.78 
(0.13) 

2.66 
(0.11) 

0.13 
(0.02) 

0.10 
(0.01) 

2.70 
(0.53) 

4.52 
(1.17) 

0.22 
(0.07) 

0.79 
(0.33) 

1.70 
(0.33) 

0.74 
(0.12) 

RefE 137.99 
(11.66) 

1400.34 
(334.29) 

0.16 
(0.001) 

0.23 
(0.01) 

7.41 
(0.04) 

7.23 
(0.04) 

4.14 
(0.16) 

4.10 
(0.16) 

0.28 
(0.01) 

0.28 
(0.01) 

5.45 
(0.58) 

2.71 
(0.97) 

4.52 
(0.93) 

18.37 
(1.84) 

3.27 
(0.41) 

1.47 
(0.13) 

F 158.94 
(32.92) 

1098.04 
(172.18) 

0.32 
(0.02) 

0.38 
(0.01) 

7.49 
(0.03) 

7.67 
(0.03) 

3.13 
(0.18) 

2.75 
(0.11) 

0.23 
(0.01) 

0.20 
(0.01) 

6.02 
(1.97) 

11.23 
(1.48) 

20.57 
(8.47) 

0.70 
(0.21) 

2.11 
(0.11) 

0.94 
(0.22) 

RefF 89.05 
(9.81) 

1130.26 
(85.18) 

0.15 
(0.01) 

0.33 
(0.01) 

7.57 
(0.03) 

7.45 
(0.02) 

3.55 
(0.17) 

3.45 
(0.16) 

0.28 
(0.02) 

0.28 
(0.02) 

6.77 
(0.80) 

7.28 
(2.24) 

8.21 
(2.56) 

5.19 
(2.04) 

2.02 
(0.19) 

0.77 
(0.24) 

G 108.42 
(5.35) 

1683.23 
(67.66) 

0.22 
(0.01) 

0.26 
(0.01) 

7.89 
(0.04) 

7.72 
(0.02) 

4.53 
(0.10) 

4.74 
(0.08) 

0.30 
(0.01) 

0.31 
(0.01) 

7.82 
(1.10) 

9.48 
(1.76) 

16.82 
(3.76) 

36.24 
(5.79) 

11.53 
(1.55) 

3.76 
(0.29) 

RefG 108.44 
(7.90) 

1652.19 
(141.61) 

0.22 
(0.004) 

0.30 
(0.01) 

8.06 
(0.01) 

7.72 
(0.03) 

4.91 
(0.16) 

5.25 
(0.40) 

0.33 
(0.01) 

0.34 
(0.02) 

7.52 
(0.63) 

9.45 
(1.87) 

19.89 
(3.48) 

26.06 
(3.84) 

7.77 
(0.43) 

3.06 
(0.42) 

H 7.85 
(3.30) 

18.21 
(4.50) 

0.16 
(0.01) 

0.28 
(0.01) 

5.28 
(0.09) 

5.37 
(0.04) 

1.75 
(0.19) 

1.37 
(0.14) 

0.15 
(0.01) 

0.10 
(0.01) 

7.60 
(1.09) 

5.07 
(0.95) 

0.97 
(0.55) 

0.12 
(0.05) 

1.60 
(0.05) 

0.22 
(0.08) 

RefH 6.72 
(1.05) 

16.47 
(4.50) 

0.18 
(0.003) 

0.29 
(0.01) 

5.35 
(0.05) 

5.27 
(0.08) 

2.07 
(0.19) 

1.63 
(0.19) 

0.17 
(0.01) 

0.12 
(0.01) 

5.46 
(0.41) 

6.16 
(1.38) 

1.37 
(0.50) 

0.41 
(0.14) 

1.56 
(0.04) 

0.24 
(0.07) 

I 34.95 
(3.62) 

413.10 
(56.71) 

0.12 
(0.01) 

0.27 
(0.01) 

5.84 
(0.29) 

6.80 
(0.16) 

2.20 
(0.15) 

2.01 
(0.50) 

0.18 
(0.01) 

0.14 
(0.03) 

3.73 
(0.68) 

5.08 
(1.17) 

3.60 
(0.77) 

1.46 
(0.42) 

2.09 
(0.18) 

1.06 
(0.16) 

RefI 22.77 
(4.82) 

374.73 
(45.66) 

0.18 
(0.01) 

0.28 
(0.01) 

5.61 
(0.16) 

6.63 
(0.12) 

2.49 
(0.33) 

1.21 
(0.16) 

0.18 
(0.02) 

0.10 
(0.01) 

5.30 
(0.56) 

5.62 
(0.44) 

0.87 
(0.49) 

1.40 
(0.32) 

1.83 
(0.11) 

1.12 
(0.17) 

J 117.04 
(7.80) 

1597.29 
(28.31) 

0.24 
(0.002) 

0.33 
(0.004) 

7.30 
(0.11) 

7.33 
(0.10) 

3.97 
(0.25) 

3.21 
(0.13) 

0.30 
(0.01) 

0.25 
(0.01) 

6.97 
(0.54) 

13.70 
(3.10) 

4.77 
(0.96) 

0.75 
(0.66) 

2.34 
(0.13) 

1.01 
(0.16) 

RefJ 129.23 
(15.53) 

1172.05 
(70.98) 

0.27 
(0.02) 

0.24 
(0.003) 

7.15 
(0.13) 

7.10 
(0.08) 

3.34 
(0.18) 

2.85 
(0.07) 

0.26 
(0.01) 

0.24 
(0.01) 

8.52 
(2.68) 

5.12 
(0.75) 

11.82 
(5.42) 

10.39 
(0.91) 

4.87 
(2.08) 

0.85 
(0.13) 

K 91.03 
(22.75) 

689.85 
(102.84) 

0.30 
(0.02) 

0.32 
(0.01) 

7.38 
(0.15) 

7.47 
(0.06) 

2.82 
(0.21) 

1.73 
(0.29) 

0.23 
(0.02) 

0.13 
(0.02) 

3.96 
(0.44) 

6.92 
(2.29) 

34.86 
(12.04) 

1.11 
(0.88) 

2.96 
(0.40) 

1.10 
(0.18) 

RefK 182.46 
(12.85) 

1786.54 
(59.12) 

0.17 
(0.003) 

0.26 
(0.01) 

7.71 
(0.10) 

7.39 
(0.05) 

3.67 
(0.23) 

3.16 
(0.20) 

0.29 
(0.02) 

0.27 
(0.02) 

6.88 
(0.32) 

1.78 
(0.50) 

2.06 
(0.53) 

13.36 
(2.24) 

5.88 
(0.34) 

1.58 
(0.08) 
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 Table A.4 (continued) 
Site Pot. denitrification 

(ng N2O g-1 hr-1) 

Water content 
(w/w %) 

Soil pH 
(1:1 slurry) 

Total C 
(w/w %) 

Total N 
(w/w %) 

Ammonium 
(mg NH4

+ / g soil) 
Nitrate 

(mg NO3
- / g soil) 

Phosphate 
(mg PO4

- / g soil) 
2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

L 37.95 
(5.25) 

87.98 
(17.21) 

0.12 
(0.01) 

0.26 
(0.004) 

7.30 
(0.19) 

7.13 
(0.10) 

1.92 
(0.17) 

1.77 
(0.17) 

0.15 
(0.01) 

0.14 
(0.01) 

4.02 
(0.31) 

5.89 
(1.21) 

2.88 
(1.53) 

6.55 
(1.90) 

1.52 
(0.04) 

1.08 
(0.10) 

RefL 86.73 
(4.19) 

151.89 
(11.02) 

0.21 
(0.02) 

0.34 
(0.02) 

7.02 
(0.18) 

6.99 
(0.11) 

3.82 
(0.25) 

3.72 
(0.21) 

0.29 
(0.01) 

0.29 
(0.01) 

5.02 
(0.48) 

13.71 
(4.3) 

14.87 
(4.17) 

6.00 
(2.52) 

2.34 
(0.12) 

0.87 
(0.15) 

M 34.54 
(13.29) 

43.32 
(2.52) 

0.16 
(0.004) 

0.26 
(0.004) 

5.79 
(0.32) 

6.28 
(0.18) 

2.08 
(0.13) 

1.99 
(0.17) 

0.18 
(0.01) 

0.18 
(0.01) 

15.66 
(5.89) 

6.66 (1) 11.59 
(4.47) 

0.34 
(0.11) 

1.72 
(0.04) 

0.26 
(0.09) 

RefM 12.02 
(1.88) 

37.25 
(10.42) 

0.16 
(0.003) 

0.28 
(0.01) 

4.39 
(0.14) 

5.56 
(0.05) 

1.94 
(0.12) 

2.26 
(0.22) 

0.17 
(0.01) 

0.21 
(0.02) 

7.61 
(1.35) 

0.96 
(0.10) 

1.38 
(0.64) 

2.18 
(0.46) 

1.86 
(0.08) 

0.66 
(0.17) 

N 9.85 
(1.35) 

10.45 
(4.34) 

0.10 
(0.01) 

0.22 
(0.01) 

4.77 
(0.15) 

5.62 
(0.11) 

1.46 
(0.14) 

0.83 
(0.09) 

0.11 
(0.01) 

0.08 
(0.01) 

3.77 
(0.27) 

4.59 
(1.85) 

1.32 
(0.65) 

0.02 
(0.01) 

1.41 
(0.07) 

0.27 
(0.10) 

RefN 21.32 
(5.65) 

39.40 
(13.35) 

0.19 
(0.01) 

0.29 
(0.01) 

4.74 
(0.06) 

5.48 
(0.05) 

2.85 
(0.35) 

2.35 
(0.17) 

0.22 
(0.02) 

0.22 
(0.01) 

5.65 
(0.87) 

1.46 
(0.18) 

3.41 
(1.35) 

3.47 
(0.48) 

1.59 
(0.20) 

0.23 
(0.07) 

O 108.38 
(7.17) 

1062.47 
(85.69) 

0.21 
(0.004) 

0.26 
(0.01) 

7.15 
(0.20) 

7.16 
(0.11) 

2.85 
(0.30) 

2.23 
(0.13) 

0.22 
(0.01) 

0.20 
(0.01) 

4.93 
(0.59) 

10.34 
(5.51) 

10 
(2.38) 

3.52 
(1.77) 

2.66 
(0.29) 

1.03 
(0.10) 

RefO 135.33 
(14.68) 

1493.62 
(210.71) 

0.25 
(0.01) 

0.34 
(0.01) 

7.27 
(0.19) 

7.04 
(0.04) 

5.02 
(0.57) 

3.92 
(0.34) 

0.40 
(0.04) 

0.35 
(0.03) 

6.22 
(0.89) 

7.46 
(2.55) 

12.61 
(4.75) 

11.28 
(4.83) 

3.92 
(1.00) 

0.87 
(0.14) 

P 68.75 
(22.91) 

612.85 
(90.69) 

0.36 
(0.02) 

0.39 
(0.03) 

7.12 
(0.18) 

7.42 
(0.15) 

7.66 
(1.08) 

6.68 
(1.24) 

0.42 
(0.07) 

0.36 
(0.07) 

10.45 
(2.12) 

17.54 
(5.83) 

1.45 
(0.85) 

1.11 
(0.94) 

1.81 
(0.07) 

0.92 
(0.23) 

Q 213.32 
(51.94) 

999.41 
(118.19) 

0.35 
(0.05) 

0.29 
(0.02) 

6.93 
(0.09) 

7.19 
(0.09) 

4.32 
(0.27) 

2.82 
(0.31) 

0.35 
(0.02) 

0.22 
(0.03) 

11.87 
(1.96) 

6.61 
(1.81) 

1.69 
(0.71) 

3.15 
(1.90) 

3.00 
(0.58) 

1.41 
(0.40) 

R 105.12 
(18.46) 

1117.67 
(103.99) 

0.29 
(0.03) 

0.38 
(0.01) 

7.64 
(0.04) 

7.89 
(0.01) 

4.50 
(0.18) 

4.36 
(0.26) 

0.29 
(0.02) 

0.25 
(0.01) 

5.83 
(0.38) 

28.21 
(4.55) 

20.19 
(3.75) 

0.11 
(0.06) 

5.00 
(0.37) 

1.71 
(0.09) 

S 89.44 
(7.66) 

1473.62 
(267.56) 

0.15 
(0.01) 

0.33 
(0.03) 

7.75 
(0.03) 

7.73 
(0.02) 

5.13 
(0.29) 

5.18 
(0.50) 

0.34 
(0.03) 

0.31 
(0.04) 

7.34 
(0.81) 

12.21 
(1.94) 

20.52 
(3.05) 

12.01 
(2.24) 

6.49 
(0.67) 

3.47 
(0.26) 

T 54.97 
(16.23) 

762.56 
(190.99) 

0.22 
(0.03) 

0.32 
(0.02) 

7.40 
(0.07) 

7.29 
(0.12) 

4.63 
(0.21) 

4.33 
(0.33) 

0.34 
(0.03) 

0.33 
(0.03) 

7.81 
(1.65) 

5.40 
(1.51) 

3.60 
(0.81) 

7.51 
(3.82) 

2.04 
(0.62) 

1.08 
(0.10) 

U 139.71 
(49.42) 

1245.04 
(168.41) 

0.39 
(0.03) 

0.36 
(0.03) 

7.43 
(0.05) 

7.48 
(0.11) 

4.04 
(0.18) 

3.77 
(0.17) 

0.27 
(0.01) 

0.22 
(0.02) 

25.03 
(6.45) 

13.39 
(3.97) 

0.51 
(0.18) 

1.11 
(0.84) 

1.71 
(0.11) 

0.83 
(0.14) 

V 44.16 
(5.82) 

263.85 
(38.03) 

0.18 
(0.01) 

0.25 
(0.01) 

6.64 
(0.16) 

6.96 
(0.12) 

5.21 
(0.36) 

5.22 
(0.89) 

0.30 
(0.02) 

0.29 
(0.04) 

9.87 
(0.98) 

9.06 
(1.76) 

2.46 
(1.52) 

2.54 
(0.53) 

1.46 
(0.06) 

0.66 
(0.20) 

W 51.49 
(18.81) 

58.88 
(17.01) 

0.10 
(0.002) 

0.24 
(0.01) 

6.69 
(0.29) 

6.78 
(0.23) 

1.67 
(0.24) 

1.94 
(0.19) 

0.13 
(0.01) 

0.16 
(0.01) 

5.05 
(0.38) 

5.23 
(1.06) 

0.58 
(0.22) 

0.65 
(0.03) 

1.92 
(0.42) 

0.90 
(0.13) 

X 30.24 
(5.96) 

697.25 
(64.97) 

0.11 
(0.005) 

0.24 
(0.004) 

7.98 
(0.04) 

7.74 
(0.05) 

1.39 
(0.11) 

1.65 
(0.18) 

0.08 
(0.004) 

0.12 
(0.01) 

2.62 
(0.3) 

10.27 
(1.23) 

2.16 
(0.67) 

4.97 
(0.63) 

1.78 
(0.09) 

1.11 
(0.07) 

Y 79.98 
(16.55) 

432.80 
(129.31) 

0.17 
(0.02) 

0.24 
(0.01) 

7.98 
(0.02) 

7.99 
(0.04) 

2.60 
(0.20) 

2.60 
(0.31) 

0.10 
(0.02) 

0.12 
(0.03) 

9.15 
(4.81) 

1.24 
(0.34) 

4.95 
(1.05) 

1.61 
(0.28) 

2.92 
(0.30) 

0.86 
(0.05) 

Z 14.16 
(3.74) 

106.37 
(26.06) 

0.18 
(0.005) 

0.25 
(0.01) 

5.70 
(0.13) 

6.31 
(0.05) 

1.64 
(0.15) 

0.99 
(0.15) 

0.12 
(0.01) 

0.07 
(0.01) 

1.85 
(0.34) 

1.83 
(0.41) 

0.06 
(0.06) 

1.82 
(0.27) 

1.82 
(0.08) 

1.13 
(0.18) 

AA 146.77 
(27.22) 

4983.78 
(825.38) 

0.15 
(0.01) 

0.33 
(0.01) 

8.05 
(0.06) 

7.76 
(0.01) 

3.58 
(0.08) 

3.67 
(0.11) 

0.27 
(0.01) 

0.25 
(0.02) 

7.07 
(0.40) 

16.71 
(3.06) 

5.29 
(1.53) 

4.34 
(1.98) 

9.20 
(0.99) 

2.17 
(0.29) 

AB 43.59 
(4.81) 

235.07 
(34.37) 

0.14 
(0.01) 

0.24 
(0.01) 

7.93 
(0.09) 

7.59 
(0.07) 

1.50 
(0.13) 

1.54 
(0.16) 

0.11 
(0.01) 

0.11 
(0.01) 

4.99 
(0.48) 

1.05 
(0.15) 

1.11 
(0.62) 

1.30 
(0.3) 

7.53 
(6.00) 

0.29 
(0.06) 

AC 49.43 
(10.38) 

240.88 
(6.22) 

0.16 
(0.01) 

0.26 
(0.01) 

8.09 
(0.14) 

7.78 
(0.08) 

3.38 
(0.24) 

2.54 
(0.28) 

0.20 
(0.02) 

0.17 
(0.03) 

3.25 
(0.25) 

3.36 
(0.65) 

5.97 
(2.96) 

0.46 
(0.18) 

1.94 
(0.19) 

0.78 
(0.16) 

AD 30.58 
(2.58) 

143.38 
(42.3) 

0.13 
(0.01) 

0.24 
(0.02) 

6.11 
(0.54) 

6.20 
(0.35) 

1.98 
(0.14) 

1.63 
(0.24) 

0.15 
(0.01) 

0.13 
(0.01) 

5.12 
(0.63) 

4.32 
(1.58) 

5.79 
(2.56) 

0.18 
(0.16) 

4.50 
(2.97) 

0.50 
(0.10) 
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Table A.5. Abundance of microbial denitrifier functional groups in each wetland. 

Site 103 nirK gene 
copies / ng DNA 

103 nirS gene 
copies / ng DNA 

103 Clade I nosZ gene 
copies / ng DNA 

103 Clade II nosZ gene 
copies / ng DNA 

log(nirK:nirS) log(Clade I nosZ: 
Clade II nosZ) 

log(total nir:  
total nos) 

2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 
A 59.97 

(6.29) 
80.74 
(8.95) 

90.83 
(9.70) 

77.74 
(19.13) 

0.69 
(0.09) 

0.46 
(0.08) 

1.55 
(0.53) 

12.61 
(3.61) 

-0.41 
(0.12) 

0.10 
(0.27) 

-0.64 
(0.24) 

-3.17 
(0.53) 

4.31 
(0.27) 

2.63 
(0.46) 

RefA 37.44 
(3.78) 

35.24 
(10.04) 

37.13 
(1.81) 

32.04 
(6.84) 

0.51 
(0.07) 

0.59 
(0.13) 

4.36 
(3.26) 

1.80 
(0.38) 

-0.003 
(0.15) 

0.02 
(0.22) 

-1.40 
(0.60) 

-1.13 
(0.26) 

3.32 
(0.58) 

3.28 
(0.23) 

B 160.48 
(24.94) 

87.33 
(4.50) 

327.61 
(39.63) 

145.07 
(16.78) 

1.04 
(0.04) 

0.76 
(0.05) 

15.30 
(11.82) 

1.06 
(0.14) 

-0.73 
(0.21) 

-0.49 
(0.16) 

-1.87 
(0.67) 

-0.31 
(0.08) 

4.07 
(0.61) 

4.86 
(0.15) 

RefB 115.73 
(18.39) 

216.98 
(43.14) 

119.58 
(33.27) 

150.06 
(37.21) 

0.48 
(0.06) 

1.19 
(0.26) 

6.07 
(1.80) 

2.47 
(0.74) 

0.01 
(0.23) 

0.40 
(0.11) 

-2.28 
(0.50) 

-0.57 
(0.22) 

3.74 
(0.32) 

4.71 
(0.17) 

C 99.92 
(32) 

67.16 
(13.93) 

219.83 
(31.83) 

167.99 
(28.10) 

0.91 
(0.21) 

1.00 
(0.19) 

2.02 
(1.57) 

1.92 
(0.77) 

-0.88 
(0.16) 

-0.93 
(0.14) 

0.00 
(0.51) 

-0.31 
(0.52) 

5.09 
(0.33) 

4.51 
(0.19) 

RefC 76.30 
(7.50) 

76.92 
(16.17) 

200.81 
(44.94) 

131.05 
(25.42) 

0.71 
(0.07) 

0.82 
(0.07) 

2.21 
(0.91) 

1.81 
(0.64) 

-0.88 
(0.31) 

-0.54 
(0.04) 

-0.87 
(0.46) 

-0.63 
(0.30) 

4.65 
(0.45) 

4.41 
(0.28) 

D 120.50 
(26.09) 

107.83 
(10.80) 

81.57 
(7.69) 

85.96 
(3.75) 

1.08 
(0.12) 

0.81 
(0.11) 

3.36 
(1.52) 

3.13 
(1.16) 

0.34 
(0.16) 

0.21 
(0.10) 

-0.73 
(0.49) 

-1.20 
(0.21) 

4.02 
(0.30) 

4.02 
(0.25) 

RefD 190.85 
(40.34) 

100.36 
(19.81) 

99.96 
(11.31) 

54.40 
(13.51) 

0.96 
(0.16) 

0.67 
(0.11) 

6.96 
(2.82) 

2.59 
(0.88) 

0.58 
(0.15) 

0.65 
(0.16) 

-1.51 
(0.60) 

-1.19 
(0.29) 

3.90 
(0.36) 

3.94 
(0.16) 

E 82.94 
(9.02) 

77.64 
(9.24) 

146.13 
(15.73) 

178.35 
(29.60) 

1.00 
(0.10) 

1.34 
(0.13) 

0.89 
(0.06) 

1.55 
(0.14) 

-0.57 
(0.07) 

-0.82 
(0.07) 

0.11 
(0.07) 

-0.14 
(0.14) 

4.80 
(0.06) 

4.46 
(0.12) 

RefE 227.68 
(26.54) 

156.33 
(18.56) 

82.21 
(3.85) 

107.46 
(7.41) 

0.58 
(0.03) 

0.64 
(0.12) 

9.91 
(2.62) 

1.63 
(0.42) 

1.00 
(0.13) 

0.36 
(0.07) 

-2.74 
(0.23) 

-0.89 
(0.31) 

3.47 
(0.17) 

4.79 
(0.21) 

F 65.34 
(7.71) 

111.25 
(26.98) 

296.94 
(81.97) 

366.43 
(68.07) 

0.45 
(0.04) 

1.22 
(0.31) 

2.72 
(0.53) 

7.46 
(2.27) 

-1.42 
(0.16) 

-1.22 
(0.14) 

-1.76 
(0.15) 

-1.74 
(0.19) 

4.70 
(0.13) 

4.09 
(0.14) 

RefF 93.53 
(28.89) 

81.46 
(16.36) 

172.11 
(56.67) 

145.47 
(31.42) 

0.66 
(0.10) 

0.81 
(0.07) 

3.12 
(0.99) 

2.82 
(0.44) 

-0.53 
(0.12) 

-0.56 
(0.15) 

-1.48 
(0.26) 

-1.21 
(0.16) 

4.13 
(0.31) 

4.10 
(0.13) 

G 128.11 
(40.55) 

125.34 
(22.14) 

270.83 
(72.20) 

216.54 
(20.66) 

1.01 
(0.17) 

0.83 
(0.10) 

9.65 
(4.83) 

2.60 
(0.40) 

-0.72 
(0.17) 

-0.57 
(0.09) 

-1.82 
(0.50) 

-1.12 
(0.08) 

3.84 
(0.35) 

4.62 
(0.18) 

RefG 190 
(36.58) 

180.22 
(15.86) 

385.98 
(72.98) 

326.84 
(49.46) 

1.81 
(0.24) 

0.87 
(0.11) 

12.27 
(3.22) 

3.54 
(1.01) 

-0.70 
(0.09) 

-0.57 
(0.13) 

-1.81 
(0.45) 

-1.28 
(0.21) 

3.72 
(0.44) 

4.84 
(0.21) 

H 79.19 
(18.45) 

38.33 
(26.45) 

20.14 
(10.98) 

16.10 
(5.16) 

0.27 
(0.07) 

0.39 
(0.06) 

3.07 
(0.72) 

1.73 
(0.44) 

1.78 
(0.35) 

0.39 
(0.34) 

-2.44 
(0.05) 

-1.40 
(0.27) 

3.34 
(0.29) 

2.84 
(0.74) 

RefH 62.46 
(7.35) 

24.66 
(7.92) 

27.46 
(7.59) 

16.92 
(6.53) 

0.51 
(0.05) 

0.33 
(0.06) 

5.82 
(1.56) 

0.80 
(0.20) 

0.92 
(0.18) 

0.42 
(0.11) 

-2.34 
(0.20) 

-0.84 
(0.10) 

2.70 
(0.10) 

3.54 
(0.13) 

I 91.01 
(30.81) 

47.99 
(19.56) 

34.77 
(8.27) 

32.78 
(8.48) 

0.83 
(0.14) 

0.60 
(0.13) 

5.20 
(1.47) 

2.91 
(0.86) 

0.82 
(0.25) 

0.17 
(0.41) 

-1.72 
(0.31) 

-1.58 
(0.28) 

2.99 
(0.56) 

3.04 
(0.21) 

RefI 139.13 
(22.99) 

48.55 
(9.85) 

59.97 
(12.25) 

35.13 
(5.00) 

0.96 
(0.22) 

0.32 
(0.04) 

8.84 
(2.14) 

2.48 
(0.29) 

0.88 
(0.17) 

0.30 
(0.11) 

-2.18 
(0.14) 

-2.05 
(0.22) 

3.09 
(0.13) 

3.37 
(0.24) 

J 130.98 
(40.10) 

39.17 
(11.61) 

94.42 
(33.82) 

51.79 
(10.41) 

0.94 
(0.11) 

0.37 
(0.09) 

6.12 
(1.89) 

1.00 
(0.43) 

0.48 
(0.16) 

-0.46 
(0.26) 

-1.64 
(0.36) 

-0.69 
(0.48) 

3.35 
(0.74) 

4.33 
(0.19) 

RefJ 138.94 
(25.43) 

49.34 
(12.86) 

87.78 
(22.52) 

48.77 
(16.12) 

0.91 
(0.05) 

0.34 
(0.09) 

5.87 
(1.26) 

0.35 
(0.09) 

0.52 
(0.17) 

0.11 
(0.22) 

-1.79 
(0.26) 

-0.005 
(0.28) 

3.49 
(0.09) 

4.90 
(0.20) 

K 69.23 
(33.21) 

64.77 
(23.82) 

124.22 
(26.74) 

94.45 
(30.08) 

0.69 
(0.19) 

0.77 
(0.07) 

3.32 
(2.01) 

2.60 
(0.78) 

-0.79 
(0.40) 

-0.38 
(0.22) 

-1.14 
(0.49) 

-1.02 
(0.47) 

4.17 
(0.45) 

3.79 
(0.28) 

RefK 189.87 
(10.26) 

33.31 
(9.98) 

128.97 
(15.15) 

57.51 
(13.70) 

1.08 
(0.27) 

0.30 
(0.04) 

15.96 
(9.31) 

2.06 
(0.26) 

0.40 
(0.17) 

-0.60 
(0.24) 

-2.13 
(0.79) 

-1.92 
(0.22) 

3.43 
(0.64) 

3.57 
(0.31) 
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Table A.5 (continued) 

Site 103 nirK gene 
copies / ng DNA 

103 nirS gene copies 
/ ng DNA 

103 Clade I nosZ gene 
copies / ng DNA 

103 Clade II nosZ gene 
copies / ng DNA 

log(nirK:nirS) log(Clade I nosZ: 
Clade II nosZ) 

log(total nir:   
total nos) 

2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 
L 77.81 

(8.34) 
38.91 

(12.13) 
45.20 
(7.56) 

122.04 
(22.92) 

0.80 
(0.12) 

1.03 
(0.28) 

1.63 
(0.76) 

1.02 
(0.33) 

0.57 
(0.20) 

-1.20 
(0.33) 

-0.31 
(0.72) 

0.29 
(0.46) 

4.03 
(0.26) 

4.47 
(0.17) 

RefL 194.51 
(52.08) 

23.16 
(8.79) 

205.48 
(54.10) 

101.42 
(48.96) 

1.47 
(0.35) 

0.57 
(0.14) 

26.44 
(9.11) 

1.34 
(0.62) 

-0.03 
(0.23) 

-1.11 
(0.31) 

-2.69 
(0.37) 

-0.05 
(0.77) 

2.78 
(0.26) 

3.87 
(0.31) 

M 143.73 
(30.89) 

50.85 
(14.60) 

89.99 
(28.77) 

42.22 
(14.03) 

1.10 
(0.14) 

0.79 
(0.16) 

6.04 
(2.35) 

1.86 
(0.74) 

0.57 
(0.13) 

0.23 
(0.11) 

-1.26 
(0.63) 

-0.65 
(0.40) 

3.65 
(0.22) 

3.54 
(0.35) 

RefM 87.20 
(7.42) 

53.06 
(12.32) 

26.57 
(6.94) 

50.89 
(10.21) 

0.68 
(0.09) 

0.62 
(0.09) 

1.82 
(0.53) 

1.72 
(0.29) 

1.29 
(0.26) 

0.02 
(0.26) 

-0.88 
(0.36) 

-1.01 
(0.15) 

3.86 
(0.17) 

3.77 
(0.09) 

N 200.81 
(17.82) 

28.33 
(5.61) 

101.49 
(16.91) 

40.49 
(13.59) 

2.11 
(0.17) 

0.69 
(0.02) 

7.66 
(1.48) 

1.39 
(0.52) 

0.72 
(0.26) 

-0.28 
(0.18) 

-1.24 
(0.17) 

-0.29 
(0.65) 

3.47 
(0.16) 

3.52 
(0.23) 

RefN 154.27 
(19.67) 

56.64 
(22.03) 

48.98 
(2.10) 

58.23 
(20.28) 

0.49 
(0.10) 

0.29 
(0.07) 

8.00 
(0.51) 

2.65 
(1.30) 

1.13 
(0.10) 

-0.11 
(0.11) 

-2.85 
(0.15) 

-1.68 
(0.49) 

3.17 
(0.14) 

3.42 
(0.65) 

O 309.15 
(20.60) 

55.85 
(16.43) 

183.92 
(12.80) 

75.21 
(24.39) 

1.38 
(0.16) 

0.80 
(0.15) 

13.25 
(1.53) 

2.70 
(1.31) 

0.52 
(0.09) 

-0.25 
(0.08) 

-2.26 
(0.21) 

-0.51 
(0.74) 

3.53 
(0.14) 

3.82 
(0.36) 

RefO 310.97 
(109.32) 

73.37 
(3.73) 

216.82 
(76.22) 

114.07 
(69.93) 

1.75 
(0.27) 

0.65 
(0.19) 

13.42 
(3.14) 

2.25 
(0.98) 

0.25 
(0.43) 

0.66 
(1.17) 

-1.99 
(0.10) 

-0.20 
(1.11) 

3.42 
(0.39) 

4.51 
(0.51) 

P 56.35 
(29.92) 

12.11 
(2.27) 

150.97 
(93.20) 

28.55 
(13.31) 

0.80 
(0.25) 

0.59 
(0.24) 

2.04 
(1.04) 

9.22 
(4.72) 

-0.57 
(0.55) 

0.19 
(1.33) 

-0.30 
(0.54) 

-2.16 
(0.58) 

4.04 
(0.20) 

1.99 
(0.67) 

Q 154.51 
(14.76) 

61.94 
(12.64) 

171.72 
(71.41) 

74.21 
(15.58) 

0.77 
(0.18) 

0.63 
(0.14) 

4.94 
(0.41) 

1.36 
(0.39) 

0.22 
(0.58) 

-0.18 
(0.25) 

-1.94 
(0.18) 

-0.69 
(0.46) 

4.01 
(0.13) 

4.23 
(0.22) 

R 98.41 
(10.09) 

112.02 
(29.27) 

510.96 
(77.91) 

539.77 
(82.82) 

1.14 
(0.07) 

1.47 
(0.19) 

6.53 
(1.40) 

4.14 
(1.36) 

-1.62 
(0.18) 

-1.69 
(0.24) 

-1.67 
(0.25) 

-0.87 
(0.26) 

4.40 
(0.13) 

4.84 
(0.26) 

S 150.32 
(24.26) 

105.84 
(31.07) 

263.57 
(58.35) 

351.45 
(134.47) 

0.90 
(0.16) 

0.92 
(0.21) 

2.78 
(0.77) 

1.42 
(0.72) 

-0.50 
(0.13) 

-1.07 
(0.26) 

-1.04 
(0.14) 

-0.11 
(0.34) 

4.75 
(0.11) 

5.30 
(0.07) 

T 199.02 
(70.77) 

112.76 
(8.94) 

115.81 
(38.27) 

84.73 
(27.15) 

0.52 
(0.20) 

0.33 
(0.04) 

4.48 
(1.72) 

1.27 
(0.20) 

0.15 
(0.39) 

0.60 
(0.55) 

-1.92 
(0.28) 

-1.35 
(0.19) 

4.09 
(0.11) 

4.80 
(0.10) 

U 75.25 
(36.58) 

89.74 
(52.76) 

178.93 
(90.03) 

92.40 
(32.80) 

0.62 
(0.29) 

0.49 
(0.11) 

4.70 
(3.54) 

4.66 
(0.48) 

-0.80 
(0.17) 

-0.21 
(0.57) 

-1.51 
(0.41) 

-2.29 
(0.17) 

4.06 
(0.35) 

3.27 
(0.45) 

V 154.25 
(14.62) 

111.24 
(23.20) 

66.63 
(10.12) 

82.50 
(46.54) 

0.82 
(0.14) 

0.55 
(0.15) 

3.12 
(1.05) 

3.10 
(1.32) 

0.86 
(0.12) 

0.67 
(0.38) 

-1.14 
(0.30) 

-1.25 
(0.60) 

4.19 
(0.29) 

4.16 
(0.26) 

W 159.48 
(11.25) 

123.48 
(34.06) 

69.84 
(12.24) 

60.64 
(27.84) 

0.50 
(0.04) 

0.49 
(0.08) 

4.76 
(1.06) 

4.75 
(2.01) 

0.87 
(0.19) 

0.86 
(0.23) 

-2.18 
(0.18) 

-2.01 
(0.48) 

3.82 
(0.12) 

3.58 
(0.33) 

X 129.42 
(33.11) 

212.58 
(30.35) 

378.72 
(112.29) 

444.29 
(62.79) 

1.58 
(0.50) 

2.68 
(0.25) 

4.24 
(2.16) 

7.19 
(1.10) 

-1.07 
(0.17) 

-0.73 
(0.15) 

-0.49 
(0.40) 

-0.96 
(0.19) 

4.82 
(0.40) 

4.19 
(0.09) 

Y 99.82 
(27.15) 

161.83 
(42.37) 

194.66 
(28.66) 

206.98 
(43.08) 

0.64 
(0.09) 

1.14 
(0.21) 

3.62 
(1.34) 

2.89 
(0.44) 

-0.79 
(0.24) 

-0.30 
(0.09) 

-1.59 
(0.28) 

-0.95 
(0.26) 

4.31 
(0.24) 

4.44 
(0.27) 

Z 79.62 
(11.89) 

36.18 
(9.25) 

55.17 
(30.59) 

34.01 
(12.41) 

0.67 
(0.24) 

0.30 
(0.08) 

22.08 
(15.23) 

3.28 
(1.94) 

0.73 
(0.37) 

0.32 
(0.32) 

-2.17 
(1.36) 

-1.66 
(0.85) 

2.90 
(0.89) 

3.35 
(0.41) 

AA 170.24 
(60.79) 

115.74 
(10.91) 

117.11 
(47.30) 

602.33 
(44.99) 

0.50 
(0.14) 

1.63 
(0.33) 

5.85 
(3.13) 

3.27 
(1.20) 

0.51 
(0.18) 

-1.65 
(0.05) 

-2.18 
(0.36) 

-0.49 
(0.50) 

3.90 
(0.21) 

5.09 
(0.25) 

AB 136.79 
(30.90) 

71.76 
(22.54) 

143.33 
(26.89) 

106.47 
(37.14) 

0.65 
(0.10) 

0.48 
(0.06) 

11.36 
(6.01) 

2.20 
(0.44) 

-0.08 
(0.12) 

-0.46 
(0.24) 

-2.51 
(0.59) 

-1.49 
(0.17) 

3.44 
(0.57) 

3.92 
(0.55) 

AC 181.13 
(25.84) 

62.65 
(26.01) 

129.07 
(49.04) 

85.89 
(28.24) 

1.46 
(0.40) 

0.97 
(0.22) 

3.97 
(0.93) 

2.74 
(0.79) 

0.54 
(0.26) 

-0.41 
(0.46) 

-0.98 
(0.34) 

-1.00 
(0.42) 

4.06 
(0.11) 

3.62 
(0.26) 

AD 175.00 
(44.94) 

60.36 
(15.59) 

69.62 
(14.89) 

57.70 
(14.71) 

1.16 
(0.21) 

0.83 
(0.16) 

3.99 
(1.49) 

42.48 
(40.70) 

0.92 
(0.23) 

0.06 
(0.07) 

-0.95 
(0.54) 

-1.95 
(1.39) 

3.94 
(0.16) 

2.60 
(1.36) 
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Supplementary figures 
 

 
 
Figure A.1. Quantitative PCR assay precision shown as the standard error of the mean for each Cq 
value in the standard curve (between 12 technical replicates). Separate lines are shown for each 
reaction plate. 
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Figure A.2. Denitrification gene copy numbers. The bars represent overall means calculated from n = 
15 reference wetlands and n = 30 restored wetlands. Errors bars show standard error of the mean. 
Lower case letters show significant groupings (p < 0.05). 
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Figure A.3. Principle coordinate analysis (PCoA) ordination plot of the plant community in each 
wetland. Individual plant species were correlated to the ordination using the ‘envfit’ function and 
only plant species that significantly correlated to the ordination (p < 0.05) are shown in blue. A 
separate envfit model including the average denitrification potential of each wetland in 2013 revealed 
a significant correlation to the ordination (p < 0.05) and is also shown as a thick blue arrow. 
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APPENDIX B: 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Supplementary methods 

Determination of soil C and N 

 Soil samples collected in 2007, 2012, 2013, and 2015 were air-dried and sieved to 2 mm. 

Total organic carbon and nitrogen were determined using combustion analysis (ECS 4010, 

COSTECH Analytical Instruments, Valencia, CA, USA). 
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Supplementary table 
 
Table B.1. Quantitative PCR assay performance values calculated for the standard curves. Standard 
curves included 12 technical replicates on each plate. Samples were analyzed across five  separate 
reaction plates, so performance values were calculated separately for each reaction plate. Linear 
dynamic range and limit of detection were the same for each plate. Clade II nosZ was quantified 
using a single standard curve (with 12 technical replicates). Calculations are described in the MIQE 
guidelines (Bustin et al. 2009).  

qPCR Assay Efficiency Linear Dynamic Range Limit of Detection 
nirK 0.81 ± 0.02 5.67×103 # copies to 5.67×109 # copies 5.67×103 # copies 
nirS 0.90 ± 0.04 1.06×104 # copies to 1.06×109 # copies 1.06×104 # copies 
Clade I nosZ 1.00 ± 0.02 1.40×103 # copies to 1.08×107 # copies 1.40×103 # copies 
Clade II nosZ 0.63 7.85×102 # copies to 7.85×107 # copies 7.85×102 # copies 
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Supplementary figures 
 

 
 
Figure B.1. Quantitative PCR assay precision shown as the standard error of the mean for each Cq 
value in the standard curve (between 12 technical replicates). Separate lines are shown for each 
reaction plate. 
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Figure B.2. Bray-Curtis distance between the reference wetland community over time and the initial 
reference wetland community observed in 2007 for (A) the overall community based on the 16S 
rRNA gene, (B) the N2O producing denitrifiers based on nirK and nirS gene sequences, and (C) the 
N2O consuming denitrifiers based on Clade I nosZ gene sequences. Symbols correspond to wetland 
pair, and shading indicates year, where the lightest color is from 2007 and the darkest represent data 
collected in 2015. Error bars show standard error of the mean. 
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Figure B.3. Negative linear regression between the proportion of incomplete denitrification that 
occurred during potential rate assays and the Clade I nosZ gene copy number. This plot shows data 
generated in 2015. The error bars represent the standard error of the mean.  
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Figure B.4. Average soil chemistry variables in each wetland over time. Error bars show standard 
error of the mean.  
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APPENDIX C: 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

Supplementary results 

Changes in soil properties following hydrologic manipulation 

Soil moisture was influenced strongly by the hydrologic treatments (ANOVA, Treatment: F = 

886.9, df = 3, p < 0.001; Fig. C.2A). Regardless of initial moisture levels, the Dry treatment resulted 

in low moisture (<10% w/w), while the Variable and Saturated treatments resulted in high moisture 

levels (25% - 50% w/w). Extractable NH4+ was also significantly affected by treatment (ANOVA, 

Treatment: F = 209.83, df = 3, p < 0.001). Extractable NH4+ concentration increased in the Dry and 

Variable source soils following the Saturated treatment (Fig. C.2C). Extractable NOx was affected by 

treatment (ANOVA, Treatment: F = 9.065, df = 3, p < 0.001). NOx typically decreased following 

both the Variable and Saturated treatments (Fig. C.2D). One exception is that the NOx in the soil 

from the Saturated site increased following the Variable treatment. Soil pH was significantly affected 

by treatment (ANOVA, Treatment: F = 39.71, df = 3, p < 0.001). There was an increase in pH 

observed in the soils collected from the Dry site following the Variable and Saturated Treatments 

(Fig. C.2B). Total C, total N, and the C:N ratio remained unaltered by the experiment (Fig. C.2E-

C.2G), except for a non-significant decrease in total N from the Saturated source soils following the 

Saturated treatment, which caused a non-significant increase in the C:N ratio. 

 
  



 202 

Supplementary tables 

Table C.1. Quantitative PCR assay performance values calculated for the standard curves for each of 
the four qPCR assays reported in this study. Calculations are described in the MIQE guidelines 
(Bustin et al. 2009).  

qPCR Assay Efficiency Linear Dynamic Range Limit of Detection 
Archaeal amoA 84.88% 6.86×102 # copies to 6.86×107 # copies 6.86×102 # copies 
Bacterial amoA 89.02% 7.45×102 # copies to 7.45×107 # copies 7.45×102 # copies 
nirK 85.47% 3.20×101 # copies to 5.00×105 # copies 3.20×101 # copies 
nirS 86.27% 8.00×102 # copies to 1.00×105 # copies 8.00×102 # copies 
 
 
Table C.2. Quantitative PCR assay precision calculated as the standard error of the mean for each 
standard curve Cq value for all four of the qPCR assays reported in this study. “Standard 1” had the 
lowest number of copies while “Standard 6” had the highest number of copies 

qPCR Assay Precision 
Standard 1 
mean Cq ± 

SEM 

Standard 2 
mean Cq ± 

SEM 

Standard 3 
mean Cq ± 

SEM 

Standard 4 
mean Cq ± 

SEM 

Standard 5 
mean Cq ± 

SEM 

Standard 6 
mean Cq ± 

SEM 
Archaeal amoA 25.09 ± 

0.19 
22.03 ± 

0.22  
18.4 ± 
0.08  

14.81 ± 
0.07  

11.5 ± 
0.12  

6.82 ± 
0.17  

Bacterial amoA 26.76 ± 
0.10  

23.04 ± 
0.04  

19.56 ± 
0.05  

15.94 ± 
0.06  

12.65 ± 
0.11  

7.39 ± 
0.07  

nirK 17.83 ± 
0.08  

16.51 ± 
0.04  

13.47 ± 
0.04  

10.5 ± 
0.04  

7.59 ± 
0.01  

5.97 ± 
0.01  

nirS 16.44 ± 
0.09  

14.75 ± 
0.04  

11.93 ± 
0.04  

9.76 ± 
0.02  

6.25 ± 
0.03  -- 

 
  



 203 

Supplementary figures 
 

 
Figure C.1. Average flood patterns observed at the La Grange mitigation wetland. Approximate 
sampling locations for each of the three source communities are indicated in text. Figure was adapted 
from heatmap provided by G. Pociask, ISGS. 
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Figure C.2. Changes in soil properties before and after the experiment. Each panel shows a separate 
soil property, where each of the three source soils is shown on a separate graph. The individual sites 
are arranged by column within the panels, where the first column shows data from the Dry source 
soil, the middle column shows data from the Variable source soil, and the column on the right shows 
data from the Saturated source soil. Lower case letters indicate significant groupings (p < 0.05), 
except for instances where there were no significant differences detected between treatments. Error 
bars represent the standard error of the mean. 
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Figure C.3. Change in richness in (A) the overall microbial community based on 16S rRNA 
sequences, (B) the nitrifier community, and (C) the denitrifier community. Significant differences 
following treatments are indicated by lower case letters. Error bars show standard error of the mean.  
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Figure C.4. Relative abundance of microbial taxa (based on 16S rRNA sequences) in the Source 1 
soil community before the experiment (hatched bars) and following each treatment (white: dry, grey: 
variable, black: saturated). The top 20 OTUs shown were determined to explain 25.6% of the change 
in the community between the initial and saturated treatment using the ‘simper’ function in R. 
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Figure C.5. Relative abundance of microbial taxa (based on 16S rRNA sequences) in the Source 3 
soil community before the experiment (hatched bars) and following each treatment (white: dry, grey: 
variable, black: saturated). The top 20 OTUs shown were determined to explain 13% of the change in 
the community between the initial and following any of the treatments using the ‘simper’ function in 
R. 
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Figure C.6. Relative abundance of microbial taxa (based on 16S rRNA sequences) in the Source 2 
soil community before the experiment (hatched bars) and following each treatment (white: dry, grey: 
variable, black: saturated). The top 20 OTUs shown were determined to explain 19.9% of the change 
in the community between the initial and following any of the treatments using the ‘simper’ function 
in R. 
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Figure C.7. Relative abundance of nitrifier and denitrifier OTUs identified to be “high functioning” 
by using the ‘rda’ function in R to calculate their loading along a constrained function axis in a 
redundancy analysis (RDA). These OTUs ranked in the top 10% of along their respective 
constrained axis (nitrification rate for the nitrifier OTU and denitrification rate for the denitrifier 
OTU). All three OTUs correlated positively with the respective functional rates when checked using 
linear regression. No significant differences in relative abundance were observed among treatments. 
Error bars show standard error of the mean. 
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APPENDIX D: 

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

Supplementary figures 

 
Figure D.1. Principal component analysis (PCA) ordination showing the historical hydrologic 
differences among 23 wetlands.  The wetlands that were not selected for this study are shown as 
dark grey circles. The eight wetlands selected for this study are indicated with the same symbol 
shapes and letter-number combinations as used in the map in Fig. 1, and they are circled and labeled 
in bold text with the hydrologic group that they were assigned to. The flood variables used to build 
the PCA are shown in red. “CV” stands for coefficient of variability, and it was used as a means to 
measure variability from year to year.  
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Figure D.2. Number of core taxa shared among each of the source wetland communities in each 
hydrologic group, including (a) the overall microbial community, (b) the nitrite reducing denitrifier 
community, and (c) the nitrous oxide reducing community. The overlapping region in the center of 
each diagram is defined as the “shared core microbiome” for each hydrologic group. 
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Figure D.3. Relative abundance of indicator microbial taxa identified for (A) frequent flood, (B) 
both frequent flood and high interannual variability, (C) high interannual variability, (D) high 
interannual variability and long flood (E) long flood, and (F) frequent flood and long flood wetland 
communities. 
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Figure D.4. Relative abundance of indicator nitrite reducing denitrifier taxa identified for (A) 
frequent flood, (B) both frequent flood and high interannual variability, (C) high interannual 
variability, (D) high interannual variability and long flood (E) long flood, and (F) frequent flood and 
long flood wetland communities. 

F1 F2 F3
Wetland designation

0.00

0.02

0.04

0.06

Mean relative
abundance

L1 L2V1 V2 V3

M
ic

ro
bi

al
 in

di
ca

to
r O

TU
s, 

ta
xo

no
m

ic
 d

es
ig

na
tio

n

Rhizobium sp.
unclassified nirS denitrifier
unclassified nirK denitrifier

Arenimonas donghaensis
unclassified nirK denitrifier

Halomonas sp.
Alicycliphilus sp.

Dechlorospirillum sp.
unclassified nirS denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier
unclassified nirK denitrifier
unclassified nirS denitrifierA

Agrobacterium tumefaciens
Brachymonas denitrificans

Polymorphum gilvum
unclassified nirS denitrifier

Ochrobactrum anthropi
unclassified nirS denitrifier

Nitrosomonas sp.
Polymorphum gilvumB

Ensifer sp.
Alcaligenes sp.
Curvibacter sp.

unclassified nirS denitrifierF

Rhizobium sp.
Sinorhizobium meliloti

Rhodobacter sphaeroides
Curvibacter sp.

Brachymonas denitrificans
Polymorphum gilvum

unclassified nirK denitrifier
Cupriavidus sp.
Paracoccus sp.
Paracoccus sp.

unclassified nirS denitrifier
Paracoccus sp.

Pseudomonas aeruginosa
Cupriavidus sp.
Paracoccus sp.C

Agrobacterium tumefaciens
unclassified nirK denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier
Maritimibacter alkaliphilus

Starkeya novella
unclassified nirS denitrifier
unclassified nirK denitrifier
unclassified nirS denitrifier

Sinorhizobium meliloti
unclassified nirS denitrifier
unclassified nirK denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier

Pseudomonas mandelii
Halomonas denitrificans

unclassified nirS denitrifier
Sulfuritalea hydrogenivorans

unclassified nirS denitrifier
Agrobacterium tumefaciens

Azoarcus sp.E
Alcaligenes sp.

Agrobacterium tumefaciens
Rhodanobacter sp.

unclassified nirK denitrifier
Bradyrhizobium japonicum

Bradyrhizobium  sp.
Agrobacterium tumefaciens
unclassified nirS denitrifier
unclassified nirK denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier
unclassified nirS denitrifier

Ensifer sp.
Bradyrhizobium oligotrophicum

unclassified nirS denitrifier
Starkeya novella

unclassified nirS denitrifier
Paracoccus sp.D



 214 

 
Figure D.5. Relative abundance of indicator nitrous oxide reducing denitrifier taxa identified for (A) 
frequent flood, (B) both frequent flood and high interannual variability, (C) high interannual 
variability, (D) high interannual variability and long flood and (E) long flood wetland communities. 
no indicator taxa were identified for both frequent flood and long flood wetland communities. 
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Figure D.6. Rarified abundance of bacterial reads that were identified to explain differences in 
composition between the three hydrologic groups (selected with significance level of alpha < 0.01 
by the “DESeq2” function in “phyloseq” in R).  
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Figure D.7. Temporal trends in soil characteristics and potential functional rates in the source 
wetlands. Error bars show standard error of the mean. 
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Figure D.8. Total potential denitrification rates in inoculated mesocosms over time. The means were 
calculated from replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 
10 for mix). The error bars represent standard error of the mean. 
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Figure D.9. Rates of N2O released during potential denitrification assays (i.e. “incomplete” potential 
denitrification). The means were calculated from replicate mesocosms each week (N = 3 for F1, F2, 
F3, V1, V2, V3, L1, and L2; N = 10 for mix). The error bars represent standard error of the mean. 
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Figure D.10. Categorical and regression tree (CART) analyses of (a) total potential denitrification 
rates and (b) potential N2O emissions (incomplete denitrification).  
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Figure D.11. Soil pH of experimental mesocosms over time. The means were calculated from 
replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 10 for mix). 
The error bars represent standard error of the mean. 
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Figure D.12. Soil moisture of experimental mesocosms over time. The means were calculated from 
replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 10 for mix). 
The error bars represent standard error of the mean. 
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Figure D.13. Soil ammonium of experimental mesocosms over time. The means were calculated 
from replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 10 for 
mix). The error bars represent standard error of the mean. 
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Figure D.14. Soil nitrate of experimental mesocosms over time. The means were calculated from 
replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 10 for mix). 
The error bars represent standard error of the mean. 
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Figure D.15. Soil phosphate of experimental mesocosms over time. The means were calculated 
from replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 10 for 
mix). The error bars represent standard error of the mean. 
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Figure D.16. Total soil carbon and nitrogen in the inoculated mesocosms at the beginning of the 
experiment (sampling event: “initial”) and at the end (sampling event: “week 8”). The means were 
calculated from replicate mesocosms each week (N = 3 for F1, F2, F3, V1, V2, V3, L1, and L2; N = 
10 for mix). The error bars represent standard error of the mean. 
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