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ABSTRACT 

 

Modern production chains have captured the gains from economies of scale and industrial 

specialization by creating local and global networks of intermediate and final goods.  

Nonetheless, enhanced industrial interdependency has also magnified regional exposure to 

external shocks transmitted through both demand and supply channels.  Natural and man-made 

disasters have a major role in creating these local disruptions, which regional reverberations 

depend on the magnitude of physical damages, location, timing and resilience of up and 

downstream industries.  Although stock damages are well understood and measured in the 

literature, higher-order flow effects taking place in the post-disaster period tend to be 

overlooked.  As a result, current mitigation and preparedness strategies are myopically applied to 

the affected region as if they had no spatial and temporal linkages.  In this dissertation, I advance 

the theoretical background and broaden the policy implications of the input-output (IO) 

framework to disruptive events by revising the topics of time, scale and space.  In Chapter 1, I 

explore the issue of intra-year seasonality in production chains and its implications for the IO 

framework.  Due to the limited amount of multi-sectoral data at sub-annual level, I propose a 

novel methodology to disaggregate IO tables in time that relies solely on quarterly GDP 

information to estimate intra-year tables.  I estimate the quarterly IO tables for Brazil in 2004 

and show that the multipliers for agriculture in Brazil deviate more than 6% within year from the 

annual model.  Because of the fine geographical scale of disruptive events, it is essential to be 

able to consider such seasonal variations at a regional level.  In Chapter 2, I provide a roadmap 

of publicly available data to estimate quarterly IO tables in the US for any state and county.  

Since data is even scarcer at these scales, I devise a maximum cross-entropy solution that allows 

the inclusion of specific temporal information for the region.  As an example, I highlight the 

seasonal economic characteristics of the State of Illinois and two of its counties (Cook and 

Iroquois).  Chapter 3 introduces a dynamic demo-economic model that synthetizes existing 

contributions in the disaster literature and includes production scheduling, demographics and 

seasonality in assessing unexpected events.  In Chapter 4, I apply this new dynamic model in a 

real disaster event, the 2007 Chehalis Flood in Washington State, and compare its results with 

current models in the literature.  I highlight the importance of accounting for labor markets’ 

dynamics and fluctuations in the sectoral structure intra-year when assessing the costs of 
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disruptive events.  I also show how significant the timing of the disruption is in assessing 

economic losses of disasters.  The advancements accomplished in this dissertation should 

provide the basis for more detailed analysis of production chains vulnerabilities and resilience, 

further reflections on seasonality patterns and their effect on industrial linkages, and the role of 

industrial linkages in regional dynamics. 
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CHAPTER 1: DISAGGREGATING INPUT-OUTPUT TABLES IN TIME: THE 

TEMPORAL INPUT-OUTPUT FRAMEWORK1 

 

1.1. Introduction 

Traditional input-output (IO) tables are aggregated in three dimensions: industry, space 

and time.  Data are usually presented for aggregated sectors by combining individual firm level 

information for different NAICS (North American Industry Classification System) into a single 

production structure.  Due to the complexity and costs of producing the necessary data to 

assemble the tables, their construction has been coupled with the routine gathering of national 

economic statistics, providing, thus, tables for a particular country and year. 

However, the level of aggregation in any dimension conflicts with two main hypotheses 

supporting the IO framework: stability and homogeneity.  In terms of homogeneity, the less 

aggregated the matrix, the less heterogeneous the production mix will be among the aggregated 

industries and, thus, the production structure portrayed in each sector better approaches a 

microeconomic firm aggregation.  Conversely, the more aggregated the matrix, the more stable 

the calculated technical coefficients are, since the lower cross-elasticities derived generate lower 

substitution effects, supporting the constant input/output ratios assumption.  The same reasoning 

applies to space and time.  Moreover, the aggregation bias in each dimension is dependent on the 

aggregation level in the other dimensions.2 

Although several techniques have been developed to disaggregate industries and 

regionalize tables (e.g. Wolsky, 1984; Sargento, 2009), the time dimension has had a more 

distinct focus.  In much of the IO literature, time has been a concern regarding the inter-year 

stability of technical coefficients (Temurshoev, Webb, & Yamano, 2011).3  Since changes in 

market shares, technology and prices affect the production structure of an industry, and given the 

Leontief-type production function assumed in the model (complementary inputs), not adjusting 

                                                           
1 Part of this chapter is reprinted with permission from Avelino, A. (2017). Disaggregating Input-Output Tables in 

Time: the Temporal Input-Output Framework, Economic Systems Research, 29(3), 313-334. Copyright 2017 by 

Taylor and Francis. 
2 For instance, in more aggregated industries it is more likely to observe the production structure varying within the 

year, especially if seasonality affects the aggregated sectors distinctly.  In such case, the intra-year oscillation in 

interindustrial flows and total production may not follow the same proportion derived from the annual IO table. 
3  Due to the sole availability of annual IO tables, the literature on coefficient change has focused on the inter-year 

stability of technical coefficients and its determinants. 
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for such changes may significantly bias long run estimates.4  In terms of intra-year stability, 

some of the dynamic IO models built on Leontief’s (1970) approach couple econometric 

techniques to estimate adjusted total production vectors or to update technical coefficients for 

intervals of time less than a year (Romanoff & Levine, 1981; ten Raa, 1986; Aulin-Ahmavaara, 

1990; Israilevich, Hewings, Sonis, & Schindler, 1997; Ryaboshlyk, 2006; Donaghy, Balta-

Ozkan, & Hewings, 2007, Kratena et al., 2013).  Nonetheless, the major drawback in this 

literature is the use of annual technical coefficient matrices as benchmarks to study intra-year 

shocks.  The loss of information that the temporal aggregation imposes on the annual technical 

coefficients by suppressing the distinct economic structure in each period and only considering 

the aggregated flows at the end of the year, biases the technical coefficient matrix.5  This Chapter 

addresses such problem by developing the Temporal EURO method (T-EURO) – a major 

adaptation of the EURO method (Beutel, 2002; Eurostat, 2008) –, which disaggregates the 

annual table into intra-year tables with specific technical structures using commonly available 

quarterly GDP data.  These tables can then be used for impact analysis or embedded in a 

dynamic model (see Chapters 3 and 4).  In this way, it will be possible to more accurately 

account for seasonality, production variations and within-year events. 

The intertemporal heterogeneity of the production structure arises from seasonal 

dynamics and industrial aggregation.  Heterogeneous final demand and fluctuating industrial 

production through the year affect scale economies and input substitution, leading to different 

economic structures.  In addition, since industrial aggregation determines how the production 

structure of the aggregated industry differs from its individual sectors, it also influences the 

irregularity of the intertemporal dynamics.  As industrial output is usually composed of different 

products with distinct input compositions (e.g., consider the aggregated Agriculture sector 

reflecting the production of several crops), their heterogeneous dynamics within the year will 

also affect the economic structure at any point in time. 

                                                           
4 Following Carter’s (1970) seminal work, there is a general understanding on the short-term stability of the 

economic structure, driven by the gradual adoption and spread of technology/production changes in the economy 

(there is a general inertia of capital in the economy, i.e., old capital takes time to be replaced by newer technology 

depending on depreciation, investment cycles, etc. (Vaccara, 1970)).  Hence, the annual structure portrayed in the 

table is reasonably valid for a few years (Miller & Blair, 2009). 
5 The temporal aggregation of annual tables produces a misleading structure since it smooths any seasonality in the 

production structure within the year.  In fact, the variance of annual coefficients is a weighted sum of the variance of 

intra-year coefficients and their temporal shares, what filters most of the within year heterogeneity, as shown by 

Sevaldson (1970) for the case of industrial aggregation.  This issue will also be demonstrated in the T-EURO 

application in Section 1.4. 
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A major temporal issue in using annual IO models is the evaluation of transient 

phenomena: short-term events with unevenly distributed economic shocks through time.  By 

evaluating their impacts in a temporally aggregated model, homogeneity of the economic 

structure throughout the year is implicitly assumed, and time becomes irrelevant.  Nevertheless, 

if we expect that different periods within a year exhibit distinct economic structures, timing is 

significant to more accurately estimate overall effects.  For instance, the duration and period of 

disruptive events for transportation will entail different economic outcomes given the shipping 

pattern in each season.  Also, the immediate loss in capital and production caused by natural 

disasters followed by localized recovery stimuli (1995 Kobe Earthquake in Japan, 2008 Cyclone 

Nargis in Myanmar, 2012 Hurricane Sandy in the US, 2011 radioactive leak in Fukushima, 

Japan) would have distinct total impacts if their timing was different (Hewings, Changnon, & 

Dridi, 2000; Okuyama & Santos, 2014).  Likewise, the direct, indirect and induced effects of 

large construction projects (highways, power plants, etc.) will vary throughout the year since 

input purchases depend on their stage of implementation (Romanoff & Levine, 1977).  

Therefore, by assuming a constant production structure, these nuances in impacts and their 

idiosyncratic dynamics are ignored. 

In terms of methodological contributions, this Chapter proposes a novel technique for the 

temporal disaggregation of the IO table, which has not previously been addressed in the 

literature.  Besides the advantage of matching the temporal dimension of the model with those of 

events, having a complete set of intra-year IO tables will provide a more accurate benchmark for 

current dynamic models to build upon.  In terms of application, the tables can now be analyzed 

to identify key sectors, value chains, industrial linkages, output and income multipliers for each 

individual time period.  This is especially important in order to assess the impact of unexpected 

climatic events in the economic structure, as well as other disruptive phenomena within a year.  

For planners and policy makers, it provides a model to more accurately estimate overall 

outcomes and the evolution of an intervention (infrastructure projects, tax hikes, etc.) throughout 

the year, so that the optimal timing for implementation can be determined.  Finally, IO models 

with environmental extensions can more adequately link time-varying variables, such as 

pollution patterns, to the economic structure dynamics to evaluate environmental processes that 

operate in a time interval shorter than a year. 
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The next Section provides a literature review on current updating/disaggregating 

techniques that will serve as a starting point for the proposed temporal disaggregation method.  

Section 1.3 describes the latter, which is denoted the Temporal EURO method (T-EURO), due to 

its roots in the EURO method, and also provides a performance analysis of the T-EURO in 

relation to the traditional RAS method.  Section 1.4 presents an application for Brazil to 

demonstrate the advantages of the methodology in relation to the traditional IO model.  

Conclusions follow. 

 

1.2. Literature Review 

Due to the required time and cost of surveys to construct IO tables, in most countries 

official national tables are released with a 3-5 years delay.  Such time lag, coupled with the fact 

that official regional tables are not usually compiled, led to the development of non-survey and 

hybrid methods to update and regionalize national tables.  This literature gained momentum in 

the 1950s with the proposition of the interregional model by Isard (1951) and the seminal work 

of Stone and Brown (1962) on the bi-proportional updating technique (RAS), and it remains an 

active area of research (Töben & Kronenberg, 2015). 

Non-survey methods are mainly used for regional disaggregation and are considered top-

down approaches, since the national table is taken as a base to be adjusted using regional 

indicators (Sargento, 2009).  These methods revolve around modifications of location quotients, 

which measure the capacity of a particular sector to supply its own regional demand by assessing 

its concentration in the region in relation to the nation.6  The disaggregation of regional tables is 

performed by assuming the same technology as the nation and rescaling its coefficients 

according to the quotients. 

Due to their simplicity, significant assumptions are required: productivity of factors and 

consumption shares between the nation and region are equal; regional and national industrial 

aggregation comprises the same mix of products; any export industry 𝑖 fully supplies local 

markets and the nation neither imports or exports 𝑖’s production in net terms (Richardson, 1985).  

                                                           
6 In its basic formulation, using industry output data 𝑥𝑖

r for a particular industry 𝑖 in region r, 𝐿𝑄𝑖
r = ((

𝑥𝑖
r

𝑥r
) (

𝑥𝑖
nation

𝑥nation
)⁄ ). 



 

5 

 

Notice that cross-hauling effects7 thus become a major source of issues for location quotients.8  

Crosson (1960) also highlights that product heterogeneity significantly affects the performance 

of these techniques, since one may be comparing different sets of activities under the same 

sectoral categorization.  Moreover, the use of quotient approaches implies that national 

technology is uniform across regions and the observed variation in input coefficients is a 

function of idiosyncratic regional capacity to supply own-regional demand (Miller & Blair, 

2009).  Although for a few sectors this assumption is adequate, for the most part it poses an 

inconsistency.  In sum, by reviewing several non-survey methods, Tohmo (2004) argues that 

such restrictive assumptions tend to generate systematic biases and relatively inaccurate table 

estimates. 

Hybrid approaches, conversely, combine non-survey techniques and superior data 

(information from surveys, official sources, experts, etc.), to improve upon non-survey estimates 

by imposing more consistency in the constraints.  These techniques have been used in updating, 

regionalizing and reconciling IO matrices.  Several methods have been developed, especially in 

terms of proportional correction, with a variety of data requirements.  Acknowledging the limited 

information available for updating and regionalizing IO matrices, the approaches face a trade-off 

between accuracy and the minimum amount of information required.  This is particularly 

important for temporal disaggregation since information is scarcer intra-year than inter-year. 

Initial methods in the area were of proportional univariate correction type, in which a 

base IO matrix (from previous years or for the nation) is adjusted by applying a correction factor 

uniformly over rows or columns.  Examples can be found in Matuszewski, Pitts and Sawyer 

(1964) and Tilanus (1968).  Their major drawback is the possible inconsistency of the non-

adjusted dimension.  Since both rows and columns are meaningful in the IO framework, they 

both need to be considered when adjusting the base matrix, otherwise the resulting input 

structure may be economically unreasonable.  

To overcome the previous limitation, bi-proportional methods were developed by adding 

constraints to both dimensions, which increased their robustness in relation to univariate 

approaches (Temurshoev et al., 2011).  Among those, the RAS technique initially proposed by 

                                                           
7 When a region exports and imports the same good (which invalidates the third assumption). 
8 Although some early solutions proposed by Isserman (1977) and Norcliffe (1983) mitigated the issue, a more 

effective approach is the CHARM method by Kronenberg (2009). 
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Stone and Brown (1962) has been the most common approach used in the IO field due to its low 

information requirements, tractability, preservation of signs and conservative adjustment process. 

The RAS adjusts rows and columns of a base year matrix (𝐙0) simultaneously (bi-

proportional scaling) to estimate 𝐙𝑡 for a target year 𝑡.9  The only required information for the 

traditional method is the row and columns sums of 𝐙𝑡:10 𝐮𝑡 = 𝐙𝑡𝛊 and 𝐯𝑡 = 𝛊′𝐙𝑡 respectively 

(assuming a 𝑛 × 𝑛 𝐙𝑡 matrix).  The base matrix is taken as the initial estimate (𝑘 = 0) of  𝐙𝑡 

(call it �̃�𝑡,0 = 𝐙0) and its row totals computed in �̃�𝑡,0.  The row adjustment factor is then 

calculated as the ratio between the latter and the true row totals 𝐫𝑡,1 = 𝐮𝑡⊘ �̃�𝑡,0 and 

proportionally applied to the rows of the initial estimate, yielding new estimates �̃�𝑡,1 = �̂�𝑡,1�̃�𝑡,0.  

In the next step, row totals for �̃�𝑡,1 are computed (�̃�𝑡,1), column adjustment factors are calculated 

𝐬𝑡,1 = 𝐯𝑡⊘ �̃�𝑡,1 and applied proportionally to �̃�𝑡,1, yielding �̃�𝑡,2 = �̃�𝑡,1�̂�𝑡,1 = �̂�𝑡,1�̃�𝑡,0𝐬𝑡,1.  This 

process iterates until 𝐫 and 𝐬 converge to unity or are below a set threshold. 

The uniform change that 𝐫 and 𝐬 impose on rows and columns can be interpreted as 

substitution and fabrication effects respectively (Snower, 1990).11  Thus, the RAS procedure 

follows a consistent economic basis for updating the tables.  Also, it tends to converge relatively 

quickly and the use of additional exogenous information as constraints tends to improve its 

accuracy (Miller & Blair, 2009). 

Following Jackson and Murray (2004) the RAS can be conveniently expressed in terms 

of a mathematical programming problem (where 𝑡 = 0 indicates the base year): 

                                                           
9 The standard IO notation is used in this Chapter.  Moreover, matrices are named in bold capital letters, vectors in 

bold lower-case letters and scalars in italic lower-case letters.  The Greek letter 𝛊 (iota) denotes a unitary row vector 

of appropriate dimension.  Finally, a hat sign over a vector indicates diagonalization, a prime sign indicates 

transposition and ⊗, ⊘ indicate element-wise multiplication and division respectively.  In this Chapter, the indices 

for time (𝑡) and iteration (𝑘) are superscripted in this order. 
10 In case of the technical coefficient matrix 𝐀𝑡, one also needs the total output vector for the target year (𝐱𝑡) to 

recover the interindustrial matrix 𝐙𝑡 = 𝐀𝑡�̂�𝑡 , since forecasted data is usually available for 𝐙𝑡 row/column sums 

only.  As shown in Dietzenbacher and Miller (2009), however, using a transaction matrix (𝐙𝑡) or a technical 

coefficient matrix (𝐀𝑡) yields identical results (this does not hold in other commonly used RAS extensions such as 

GRAS and CRAS). 
11 The pre-multiplication of the matrix by 𝐫 implies changing the flow of products of a particular industry to all other 

industries uniformly while maintaining the sale structure constant.  As each column of the interindustrial matrix 

reflects the input structure of an industry, such operation reduces/increases the use of a particular input in all the 

economy, which can be interpreted as an input substitution effect.  Conversely, the post-multiplication of 𝐬 changes 

the ratio between value added and total purchases of the industry while its input structure remains constant.  This is 

denoted fabrication effects and reflects technology changes that affect the proportion of industrial and non-industrial 

(labor, land) requirements. 
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 min
𝐀t
𝐼(𝐀𝑡 || 𝐀0) =∑∑𝐀𝑖𝑗

𝑡 ln
𝐀𝑖𝑗
𝑡

𝐀𝑖𝑗
0

𝑗𝑖

 (1.1) 

subject to 

 ∑𝐀𝑖𝑗
𝑡 𝐱𝑗

𝑡 = 𝐯𝑗
𝑡

𝑖

     ∀𝑗 (1.2) 

 

 ∑𝐀𝑖𝑗
𝑡 𝐱𝑗

𝑡 = 𝐮𝑖
𝑡

𝑗

     ∀𝑖 (1.3) 

 

 𝐀𝑖𝑗
𝑡 ≥ 0              ∀𝑖, 𝑗 (1.4) 

 

The conservative adjustment property of RAS comes from the fact that in its equivalent 

mathematical programming formulation it minimizes information gains (Bacharach, 1970).  This 

implies that the estimated matrix is as close as possible to its prior, thus implicitly assuming a 

structural relationship of flows between periods.  Obviously, if structural changes between the 

base year and the projected period are substantial, the RAS method will not yield satisfactory 

results.  To mitigate these effects, other alternative formulations for the objective function were 

proposed, such as penalizing changes in small coefficients (Matuszewski et al., 1964), square 

differences, etc.  However, as Jalili (2000) and Dietzenbacher and Miller (2009) show, the 

formulation in Equations 1.1-1.4 still outperforms them in terms of estimation accuracy. 

In order to mitigate some of the original RAS limitations, several extensions to the 

method were proposed.  Gilchrist and St. Louis (1999) developed a tri-proportional algorithm 

(TRAS) to accommodate aggregation constraints in the traditional procedure through an 

additional adjustment step at the end of each iteration.  In order to eliminate the RAS assumption 

of a non-negative matrix, Junius and Oosterhaven (2003) propose the Generalized RAS (GRAS) 

to allow for both positive and negative entries in the matrix.  The method modifies the original 

formulation by partitioning the matrix between negative and positive transactions (no new 

information is required).  The KRAS method proposed by Lenzen, Gallego and Wood (2009) 

deals with inconsistent constraints and conflicting external information when applying RAS.  In 

order to mitigate the low flexibility in structural change, Mínguez, Oosterhaven and Escobedo 

(2009) propose an adapted RAS procedure in which time-series information for the table is used 
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to make coefficient adjustments more flexible.  This so-called Cell-Corrected RAS (CRAS) uses 

past matrices to obtain coefficient variation distributions and minimizes how coefficients deviate 

from their historical mean weighted by the inverse of the standard deviation.  Its main drawback 

is the requirement of a long series of past IO tables.  Finally, to relax the sign preserving property 

of RAS that creates issues for the estimation of the change of inventory and taxes less subsidies 

part of the IO table, Lenzen, Moran, Geschke and Kanemoto (2014) propose a non-sign 

preserving RAS.  By adjusting initial estimates in sign changing coefficients, the rescaled 

constraint becomes RAS-feasible, allowing solutions with sign reversal. 

Despite all RAS extensions, the method still requires information on row and column 

totals for the target year.  These data are usually not officially available, and estimations become 

necessary.  Given how highly sensitive the procedure is to these constraints (Bacharach, 1970; 

Hewings, 1977; Beyers, 1978), even small estimation errors may have a significant impact on 

results.  In order to avoid this estimation step, an alternative method denoted EURO was 

proposed by Beutel (2002). 

The EURO method was conceived to require only official macroeconomic statistics 

released by most countries and has been recently used by Eurostat in table adjustments (López & 

Cantuche, 2013).  In contrast to the RAS method, it is designed to estimate the full IO table so 

that the entire economic structure is considered and affected by substitution, fabrication and price 

effects, imposing consistency between demand and supply.  The only set of exogenous variables 

is official forecasts for the GDP (value added by industry, total exports, total imports and final 

demand), while output and demand vectors are endogenously determined.  The latter feature 

creates flexibility to the adjustment process, ultimately allowing for thriving sectors to gain and 

declining sectors to lose importance in the structure (Eurostat, 2008).  

The iterative procedure is depicted in the left portion of Figure A.1 in the Appendix.  In 

the first step, the actual growth rates of value added are taken as a first approximation of the 

growth rates of each sector’s input and output structure, and the rates for aggregated imports, 

exports and final demand are used as the initial approximation for the respective vectors.  In the 

next step, these growth rates are then applied to both rows and columns and each element is 

averaged, creating an inconsistent IO table.  Since there is more information on the input 

structure side of the table, a Leontief model is solved with the adjusted technology and a quantity 
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model is applied to reconstruct an internally consistent IO table.  In the third step, growth rates in 

the adjusted table are compared to the true growth rates and, in case of deviation, marginal 

corrections in the rates are made in the next iteration.  The method proceeds until a pre-

determined deviation threshold is met. 

The main advantages of EURO are its low information requirements, avoidance of 

arbitrary changes in coefficients (that may occur in RAS), consistency between supply and 

demand, and reliance on only official macroeconomic statistics as exogenous variables.  

Nonetheless, an important drawback is that such method does not guarantee convergence, as 

noted by Temurshoev et al. (2011). 

In sum, although widely used, the traditional RAS method is not suited for the purpose of 

this Chapter.  Since the intratemporal matrices are structurally different from its annual 

counterpart, and the goal of the temporal disaggregation is to unveil such heterogeneity, the 

method is too rigid in terms of the structural variation it allows to arise in the estimated tables.  

Besides, no time-series of intra-year tables is available to apply a CRAS variation instead.  

Conversely, the EURO method is more adequate to deal with our limited information 

environment and it allows more flexibility for heterogeneity to arise.  Adaptations, however, are 

necessary.  These are explored in the following Section. 

 

1.3. Methodology 

1.3.1. Estimating Intratemporal Tables: the T-EURO Method 

Given the limited available data to generate a survey-based intratemporal IO table, as 

well as significant structural variations some sectors may experience throughout the year, the 

traditional RAS method is not appropriate for our purposes.12  Because a more flexible 

methodology is necessary, this Chapter proposes a modified version of the EURO method.  A 

major advantage of this method is the sole requirement of the limited official data released in 

                                                           
12 The main challenge and distinction from the usual regionalization procedure is that national comprehensive 

surveys for industrial production, services and expenditures are not available within a year. 
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conjunction with GDP statistics, thereby reducing the uncertainty of using estimated data as a 

base for the target matrix.13  

A fundamental concern in the EURO method is the non-guarantee of convergence, since 

at the end of each iteration, new correction factors are determined independently of previous 

corrections, and are applied to the base table (Temurshoev et al., 2011).  The first modification 

of the method, thus, ensures its convergence by adjusting the previous correction factors in each 

iteration.  The second major modification is the conversion from an updating procedure to a 

disaggregating procedure by solving all intratemporal tables in parallel and imposing a temporal 

aggregation constraint in each iteration.  A general view of the T-EURO method is shown in 

Figure 1.1 and can be compared to Figure A.1 in the Appendix.  In addition, a 3-sector, 2 periods 

example is presented in Appendix B, following the derivation ahead. 

Denoting by 𝑛 the number of sectors in the economy and by 𝑓 the number of components 

in the final demand, except exports, the following matrices are defined:14 

𝐙: matrix of interindustrial flows (𝑛 × 𝑛) 

𝐦: row vector of imports (1 × 𝑛) 

𝐭: row vector of taxes (1 × 𝑛) 

𝐯 : row vector of value added (1 × 𝑛) 

𝐘 : matrix of final demand except exports (𝑛 × 𝑓) 

𝐞: column vector of exports (𝑛 × 1) 

𝛊: summation vector of appropriate dimensions 

The derivation will follow the notation 𝐙𝑖𝑗
𝑡,𝑘S .  The post-superscripts 𝑡, 𝑘 indicate the time 

dimension (𝑡 = 0 denotes the annual table while 𝑡 = 1, 2, … denotes intra-year tables), and the 

iteration number (𝑘 = 1,2, …).  The post-subscripts 𝑖𝑗 indicate row/column and an asterisk sign 

(∗) denotes the sum in the respective dimension.  Finally, the pre-superscript indicates if the 

variable is a share (S), corrected share (SC), external data (E), or an endogenous variable (no 

letters). 

                                                           
13 Which are usually released quarterly in most countries. 
14 For expositional purposes (to simplify the derivation), it is assumed that final demand does not import, and that 

exports and final demand do not collect taxes, otherwise matrices partitions would need to be performed in several 

steps.  Nonetheless, this assumption can be easily dropped during implementation. 
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Notes: VA: value added by sector; Y: total final demand; X: total exports; M: total imports. 

 

Figure 1.1. Temporal EURO method 
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The required data for each time period 𝑡 are 𝐯𝑗
𝑡E  | 𝑗 = 1,… , 𝑛, 𝐘∗𝑗

𝑡E  | 𝑗 =  1, … , 𝑓 and the 

aggregates 𝑚𝑡E = 𝐦E 1∗
𝑡 , 𝑡E 𝑡 = 𝐭E 1∗

𝑡  and 𝑒E 𝑡 = 𝐞E ∗1
𝑡 , besides the full annual table ( 𝐈𝐎𝐓0E ).  

Hence, in this example, the annual IO table is defined as: 

 𝐈𝐎𝐓0E =

[
 
 
 
 
𝐙0E 𝐘0E 𝐞0E

𝐦0E 0 0

𝐭0E 0 0

𝐯0E     0     0 ]
 
 
 
 

 (1.5) 

 

Finally, define 𝐯𝑗
𝑡,𝑘S , 𝐲𝑗

𝑡,𝑘S  𝑚𝑡,𝑘S , 𝑡𝑡,𝑘S  and 𝑒𝑡,𝑘S  as the temporal shares of sectoral 

value added (by sector), final demand (by component), total imports, total taxes and total exports 

respectively, calculated at iteration 𝑘 for time period 𝑡 in relation to the annual data.  For 

simplicity, assume two time periods only.  Initially (𝑘 = 1), the “true” shares are calculated: 

 𝐕𝑡,1S = �̂�𝑡E × ( �̂�0E )
−1

 (1.6) 

 
 𝑚𝑡,1S = 𝑚𝑡E × ( 𝐦1∗

0E )
−1

 (1.7) 

 

 𝑡𝑡,1S = 𝑡𝑡E × ( 𝐭1∗
0E )

−1
 (1.8) 

 

 𝑒𝑡,1S = 𝑒𝑡 ×E ( 𝐞∗1
0E )

−1
 (1.9) 

 

 𝐘𝑡,1S = �̂�∗𝑗
𝑡E × ( �̂�∗𝑗

0E )
−1

 (1.10) 

 

Both 𝐕𝑡,𝑘S = �̂�𝑡,𝑘S  and 𝐘𝑡,𝑘 = �̂�𝑡,𝑘SS  are diagonal matrices of dimensions 𝑛 × 𝑛 and 

𝑓 × 𝑓 respectively, and all other rates are scalars.  In the first step, these shares adjust the annual 

matrices in both columns and rows.  Because value added is the only exogenous data 

disaggregated by sectors, we proxy any sectorial adjustment using the value added information:  

 𝐙𝑡,1 = 0.5 × [( 𝐕𝑡,1S × 𝐙E 0) + ( 𝐙E 0 × 𝐕𝑡,1S )] (1.11) 

 
 𝐦𝑡,1 = 0.5 × [( 𝑚𝑡,1S × 𝐦E 0) + ( 𝐦E 0 × 𝐕𝑡,1S )] (1.12) 

 

 𝐭𝑡,1 = 0.5 × [( 𝑡𝑡,1S × 𝐭E 0) + ( 𝐭E 0 × 𝐕𝑡,1S )] (1.13) 

 

 𝐘𝑡,1 = 0.5 × [( 𝐕𝑡,1S × 𝐘E 0) + ( 𝐘E 0 × 𝐘𝑡,1S )] (1.14) 
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 𝐞𝑡,1 = 0.5 × [( 𝐕𝑡,1S × 𝐞E 0) + ( 𝐞E 0 × 𝑒𝑡,1S )] (1.15) 

 

 𝐯𝑡,1 = 𝐯E 0 × 𝐕𝑡,1S  (1.16) 

 

Notice that the pre-multiplication of the matrices by the temporal shares maintains the 

sales structure of the table, while the post-multiplication maintains the input structure.  This 

allows for input substitution and fabrication effects respectively.  However, the resulting total 

outputs are not necessarily consistent, i.e.: 

 (𝐙𝑖∗
𝑡,1 + 𝐘𝑖∗

𝑡,1 + 𝐞𝑖
𝑡,1) ≠ (𝐙∗𝑗

𝑡,1 +𝐦1𝑗
𝑡,1 + 𝐭1𝑗

𝑡,1 + 𝐯1𝑗
𝑡,1)   ∀𝑖 = 𝑗 (1.17) 

 

In the second step, the internally inconsistent table is converted to an internally consistent 

one via the Leontief model.  Assume the new technology is represented by the input structure of 

this inconsistent matrix and define 𝐪𝑗
𝑡,1 = (𝐙∗𝑗

𝑡,1 +𝐦1𝑗
𝑡,1 + 𝐭1𝑗

𝑡,1 + 𝐯1𝑗
𝑡,1), ∀𝑗 = 1, … , 𝑛.  Hence, 𝐪𝑡,1 

is a (1 × 𝑛) vector with a first approximation of the total output.  Such approximation is then 

updated to become the base of the internally consistent table using the Leontief’s demand-driven 

model: 

 𝐱𝑡,1  = (𝐈 − (𝐙𝑡,1 × (�̂�𝑡,1)−1))
−1

× ((𝐘𝑡,1 × 𝛊) + 𝐞𝑡,1) (1.18) 

 

Therefore, the internally consistent table is obtained by applying the quantity model:  

 𝐙𝑡,1 = 𝐙𝑡,1 × (�̂�𝑡,1)−1 × �̂�𝑡,1 (1.19) 

 
 𝐦𝑡,1 = 𝐦𝑡,1 × (�̂�𝑡,1)−1 × �̂�𝑡,1 (1.20) 

 

 𝐭𝑡,1 = 𝐭𝑡,1 × (�̂�𝑡,1)−1 × �̂�𝑡,1 (1.21) 

 

 𝐯𝑡,1 = 𝐯𝑡,1 × (�̂�𝑡,1)−1 × �̂�𝑡,1 (1.22) 

 

Which yields the internally consistent table 𝐎𝐈𝐓𝑡,1: 
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 𝐎𝐈𝐓𝑡,1 =

[
 
 
 
 𝐙
𝑡,1 𝐘𝑡,1 𝐞𝑡,1

𝐦𝑡,1 0 0

𝐭𝑡,1 0 0

𝐯𝑡,1    0    0 ]
 
 
 
 

 (1.23) 

 

At this stage, each time period 𝑡 has an internally consistent table from the first iteration 

that is still temporally inconsistent, i.e., summation of the same element in each time period does 

not equal its annual value.  Thus, in the third step, a temporal adjustment is imposed so that 

every element adds up to the actual annual flow.  Initially, adjust each element of the matrix 

𝐎𝐈𝐓𝑡,1 by its proportion in relation to the sum of both 𝐎𝐈𝐓1,1 and 𝐎𝐈𝐓2,1 tables:15 

 𝐎𝐈𝐓𝑡,1  = 𝐈𝐎𝐓0E ⊗ (𝐎𝐈𝐓𝑡,1   ⊘ (𝐎𝐈𝐓1,1  + 𝐎𝐈𝐓2,1 ))          ∀𝑡 (1.24) 

 

With the application of this process, each new 𝐎𝐈𝐓𝑡,1  is again internally inconsistent.  By 

repeating the operations described in the second step above, we can obtain internally consistent 

𝐎𝐈𝐓1,1  and 𝐎𝐈𝐓2,1, whose element-wise sum approaches the annual table.  The difference 

between (𝐎𝐈𝐓1,1  + 𝐎𝐈𝐓2,1) and 𝐈𝐎𝐓0E  can be calculated by using some measure of matrix 

similarity (e.g., mean absolute percentage error (Butterfield & Mules, 1980), standardized 

weighted absolute difference (Lahr, 2001), psi statistic (Knudsen & Fotheringham, 1986), etc.), 

and based on a maximum error threshold, determine if a reiteration of the third step is needed. 

Once temporally and internally consistent matrices are obtained, new shares 𝐕𝑡,2S , 𝐘𝑡,2S  

𝑚𝑡,2S , 𝑡𝑡,2S  and 𝑒𝑡,2S   are calculated for this table in relation to the annual table:  

 𝐕𝑡,2S = �̂�𝑡,1 × ( �̂�0E )
−1

 (1.25) 

 
 𝑚𝑡,2S = 𝐦1∗

𝑡,1 × ( 𝐦1∗
0E )

−1
 (1.26) 

 

 𝑡𝑡,2S = 𝐭1∗
𝑡,1 × ( 𝐭1∗

0E )
−1

 (1.27) 

 

 𝑒𝑡,2S = 𝐞∗1
𝑡,1 × ( 𝐞∗1

0E )
−1

 (1.28) 

 

                                                           
15 As aforementioned, Hadamard (element-wise) multiplication is denoted by ⊗ and division by ⊘.  Also, as any 

division by zero implies that the corresponding denominator is also zero (since the method never changes null 

elements in the annual table), the operation’s result is set to zero. 
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 𝐘𝑡,2S = �̂�∗𝑗
𝑡,1 × ( �̂�∗𝑗

0E )
−1

 (1.29) 

 

Deviations from the “true” temporal shares 𝐕𝑡,1S , 𝐘𝑡,1S  𝑚𝑡,1S , 𝑡𝑡,1S  and 𝑒𝑡,1S  and the 

new ones are defined as 𝑑r
𝑡 = (new share / true share), where r is a particular type of share.  If 

deviations are above a certain error margin, the following correction factors are calculated 

through a convex adjustment function: 

 𝑐r
𝑡,2 = {

1 + (∆r
𝑡 × 100)𝜀/100        if ∆r

𝑡> 0

1 − (−∆r
𝑡 × 100)𝜀/100     if ∆r

𝑡< 0
 (1.30) 

 

where ∆r
𝑡= 𝑑r

𝑡 − 1 and 𝜀 is the adjustment elasticity (usually 0.9).16  This results in the 

shares’ correction factors: 𝐜𝐕
𝑡,2

 (1 × 𝑛), 𝐜𝐘
𝑡,2

 (1 × 𝑓), 𝑐𝑚
𝑡,2

, 𝑐𝑡
𝑡,2

, 𝑐𝑒
𝑡,2

.  The first step of the next 

iteration (𝑘 = 2) is similar to the previous one, except that the correction factor is applied to the 

“true” shares:  

 𝐙𝑡,2 = 0.5 × [( 𝐕𝑡,2SC × 𝐙E 0) + ( 𝐙E 0 × 𝐕𝑡,2SC )] (1.31) 

 
 𝐦𝑡,2 = 0.5 × [( 𝑚𝑡,2SC × 𝐦E 0) + ( 𝐦E 0 × 𝐕𝑡,2SC )] (1.32) 

 

 𝐭𝑡,2 = 0.5 × [( 𝑡𝑡,2SC × 𝐭E 0) + ( 𝐭E 0 × 𝐕𝑡,2SC )] (1.33) 

 

 𝐘𝑡,2 = 0.5 × [( 𝐕𝑡,2SC × 𝐘E 0) + ( 𝐘E 0 × 𝐘𝑡,2SC )] (1.34) 

 

 𝐞𝑡,2 = 0.5 × [( 𝐕𝑡,2SC × 𝐞E 0) + ( 𝐞E 0 × 𝑒𝑡,2SC )] (1.35) 

 

 𝐯𝑡,2 = 𝐯E 0 × 𝐕𝑡,2SC  (1.36) 

 

where,  

 𝐕𝑡,2SC = �̂�𝐕
𝑡,2 × 𝐕𝑡,1S  (1.37) 

 

                                                           
16 This is the same elasticity used by Beutel (2002) in his exposition of the EURO method.  It affects the speed in 

which Equation 1.30 adjusts the shares via the correction factor 𝑐.  If 𝜀 = 1, the error in the rates is completely 

transferred to the correction factor.  By letting 𝜀 < 1, the adjustment portrayed in Equation 1.30 becomes non-linear, 

implying a smoother convergence correction so that each iteration allows some error room for adjustment in the next 

round. 
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 𝑚𝑡,2SC = 𝑐𝑚
𝑡,2 × 𝑚𝑡,1S  (1.38) 

 

 𝑡𝑡,2SC = 𝑐𝑡
𝑡,2 × 𝑡𝑡,1S  (1.39) 

 

 𝑒𝑡,2SC = 𝑐𝑒
𝑡,2 × 𝑒𝑡,1S  (1.40) 

 

 𝐘𝑡,2SC = �̂�𝐘
𝑡,2 × 𝐘𝑡,1S  (1.41) 

 

These adjusted matrices create an internally inconsistent table and, in the second step, 

they are modified to become internally consistent again.  In the third step, temporally and 

internally consistent tables are created and new deviations and correction factors are calculated.  

In order to guarantee convergence, at the beginning of the third iteration, and in all subsequent 

iterations, the correction factors are multiplied with the previous ones.  Hence, at iteration 𝐼 the 

correction will be given by ∏ 𝑐r
𝑡,𝑘𝐼

𝑘=2 .17  The algorithm continues until the estimated variables 

are close to the official macroeconomic data for each time period, i.e., all deviations are below a 

given minimum precision level.  This new method provides complete intra-year IO tables 

estimates that are consistent with the annual data. 

The main advantages of the T-EURO are the same as the EURO method, with the 

addition of temporal consistency of the disaggregated tables.  Note that by not assuming constant 

flow shares, the intra-year technical structure is implicitly adjusted in the method, thus capturing 

seasonal production structure variations.18  In terms of limitations, the sign preserving property is 

an issue if change in inventories are disaggregated in the final demand vector as the sign 

structure of the annual matrix will be reproduced in intratemporal matrices. 

 

1.3.2. A Comparison Between T-EURO and RAS 

Given the wide use of the RAS procedure, adjusted tables recovered by both methods 

will be compared to demonstrate the advantages and disadvantages of the T-EURO for temporal 

                                                           
17 For instance, in the case of value added, this implies:  𝐕𝑡,𝐼SC = (�̂�𝐕

𝑡,2 × �̂�𝐕
𝑡,3 × …× �̂�𝐕

𝑡,𝐼−1 × �̂�𝐕
𝑡,𝐼) × 𝐕𝑡,1S . 

18 The annual technical structure is taken as a first approximation of the intra-year A matrices, however it is 

modified at each time step in order to conform with balancing and consistency constraints of the IO table.  This 

allows production structure variations to arise in each period. 
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disaggregation.  Since the primary focus of IO analysis relies on the technical coefficient and 

Leontief Inverse matrices, they are the targets of this comparison.  

The comparison between actual and estimated matrices is made using different measures 

of matrix closeness commonly used in the IO literature.  Denoting by 𝑥𝑖𝑗 the estimated element 

and by �̃�𝑖𝑗 the true element, we can define: 

(1) Mean Absolute Deviation (MAD): reflects the average error of an estimated 

coefficient (in any direction). 

 𝑀𝐴𝐷 =  
1

𝑛2
∑∑|(𝑥𝑖𝑗 − �̃�𝑖𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

 (1.42) 

 

(2) Mean Absolute Percentage Error (MAPE): reflects the average percentage error of 

an estimated coefficient (in any direction). 

 𝑀𝐴𝑃𝐸 = 
1

𝑛2
∑∑

|(𝑥𝑖𝑗 − �̃�𝑖𝑗)|

|�̃�𝑖𝑗|
× 100

𝑛

𝑗=1

𝑛

𝑖=1

 (1.43) 

 

(3) Weighted Absolute Percentage Error (WAPE): reflects the average percentage error 

of an estimated coefficient weighted by the relative size of each coefficient in the true matrix. 

 𝑊𝐴𝑃𝐸 =  ∑∑(
|�̃�𝑖𝑗|

∑ ∑ �̃�𝑘𝑙𝑙𝑘
) ×

|(𝑥𝑖𝑗 − �̃�𝑖𝑗)|

|�̃�𝑖𝑗|
× 100

𝑛

𝑗=1

𝑛

𝑖=1

 (1.44) 

 

(4) Standardized Weighted Absolute Difference (SWAD): similar to WAPE but 

weighting the absolute error. 

 𝑆𝑊𝐴𝐷 =  ∑∑(
|�̃�𝑖𝑗|

∑ ∑ �̃�𝑘𝑙
2

𝑙𝑘

) × |(𝑥𝑖𝑗 − �̃�𝑖𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

 (1.45) 

 

(5) Psi Statistic: an information-based statistic. 

𝜓 =  
1

∑ ∑ �̃�𝑖𝑗𝑗𝑖
∑∑[|�̃�𝑖𝑗| × |ln (

�̃�𝑖𝑗

(|𝑥𝑖𝑗| + |�̃�𝑖𝑗|) 2⁄
)| + |𝑥𝑖𝑗| × |ln (

𝑥𝑖𝑗

(|𝑥𝑖𝑗| + |�̃�𝑖𝑗|) 2⁄
)|]

𝑛

𝑗=1

𝑛

𝑖=1

 (1.46) 
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Several previous papers (e.g., Temurshoev et al., 2011) have shown that the traditional 

EURO method is outperformed by the RAS method under perfect information.  Nonetheless, 

because in practice the information required by the RAS method needs to be estimated (which is 

especially true for intra-year tables), embedded estimation errors need to be accounted for in the 

latter.  In doing so, the suggestions of Tarancón and Río (2005) are adopted and three levels of 

error (2%, 5% and 10%) are randomly applied in the total intermediate sales and intermediate 

purchases vectors (𝐮𝑡 and 𝐯𝑡 respectively).  Due to the unavailability of actual intra-year tables, 

I use a series of Brazilian IO tables from 2002 to 2005.19  The RAS estimates the interindustrial 

transaction table only, while the T-EURO recover the entire IO table for each period.20 

Note that two options are available for the temporal disaggregation of more than two 

periods: a simultaneous disaggregation or a hierarchical disaggregation.  In the former, all 

periods are solved in parallel, so they are derived from the same top base structure (the annual 

table).  In the latter, the disaggregation is performed in pairs, i.e., semester tables are derived first 

and quarterly tables are derived from them.  Hence, each level of tables uses as base the upper 

level structure.  A comparison was made between these two options using the series of Brazilian 

IO tables (2002-2005, each year representing one “quarter”) aggregated into a 4-year matrix 

(representing the “annual table”).  Results are shown in Table 1.2 and highlight that the method 

is robust enough so both options yield similar results. 

Table 1.2 shows the errors between the true 2004 IO table and the ones generated by T-

EURO and RAS for both the technical coefficient matrix and the Leontief Inverse.  As can be 

seen, the RAS outperforms the T-EURO method when full information is available.  

Nonetheless, at the standard 5% error level, the T-EURO for semester disaggregation 

consistently yields better results.  And although quarterly disaggregation tends to induce larger 

errors, as a result of more variability of coefficients at lower aggregation levels, overall the T-

EURO outperforms the RAS at the same 5% error (see Table 1.2 for 2004 and Tables A.1, A.2 

and A.3 in the Appendix for 2002, 2003 and 2005 respectively). 

 

                                                           
19 Benchmark IO tables for Brazil are only available for the years 1985, 1990-1996, 2000 and 2005.  Hence a more 

recent series was estimated from the national accounts using Guilhoto and Sesso Filho (2005) methodology. 
20 No temporal consistency constraint is applied to the RAS, so besides projection errors there are some aggregation 

errors not considered in the analysis.  In further works, comparisons with the CRAS procedure will be performed. 
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Table 1.1. Comparison between simultaneous and hierarchical disaggregation 

 
Technical Coefficient Matrix Leontief Inverse Matrix 

 

Q1 

(2002) 

Q2 

(2003) 

Q3 

(2004) 

Q4 

(2005) 

Q1 

(2002) 

Q2 

(2003) 

Q3 

(2004) 

Q4 

(2005) 

MAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

MAPE 0.148 0.173 0.253 0.239 0.125 0.191 0.280 0.313 

WAPE 0.110 0.098 0.198 0.218 0.042 0.062 0.169 0.217 

SWAD 0.001 0.001 0.002 0.002 0.000 0.000 0.001 0.001 

PSI 0.001 0.001 0.002 0.002 0.000 0.001 0.002 0.002 

 

 

Also, notice that when comparing weighted and unweighted errors (WAPE and MAPE 

respectively) for all T-EURO disaggregations (semester and quarter) they are consistently lower 

for WAPE.  Thus, it indicates that the method performs better in the adjustment of larger 

coefficients in the matrix, which are usually the most significant from an economic perspective.  

Moreover, the average percent error is the lowest for the Leontief Inverse matrix. 

In sum, in these simulation, the T-EURO yields better estimates under limited data 

situations when the minimal information required by RAS needs to be estimated, which tends to 

compound the errors from the econometric estimates and the adjustment itself.  Although it is not 

possible to ascertain that the T-EURO will always outperform RAS, given that the data required 

for forecasting interindustrial sales and purchases by sector for each quarter are relatively scarcer 

intra-year than inter-year (as industrial surveys are not available), the T-EURO method offers a 

significant advantage by only requiring official data readily available with GDP releases and 

avoiding the estimation of additional econometric models which will, necessarily, carry over 

errors to RAS.  Moreover, the T-EURO avoids the issue of hysteresis (Lenzen, Moura, Geschke, 

Kanemoto, & Moran, 2012) from the traditional RAS method, which could be significant if 

seasonality is strong within the year and superior data is unavailable to inform intra-year 

estimation. 
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Table 1.2. Results of temporal disaggregation via T-EURO and RAS, 2004 

  

Technical Coefficient Matrix Leontief Inverse Matrix 

  

 

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

M
A

D
 

T-EURO 

(Q)S 0.002 0.002 

T-EURO 

(Q)H 0.002 0.002 

RAS 0.001 0.001 0.002 0.002 0.001 0.002 0.004 0.005 

M
A

P
E

 

T-EURO 

(Q)S 8.735 4.927 

T-EURO 

(Q)H 8.727 4.919 

RAS 7.148 7.319 10.216 11.957 3.216 3.961 7.936 8.961 

W
A

P
E

 

T-EURO 

(Q)S 4.949 1.600 

T-EURO 

(Q)H 4.947 1.601 

RAS 3.238 4.142 6.123 8.217 0.916 1.492 2.784 3.367 

S
W

A
D

 

T-EURO 

(Q)S 0.039 0.008 

T-EURO 

(Q)H 0.039 0.008 

RAS 0.022 0.031 0.046 0.079 0.004 0.007 0.012 0.013 

P
S

I 

T-EURO 

(Q)S 0.049 0.016 

T-EURO 

(Q)H 0.049 0.016 

RAS 0.032 0.041 0.061 0.082 0.009 0.015 0.028 0.034 

Notes: T-EURO (Q)S: 2004 table derived from the 2002-2005 “annual table” via simultaneous disaggregation 

T-EURO (Q)H: 2004 table derived from the 2002-2005 “annual table” via hierarchical disaggregation 

RAS: 2004 table derived from the 2002-2005 “annual table” 

 

 

1.4. Application 

To illustrate the application of the T-EURO method, annual Brazilian IO tables for the 

2004-2006 period are used to derive quarterly intratemporal tables from official GDP statistics 

for each year.  A simple structural economic analysis is performed to highlight the heterogeneity 

in the production structure in each period, via the multiplier product matrix (MPM) and 

economic landscapes. 
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The Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e 

Estatística, 2014) provides quarterly GDP data comprised of value added disaggregated into 

Agriculture, Industry and Services, Taxes, Household Expenditure, Government Expenditure, 

Gross Capital Formation, Change in Inventories, Exports and Imports.  By combining these data 

with a series of quarterly GDP volume index, value added can be further disaggregated into 12 

sectors (Table A.4 in the Appendix).  The estimated 2004 quarterly tables are reported on 

Figures A.2-A.5 in the Appendix. 

An important feature of the IO system is to portray linkages between sectors in the 

economy.  Sectors both demand inputs (backward linkages) and supplies goods (forward 

linkages) to other sectors, allowing the identification of production chains.  In an attempt to 

identify key sectors in the economy, several measures of connectedness have been proposed.21  

The most commonly used are the Rasmussen-Hirschman Indexes which measure the power and 

sensitivity of dispersion for a particular sector.  From the basic IO model, we obtain the total 

requirement matrix (Leontief Inverse) 𝐁 = (𝐈 − 𝐀)−1.  Denote by �̅� = 𝛊′𝐁𝛊 𝑛⁄  the average of all 

elements in 𝐁.  Hence, the power of dispersion index 𝐁𝐋 = 𝛊′𝐁 �̅�⁄  and the sensitivity of 

dispersion 𝐅𝐋 = 𝐁𝛊 �̅�⁄  imply that industries with 𝐁𝐋𝑗 > 1 (𝐅𝐋𝑖 > 1) have above average direct 

backward (forward) linkages. 

The multiplier product matrix (MPM) was devised to simultaneously account for both 

forward and backward linkages in the economy, reflecting the first order field of influence of a 

change in a particular input coefficient (Sonis & Hewings, 1999).  It is defined as 𝐌 =

‖(𝐁𝛊)(𝛊′𝐁)‖ (𝑛�̅�)⁄  and measures a sector’s connectedness to all other sectors.  By sorting the 

matrix in a rank-size hierarchy, an “artificial economic landscape” is created and can be used to 

graphically portray structural changes in the economy. 

Overall, in terms of the connectivity of production chains, the structure tends to be quite 

stable within the year, with the manufacturing sector exhibiting the strongest dependency in the 

economy (Figure 1.2).  In terms of output multipliers, relatively more variability is observed 

within quarters and in its evolution over time (Table A.5 in the Appendix).  

                                                           
21 For a more comprehensive treatment of measurements of economic linkages in the IO framework, the interested 

reader is referred to Miller and Blair (2009). 
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The Agriculture sector is the one that benefits the most from the temporal disaggregation 

because the size of its linkages and output multipliers vary significantly intra-year.  As shown in 

Figure 1.3 and Figure 1.4, linkages portrayed in annual tables omit the typical seasonality of the 

industry.  Stronger backward linkages arise in the second semester due to the start of the 

soybeans and corn cycles, requiring the acquisition of inputs.  Conversely, their harvest in the 

first semester increase forward linkages as agriculture supplies the food production chain and 

exports. 

 

Figure 1.2. Hirschman/Rasmussen backward and forward linkages, 2004 

 

The “economic landscape” portrayed in Figure A.6 is consistent with the previous 

observations, showing the Manufacturing as by far the most linked sector in the economy at any 
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point in the year.  Due to its usually initial position in the production chain, it has larger forward 

linkages than backward linkages.  Moreover, a careful analysis of the MPM reveals that these 

forward linkages tend to strength towards the end of the year in response to increasing demand in 

the holiday season.  Mining also exhibits marginal increases in forward linkages throughout the 

year, probably pulled by Manufacturing ahead in the production chain. 

 

 

Figure 1.3. Comparison of quarterly linkages in relation to annual linkages, agriculture, 2004-

2006 

 

Notice, however, that the Agriculture sector’s dynamics is unique in the landscape.  In 

the first two quarters, forward linkages increase while backward linkages decrease, the opposite 

happening in the second half of the year.  In the first semester, forward linkages with 

Manufacturing and Transportation increase the most due to food processing and export activities.  

Conversely, backward linkages with Manufacturing and the Financial Sector are the ones that 

increases the most in the second semester, consistent with the increase requirement of inputs and 

financing.  The remaining sectors of the economy experience very small variations in the year.  

Overall, due to intra-year dynamics, disruptive events in a particular production chain can have 
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more/less negative effects depending on its timing and duration, which may affect the optimal 

policy response devised.  The use of annual tables abstracts from such dynamics, what can 

ultimately lead to incorrect assessments (see Chapter 4). 

Figure 1.5 contrasts the use of the annual output multiplier instead of quarterly 

multipliers.  Positive variations indicate overestimation and negative variations indicate 

underestimation.  Agriculture, Mining, Financial Services and Government have the largest 

errors, the former in excess of 5%.  Although for several industries errors for most quarters are 

below 1%, the total bias for a particular impact analysis can be low or high depending on the 

subset of sectors affected and the actual time period of the stimulus. 

 

 

Figure 1.4. Comparison of output multipliers, Agriculture, 2004-2006 

 

In sum, although most of the economy has a stable structure, some important sectors in 

the Brazilian economy as Agriculture and Manufacturing exhibit particular intra-year dynamics 

which may impose significant biases if the annual coefficients are used.  Hence, intra-year tables 

should be preferred since they provide a more comprehensive picture of the economic dynamics.  
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Moreover, another advantage of a finer disaggregation of time is to smooth out technology 

transitions, revealing the dynamics of change and overall trends. 

 

 

Figure 1.5. Estimation error due to annual vs. quarterly multipliers 

 

1.5. Conclusions 

Despite several methodological advances in terms of regional and industrial 

disaggregation, the IO literature regarding time dimension issues has focused on inter-year 

updating and dynamic models that still rely on annual tables as benchmarks.  The structure 

portrayed in annual tables, however, ignores any nuances and seasonality of a particular sector 

intra-year, biasing the estimated results of transient phenomena such as unexpected disruptions.  

The disaggregation of the IO table temporally is, thus, essential to improve the accuracy of such 

models as well as to expose seasonal production chain patterns, explore structural dynamics 

within a year, determine optimal policy intervention timings and analyze environmental 

processes. 

The T-EURO method proposed in this Chapter intends to fill this gap in the literature by 

disaggregating annual tables into intra-year matrices with distinct technical structure.  Based on 
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the EURO method, the T-EURO inherits the virtues of requiring only official macroeconomic 

data (intra-year GDP information that is readily available in most countries), adjusting the full 

IO system, avoiding arbitrary changes in flows and maintaining supply-demand consistency.  In 

addition, the implemented modifications transform the updating method into a disaggregation 

method, guaranteeing the temporal consistency of estimates as well as its convergence.  In terms 

of performance, the example for the Brazilian tables from 2002-2005 shows the T-EURO 

outperforming the RAS method, although a generalization of this result is not possible.  

However, given that detailed data to forecast interindustrial sales and purchases are relatively 

scarcer intra-year, the T-EURO has the advantage of relying only on official data, mitigating the 

issue of compounding errors from econometric estimates of the table’s borders and the RAS 

rebalancing algorithm, as well as the issue of hysteresis from serial methods like RAS.  

As an application example, the 2004-2006 annual Brazilian IO tables were disaggregated 

for each quarter and the resulting economic structure was analyzed.  While sectors such as 

Manufacturing and Services tend to maintain a more stable linkage structure throughout the year, 

Agriculture is significantly affected by seasonality in production, altering its linkages and 

multipliers.  As highlighted herein, the use of annual coefficients for this sector creates important 

biases in both directions in excess of 5%, since it cannot properly reflect the intra-year 

dynamics. 

A few caveats of this method are its sign preserving property for particular components 

of the IO table (change in inventories and net taxes/subsidies), estimation of independent 

intratemporal tables, and inexistence of intra-year benchmark tables to contrast estimates.  In 

further work, robustness checks and analysis using different IO datasets will be performed, as 

well as an evaluation of the accuracy of using intra-year tables as benchmarks for current 

dynamic models instead of annual ones. 

Although methods focusing on the disaggregation of IO tables into its industry and 

regional dimensions have been largely explored, the temporal dimension has had limited 

attention.  This Chapter aims to refocus on temporal issues by offering an initial method in the 

temporal disaggregation realm and highlighting its advantages, calling for a new wave of 

developments in this direction. 
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CHAPTER 2: THE SEASONAL STRUCTURE OF THE US ECONOMY: ESTIMATION 

OF INDUSTRIAL LINKAGES AT NATIONAL, STATE AND COUNTY LEVELS 

 

2.1. Introduction 

Seasonality is an inherent feature of economic systems, as supply and demand conditions 

fluctuate throughout the year driven by nature’s cyclical patterns and societal rules (cultural, 

legal, institutional).  These variations reflect the rearrangement of production systems to cope 

with scarce local resources and shifts in local demand by changing production lines, inventories, 

shipping modes and the spatial distribution of suppliers.  Agriculture is a primal example of 

seasonal dynamics, particularly in the northern US states, where winter months prevents major 

commercial crops.  For the Midwest, where corn and soybeans are the main crops, most of the 

agricultural activity is concentrated during growing season, usually from the second to early 

fourth quarter of the year (United States Department of Agriculture [USDA], 2010).  The steel 

and iron scrap industry in the US is another seasonal industry that relies heavily on shipping 

availability for collection and distribution of products.  During winter, frozen waterways in the 

Great Lakes force changes in freight mode to rail, affecting prices and supply.  Moreover, 

demand drops in the end of the year, and surges in the first quarter (when steelmakers rebuild 

raw materials inventories) also induce high fluctuation in the industry (Albertson & Aylen, 

1996). 

These seasonal changes in input requirements alter the structure and connectivity of 

different production chains (both local and external) and consequently change the direct, indirect 

and induced impacts of these sectors on the local economy.  For example, this implies that a 

flood event on a rural county can have significantly different effects for the community if it 

happens in the summer or in the winter.  Hence, by ignoring this intra-year structural variation 

we might over or under estimate the impact of an event.  Chapter 1 shows that annual multipliers 

can diverge by up to 6% when compared to quarterly multipliers estimated for the same period.  

 The major challenge in considering sub-year structural change is the limited availability 

of intra-annual multisectoral economic data, especially for finer geographical units such as states 

and counties.  The source of much of these national data at annual level derive from the system 

of national accounts which is based on annual censuses and surveys of manufacturing, services 

and agriculture to estimate supply and demand flows among economic agents.  This information 
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is compiled in an input-output (IO) table that portrays the total annual transactions among 

industries and between industries and final demand.  Chapter 1 tackles the temporal 

disaggregation issue at national level, by proposing a technique to estimate intra-year IO tables 

using only quarterly macroeconomic data (GDP by major component), which is readily available 

in most countries, and the annual table as a prior.  Despite its low data requirements, this 

technique cannot be applied when data is even more limited, i.e., in finer scales such as states 

and counties.  As the economic structure of lower geographical units can differ substantially 

from the national level, local communities still lack data to more accurately estimate the total 

impacts of local shocks. 

 This Chapter introduces a solution based on information theory to estimate state and 

county level multisectoral data using only and all scarce information available.  We propose a 

maximum cross-entropy program with multiple priors to recover quarterly IO tables from annual 

ones.  A key feature of this approach is its flexibility in considering any additional information 

available for a particular region.  We also provide a roadmap regarding data sources for the US 

that allows the estimation of these intra-year tables for any state and county between 2002-2016.  

To illustrate its practical application, we extract and analyze the quarterly tables for the US, State 

of Illinois, Cook County (IL) and Iroquois County (IL) for 2015. 

 The next Section discusses the data and methodologies used to estimate quarterly 

multisectoral data for the US at national, state and county levels.  Section 2.3 presents and 

analyzes the intra-year IO tables for Illinois, and conclusions follow in Section 2.4. 

 

2.2. Methods and Data 

2.2.1. National Quarterly Tables 

Although multisectoral intra-year data are notably scarce, at least at national level most 

countries have official quarterly GDP estimates by component.  These data are the minimum 

requirements of the Temporal EURO (T-EURO) method proposed in Chapter 1 for quarterly 

disaggregation of symmetric input-output tables (Figure 2.1).  The T-EURO is a modification of 

the EURO method (Beutel, 2002; Eurostat, 2008) that estimates intra-year IO tables (IOT) based 

on an annual IOT and quarterly GDP data by major component.  Interested readers can see the 
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full procedure in Chapter 1.  In a nutshell, the GDP information is converted into quarterly shares 

of value added by industry, total value added, total imports, total exports and total final demand.  

These shares are then used to modify the structure of the annual IOT by rows and columns, 

similarly to the first iteration in a RAS adjustment, and these structures are averaged in each 

quarter.  Because the resulting tables are internally unbalanced, we reestimate the total output by 

using this averaged input structure in a Leontief model, and then apply a quantity model to 

rebalance the flows.  At this stage, each quarter is balanced but does not add up to the annual 

observed flows.  Hence, according to the estimated quarterly values, the annual flows are 

redistributed in each quarter, guaranteeing their temporal consistency.  The quarterly tables are 

again internally unbalanced, so we follow the previous steps to adjust the flows in each table.  

When both internal and temporal consistency are achieved, we check the estimated GDP shares 

by quarter with the true ones and apply marginal corrections in the next iteration. 

 

 

Notes: Z: Interindustrial Flows; Y: Final Demand and Exports; O: Primary Inputs and Industrial 

Imports (except labor income); VA: Labor Income; K: Final Demand Imports; X: Total Industrial 

Output; G: Total Final Demand and Exports; U: Total Primary Inputs and Imports; L: Total 

Labor Income.  Matrix dimensions indicated in the corners. 

 

Figure 2.1: Data availability at national level, US 
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The main advantage of the T-EURO method is its low quarterly data requirements (only 

GDP by major component), which are readily available at national level in most countries.  In the 

case of the US, however, the Bureau of Economic Analysis (BEA) currently22 does not provide 

not seasonally adjusted estimates for quarterly GDP, except for Government expenditures (NIPA 

Tables 3.22 and 3.23 (Bureau of Economic Analysis [BEA], 2018c).  As expected, for intra-year 

disaggregation purposes, seasonally adjusted series cannot be used.  Hence, additional datasets 

are necessary to estimate the major components of GDP at higher frequency.  We base most of 

our estimates on the main data sources outlined in BEA’s NIPA Handbook (BEA, 2017) for the 

construction of quarterly estimates, relying solely on publicly available information. 

Quarterly labor income by industry was based on the BLS’ Quarterly Census of 

Employment and Wages (QCEW) (BLS, 2018b).   The QCEW is a firm-level dataset based on 

information from unemployment insurance administrative files from each US state.  Therefore, 

the scope of the data depends on each state’s unemployment insurance system reporting 

requirements.  Overall, the covered employment information represents 95% of all private-sector 

civilian jobs in the US.  The main categories that are underrepresented in this dataset are: 

agriculture (it includes around 53% of employees in these activities) and parts of the public 

sector like federal, military and postal workers (BLS, 2018a). 

Private companies’ total wages were allocated to their respective sectors, while 

government-owned companies were aggregated in either the Federal, or State and Local 

Government Enterprises sector.  These series were compiled for the 71-sector disaggregation 

scheme in the annual IOT for 1996-2016.  We calculated the Pearson correlation between the 

annual series from BEA and BLS for both NAICS 2 and 3 digits aggregation, and the results are 

reported in Figures C.1 and C.2 in the Appendix, respectively.  The BLS data track most sectors 

quite accurately, although a few sectors had to be aggregated due to low correlation resulting in a 

60-sector disaggregation.  The sum of wages for all industries in a given quarter is also used as 

proxy for total personal consumption expenditures. 

                                                           
22 The BEA will release not-seasonally adjusted series starting in mid-2018 as part of a comprehensive update of the 

US National Income and Product Accounts.  This is in part a response to a known issue of residual seasonality in the 

seasonally adjusted GDP series made available by the BEA (Rudebusch, Wilson, & Mahedy, 2015; Stark, 2015) that 

seems to persist even after changes in the methodology used (Lunsford, 2017). 
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Following BEA (2017), we use the US International Transactions Accounts (ITA) dataset 

as the main source for our estimates of total goods and services’ imports and exports (BEA, 

2018b).  Some adjustments23 are required to bridge ITA’s and NIPA’s trade values as described 

in the NIPA Handbook (BEA, 2017).  Due to lack of information to perform an equivalent 

adjustment intra-year, our estimates are based on ITA’s quarterly values available in its Table 1.1 

(BEA, 2018b).  The ITA annual estimates correlate well with NIPA’s series as shown in Figure 

2.2. 

 

 

Figure 2.2: Correlation between import and export series NIPA/ITA 

 

Quarterly estimates of total change in inventories are based on Census Bureau’s monthly 

Manufacturing & Trade Inventories & Sales Report, using the series of inventories for total 

businesses (Census Bureau, 2018c).  The report combines data from the Manufacturers’ 

Shipments, Inventories, and Orders Survey as well as the Monthly Retail and Wholesale Trade 

Surveys, covering only nonfarm industries.  The BEA uses annual data from the USDA on crop 

output, cash receipts and livestock to estimate agricultural inventories.  Given the unavailability 

of quarterly data from USDA, we only use the Census data, which correlates well with the 

annual series (Figure 2.3). 

 

                                                           
23 The values reported in the ITA’s current account need to be adjusted to include only gold used for domestic 

industrial production, exclude trade with US territories and commonwealths to align with NIPA’s geographic 

coverage, include imputed values for financial services furnished without payment, and other statistical adjustments. 

NIPA’s Table 4.3B shows the adjustment process for the annual data. 
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Figure 2.3: Correlation between total change in inventories series NIPA/Census 

 

Residential and nonresidential investment in structures are based on Census Bureau’s 

Value of Construction Put in Place Survey (Census Bureau, 2018a).  The monthly values are 

aggregated to quarterly level for total residential and total nonresidential.  Nonresidential 

investment in equipment and intellectual property products are based on the same total wages 

series as the one used for total personal consumption expenditures.  Finally, government 

expenditure is the only GDP component currently available that is not-seasonally adjusted.  The 

quarterly values are taken from NIPA’s Tables 3.22 and 3.23 (BEA, 2018c) and aggregated into 

government expenditures and gross investments.  Table 2.1 summarizes the data sources used for 

each GDP component. 

For all components (except government expenditures), quarterly shares were calculated 

and the annual GDP values were distributed accordingly.  This procedure guarantees that each 

component adds up to its annual value, but does not impose consistency within each quarter, i.e., 

the macroeconomic balance between income and expenditures might not hold.  Denoting 𝑔𝑐𝑡 the 

GDP component 𝑐 = {𝑣1, … , 𝑣𝑁 , 𝑣𝑜 , 𝑚, 𝑦1, … , 𝑦5, 𝑔1, … , 𝑔4, 𝑒} (according to Table 2.1) at time 

period 𝑡 , the macroeconomic consistency requires that: 

∑𝑔𝑣𝑖𝑡

𝑁

𝑖=1

+ 𝑔𝑣𝑜𝑡 =∑𝑔𝑦𝑖𝑡

5

𝑖=1

+∑𝑔𝑔𝑖𝑡

4

𝑖=1

+ (𝑔𝑒𝑡 − 𝑔𝑚𝑡)     ∀𝑡 (2.1) 

 

To establish this identity, we rebalance the estimated quarterly GDP components using 

the Generalized RAS method (Junius & Oosterhaven, 2003; Lenzen, Wood, & Gallego, 2007; 
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Termushoev, Miller, & Bouwmeester 2013).  GRAS minimizes the distance between our current 

estimates of the GDP components (𝑞𝑐𝑡) and the new estimates (𝑔𝑐𝑡), subject to Equation 2.1 (in 

which government expenditures, 𝑐 = 𝑔1, … , 𝑔4, are the exogenous data) and the temporal adding 

up constraint for each component.  The nonlinear programming is given by: 

min
𝐆
𝐼(𝐆 || 𝐐) =∑∑|𝑞𝑐𝑡|𝑧𝑐𝑡 ln (

𝑧𝑐𝑡
𝑒
)

𝑐𝑡

 (2.2) 

subject to 

∑𝑔𝑣𝑖𝑡

𝑁

𝑖=1

+ 𝑔𝑡𝑣𝑜 −∑𝑔𝑦𝑖𝑡

5

𝑖=1

− (𝑔𝑒𝑡 − 𝑔𝑚𝑡) =∑𝑔𝑔𝑖𝑡

4

𝑖=1

     ∀𝑡 (2.3) 

 

∑𝑔𝑐𝑡

4

𝑡=1

= 𝑔𝑐
YEAR   ∀𝑐  (2.4) 

 

where 𝑧𝑐𝑡 = 𝑔𝑐𝑡 𝑞𝑐𝑡⁄  (such that 𝑧𝑐𝑡 = 1 if  𝑞𝑐𝑡 = 0) and 𝑒 is the base of natural 

logarithms. 

 Once the quarterly GDP components are balanced, the T-EURO method can be applied to 

each year in order to estimate its intra-year tables.  The final quarterly tables have the 

disaggregation presented in Table C.1 and span the period 2002:Q1-2016:Q4. 

 

2.2.2. State and County Quarterly Tables 

At finer geographical scales, as expected, intra-year data become scarcer.  Information 

on final demand expenditure and trade are not widely available, and we could only identify labor 

income proxies that are publicly available for any state or county (Figure 2.4). 

For states, quarterly labor income by industry can still be based on the BLS’ QCEW 

(BLS, 2018b), although some industrial aggregation might be required to avoid issues of 

censored information.  The QCEW, however, does not report quarterly wages at scales finer than 

state level and thus cannot be used to proxy labor income for counties.  Instead, we use the 

Quarterly Workforce Indicators (QWI) dataset from Census, as it provides estimates of 

employment and earnings down to county and metro-areas (Census Bureau, 2018d).  
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Table 2.1: Data sources for the estimation of quarterly GDP components 

   

Source Dataset Variable Freq. 

Start 

Year 

Value Added       

  V001 𝑣1…𝑣𝑁 Compensation of employees BLS QCEW Total Wages Q 1975 

V000 𝑣𝑜 Total primary inputs (except V001) BLS QCEW Total Wages Q 1975 

    
    Trade 

     

  IMP 𝑚 Total imports of goods and services BEA ITA - Table 1.1 Imports of goods and services Q 1960 

F040 𝑒 Total exports of goods and services BEA ITA - Table 1.1 Exports of goods and services Q 1960 

    
  

  
Final Demand 

       
F010 𝑦1 Personal consumption expenditures BLS QCEW Total Wages Q 1975 

F02S 𝑦2 Nonresidential fixed inv. in structures Census 
Value of Construction 

Put in Place Survey 
Total Nonresidential M 2002* 

F02E 𝑦3 

 

Nonresidential fixed inv. in equipment 
BLS QCEW Total Wages Q 1975 

F02N Nonresidential fixed inv. in IP products 

F02R 𝑦4 Residential private fixed investment Census 
Value of Construction 

Put in Place Survey 
Total Residential M 2002* 

F030 𝑦5 Change in private inventories Census 
Manufacturing & Trade 

Inventories & Sales 
Inventories - Total Businesses M 1992 

F06C 
𝑔1 

Federal, defense: Consumption 
BEA NIPA - Table 3.22 Consumption expenditures Q 1947 

F07C Federal, nondefense: Consumption 

F06S 

𝑔2 

Federal, defense: Gross inv. in structures 

BEA NIPA - Table 3.22 Gross government investment Q 1947 

F06E Federal, defense: Gross inv. in equipment 

F06N Federal, defense: Gross inv. in IP products 

F07S Federal, nondefense: Gross inv. in structures 

F07E Federal, nondefense: Gross inv. in equipment 

F07N Federal, nondefense: Gross inv.in IP products 

F10C 𝑔3 State and local: Consumption BEA NIPA - Table 3.23 Consumption expenditures Q 1947 

F10S 

𝑔4 

State and local: Gross inv. in structures 

BEA NIPA - Table 3.23 Gross government investment Q 1947 F10E State and local: Gross inv. in equipment 

F10N State and local: Gross inv. in IP products 

Notes: Q = Quarterly, M = Monthly, *Total construction (not disaggregated) is available from 1993. 
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Notes: Z: Interindustrial Flows; Y: Final Demand and Exports; O: Primary Inputs and Industrial 

Imports (except labor income); VA: Labor Income; K: Final Demand Imports; X: Total Industrial 

Output; G: Total Final Demand and Exports; U: Total Primary Inputs and Imports; L: Total 

Labor Income.  Matrix dimensions indicated in the corners. 

 

Figure 2.4: Data availability at state and county levels, US 

 

The QWI is based on the Longitudinal Employer-Household Dynamics (LEHD) that 

integrates employer-employee microdata.  The LEHD is a longitudinal dataset built on federal 

datasets (Social Security, IRS), administrative information from state agencies, the QCEW and 

other surveys, and covers 95% of US private sector jobs (Abowd et al., 2005).  Unlike the 

QCEW, the QWI is based on job-level data by linking employees and employers in its 

framework.  Such bridge is created by combining states’ quarterly reports of unemployment 

insurance administrative files and QCEW records.  As expected, because the QCEW is one of 

the primary sources of information for the QWI, they are comparable datasets. 

The wages accounted for in the QWI are the ones reported as an unemployment insurance 

covered earning during a given quarter with similar scope as the QCEW.  Notice that since the 

QCEW is collected at the state level, the QWI estimates the spatial distribution of jobs 

throughout the state based on commercial and residential addresses from QCEW records and 
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other Census datasets (see Section 3.3 of Abowd et al. (2005)).  This weighting was made 

consistent with the state-level QCEW statistics, so that the beginning of the quarter employment 

from QWI matches the state-wide employment on the first month of the quarter from the BLS.24  

In this context, even the low data requirements of the T-EURO method are not met, so a 

different solution needs to be used.  To recap, our goal is to recover 𝑁2 + 𝑉 ∗ 𝑁 + 𝑁 ∗ 𝐹 + 𝑉 ∗ 𝐹 

unknown elements for each quarter based on 𝑁 + 1 exogenous variables.  If we consider this 

underidentified inverse problem from the lenses of information theory, we can use the maximum 

entropy principle and use only and all information available to estimate the different IO tables. 

Consider a random variable 𝑧 with 𝑛 possible realizations (𝑧1, … , 𝑧𝑛) with unknown 

probabilities (𝑝1, … , 𝑝𝑛) of occurrence such that ∑ 𝑝𝑖
𝑛
𝑖=1 = 1.  Given no additional information, 

the distribution that best reflects the uncertainty about 𝑧 (i.e., the least informative distribution) is 

uniform, as it assigns equal probability for any realization.  From an Information Theory 

perspective, we can measure this uncertainty via Shannon’s (1948) entropy measure: 

𝐻(𝐏) = −𝐾∑𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

 (2.5) 

 

where 𝐾 is a positive constant and 0 ln(0) = 0.  Notice that the function 𝐻 is bounded 

between[0, 𝐾 ln 𝑛], the upper limited reached when 𝑝1, … , 𝑝𝑛 follows a uniform distribution.  

The larger the entropy measure 𝐻, the more uncertain we are about the distribution of 𝑝. 

Now consider that we know the a priori distribution of 𝑝 from non-sample or pre-sample 

information and denoted it by 𝑞1, … , 𝑞𝑛.  If we want to departure from this prior knowledge to 

measure the uncertainty about a chosen distribution 𝑝, following Kullback and Leibler (1951), 

we can measure the convergence between the two distributions as: 

−𝐷(𝐏||𝐐) = −∑𝑝𝑖 ln
𝑝𝑖
𝑞𝑖

𝑛

𝑖=1

= −∑𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

+∑𝑞𝑖 ln 𝑞𝑖

𝑛

𝑖=1

 (2.6) 

                                                           
24 The QWI uses several processes to comply with confidentiality protection, especially at finer geographical scales, 

by introducing noise to the measures, aggregating or suppressing data.  Payroll indicators are not suppressed, but are 

influenced by some noise that does not affect their time-series or cross-section analytic validity (Abowd et al., 

2005).  In instances where the data distortion is substantial (due to small number of firms/employers, etc.) the 

observation is flagged accordingly. 
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where 𝐷(𝐏||𝐐) measures the distance between 𝐩 and 𝐪, and is known as the Kullback 

and Leibler (K-L) cross-entropy measure.  When 𝐩 and 𝐪 are identical, 𝐷(𝐏||𝐐) reaches its 

minimum.  Notice that Shannon’s entropy measure (Equation 2.5) is a special case of K-L when 

the prior distribution 𝐪 is uniform.  

Now, consider that we have some additional information about the random variable (say, 

a moment condition), and we want to use this limited knowledge to infer its posterior 

distribution.  Following Jaynes (1957), we can use the maximum entropy principle and set up a 

programming problem that maximizes the entropy of the posterior distribution subject to the 

additivity constraint (∑ 𝑝𝑖
𝑛
𝑖=1 = 1) and any additional data constraint available.  Equivalently, if 

we have a prior distribution, we can use the K-L measure and solve for the posterior distribution 

that minimizes the divergence (𝐷(𝐏||𝐐)) with the prior and is consistent with the information 

provided.25 

The application of the entropy principle in IO analysis was introduced by Theil in the 

1960s.  Tilanus and Theil (1965) used the K-L measure to determine the information inaccuracy 

of forecasts of input coefficients in different industries.  Theil (1967) analyzes the information 

loss from aggregating sectors in the IO table by studying how a measure of matrix information 

content varies across different scales.  These papers were followed by the works of Wilson 

(1970a, 1970b) and Batten (1981) looking at the estimation of interregional IO models through 

maximum entropy.  Golan, Judge and Robinson (1994) propose an alternative to the RAS 

rebalancing algorithm using a cross entropy formulation.  The authors consider the column 

standardized coefficients of the table as probabilities and use the same row and column 

constraints as the RAS to update the base matrix (used as prior).26  This work was later extended 

by Robinson, Cattaneo and El-Said (2001) in the context of social accounting matrices (SAM) 

incorporating additional constraints to capture errors in variables.  Fernández-Vázquez (2015) 

uses generalized maximum entropy to resolve the issue of estimating the multipliers of non-

linear IO models, given the small amount of data points available from harmonized time-series 

                                                           
25 For example, considering the moment condition ∑𝑝𝑖𝑧𝑖 = 𝑦, a maximum cross-entropy program would be: 

min
𝐏
𝐷(𝐏||𝐐) =∑𝑝𝑖 ln

𝑝𝑖
𝑞𝑖

𝑛

𝑖=1

             𝑠. 𝑡.        ∑ 𝑝𝑖𝑧𝑖
𝑛

𝑖=1
= 𝑦   𝑎𝑛𝑑 ∑ 𝑝𝑖

𝑛

𝑖=1
= 1 

26 Notice that both the GRAS formulation presented in Equations 2.2-2.4 and the RAS formulation presented in 

Equations 1.1-1.4, although grounded on information theory are not equivalent to the Kullback-Leibler cross-

entropy criterion unless all variables are non-negative (Lemelin, 2009). 
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of IO tables.  More recently, Fernández-Vázquez (2010) and Fernández-Vázquez, Hewings and 

Ramos (2015) have proposed the use of multiple priors in the adjustment of IO tables based on 

early works from Golan (2001) and Bernadini (2008).  This data-weighted priors (DWP) 

approach allows us to use a mixture of a priori information that are endogenously weighted by 

the maximum cross-entropy program. 

We depart from this DWP framework to set up our cross-entropy (CE) specification: each 

element of the IO matrix is assumed to be a discrete random variable with support vector 𝐛′ =

(𝑏1, … , 𝑏𝑀) and associated probabilities 𝐩′ = (𝑝1, … , 𝑝𝑀).  The prior distribution is denoted 𝐪′ =

(𝑞1, … , 𝑞𝑀) and data weights per industry in each quarter by 𝛾𝑗𝑡 with 𝐛𝛄
′
= (𝑏1

γ
, … , 𝑏𝐻

γ
) and 

𝐩𝛄′ = (𝑝1
γ
, … , 𝑝𝐻

γ
), so that 𝛾𝑗𝑡 = ∑ 𝑏ℎ

𝛾
𝑝
ℎ𝑗𝑡

𝛾
ℎ . 

Our target is to estimate the dark shaded matrices in Figure 2.4 by using the exogenous 

quarterly labor income information by industry (𝑣𝑎𝑗) and the annual totals by element.  We also 

have assumed two priors: the state’s (county’s) annual table and the national (state) quarterly 

tables.  Since we do not know the total output nor the total final demand per quarter, we column 

standardize the matrices annually, according to the total output per industry 𝑗 (𝑥𝑗
YEAR) or total 

final demand per component 𝑓 (𝑔𝑓
YEAR).  Hence, each element is now bounded [0,1] and we use 

the same support vector for all elements 𝐛′ = (0, 0.5, 1).  The notation used is shown in Table 

2.2. 

 

Table 2.2: Notation used in the maximum entropy program 

Matrix 

Standardized 

Element 

Associated 

Probabilities Estimated Element 

Z 𝑎𝑖𝑗𝑡 = 𝑧𝑖𝑗𝑡 𝑥𝑗
YEAR⁄  𝑝𝑚𝑖𝑗𝑡

A  �̃�𝑖𝑗𝑡 =∑ 𝑏𝑚
𝑀

�̃�
𝑚𝑖𝑗𝑡
A  

Y 𝑐𝑖𝑓𝑡 = 𝑦𝑖𝑓𝑡 𝑔𝑓
YEAR⁄  𝑝𝑚𝑖𝑓𝑡

C  �̃�𝑖𝑓𝑡 =∑ 𝑏𝑚
𝑀

�̃�
𝑚𝑖𝑓𝑡
C  

O 𝑤𝑣𝑗𝑡 = 𝑜𝑣𝑗𝑡 𝑥𝑗
YEAR⁄  𝑝𝑚𝑣𝑗𝑡

W  �̃�𝑣𝑗𝑡 =∑ 𝑏𝑚
𝑀

�̃�
𝑚𝑣𝑗𝑡
W  

K 𝑑𝑣𝑓𝑡 = 𝑘𝑣𝑓𝑡 𝑔𝑓
YEAR⁄  𝑝𝑚𝑣𝑓𝑡

D  �̃�𝑣𝑓𝑡 =∑ 𝑏𝑚
𝑀

�̃�
𝑚𝑣𝑓𝑡
D  
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The basic DWP cross-entropy program is specified in Equations 2.7-2.17: 

min
𝐏A,𝐏P,𝐏C,𝐏D,𝐏γ

𝐷(𝐏A, 𝐏P, 𝐏C, 𝐏D, 𝐏γ || 𝐐AA, 𝐐AQ, 𝐐P, 𝐐C, 𝐐D, 𝐐γ)

=∑∑𝛾𝑗𝑡 ∑∑𝑝𝑚𝑖𝑗𝑡
A ln (

𝑝𝑚𝑖𝑗𝑡
A

𝑞𝑚𝑖𝑗
AA
)

𝑁

𝑖=1

𝑀

𝑚=1

𝑇

𝑡=1

𝑁

𝑗=1

+∑∑(1 − 𝛾𝑗𝑡) ∑∑𝑝𝑖𝑗𝑡𝑚
A ln (

𝑝𝑚𝑖𝑗𝑡
A

𝑞𝑚𝑖𝑗𝑡
AQ
)

𝑁

𝑖=1

𝑀

𝑚=1

𝑇

𝑡=1

𝑁

𝑗=1

+ ∑∑∑∑𝑝𝑚𝑖𝑓𝑡
C ln (

𝑝𝑚𝑖𝑓𝑡
C

𝑞𝑚𝑖𝑓𝑡
C

)

𝑇

𝑡=1

𝐹

𝑓=1

𝑁

𝑖=1

𝑀

𝑚=1

+ ∑∑∑∑𝑝𝑚𝑣𝑗𝑡
W ln (

𝑝𝑚𝑣𝑗𝑡
W

𝑞𝑚𝑣𝑗𝑡
W

)

𝑇

𝑡=1

𝑁

𝑗=1

𝑉

𝑣=1

𝑀

𝑚=1

+ ∑∑∑∑𝑝𝑚𝑣𝑓𝑡
D ln (

𝑝𝑚𝑣𝑓𝑡
D

𝑞𝑚𝑣𝑓𝑡
D

)

𝑇

𝑡=1

𝐹

𝑓=1

𝑉

𝑣=1

𝑀

𝑚=1

+∑∑∑𝑝ℎ𝑗𝑡
γ
ln (
𝑝ℎ𝑗𝑡
γ

0.5
)

𝑇

𝑡=1

𝑁

𝑗=1

𝐻

ℎ=1

 

(2.7) 

 

subject to: 

 

∑(∑ 𝑏𝑚𝑝𝑚𝑖𝑗𝑡
A

𝑀

𝑚=1

)

𝑇

𝑡=1

𝑥𝑗
YEAR = 𝑧𝑖𝑗

YEAR     ∀𝑖, 𝑗 (2.8) 

 

∑(∑ 𝑏𝑚𝑝𝑚𝑖𝑓𝑡
C

𝑀

𝑚=1

)

𝑇

𝑡=1

𝑔𝑓
YEAR = 𝑦𝑖𝑓

YEAR     ∀𝑖, 𝑓 (2.9) 

 

∑(∑ 𝑏𝑚𝑝𝑚𝑣𝑗𝑡
W

𝑀

𝑚=1

)

𝑇

𝑡=1

𝑥𝑗
YEAR = 𝑜𝑣𝑗

YEAR     ∀𝑣, 𝑗 (2.10) 

 

∑(∑ 𝑏𝑚𝑝𝑚𝑣𝑓𝑡
D

𝑀

𝑚=1

)

𝑇

𝑡=1

𝑔𝑓
YEAR = 𝑘𝑣𝑓

YEAR     ∀𝑣, 𝑓 (2.11) 

 

∑(∑ 𝑏𝑚𝑝𝑚𝑖𝑗𝑡
A

𝑀

𝑚=1

)

𝑁

𝑖=1

𝑥𝑗
YEAR +∑(∑ 𝑏𝑚𝑝𝑚𝑣𝑗𝑡

W

𝑀

𝑚=1

)

𝑉

𝑣=1

𝑥𝑗
YEAR + 𝑣𝑎𝑗𝑡

=∑(∑ 𝑏𝑚𝑝𝑚𝑗𝑖𝑡
A

𝑀

𝑚=1

)𝑥𝑖
YEAR

𝑁

𝑖=1

+∑(∑ 𝑏𝑚𝑝𝑚𝑗𝑓𝑡
C

𝑀

𝑚=1

)𝑔𝑓
YEAR

𝐹

𝑓=1

    ∀𝑗, 𝑡 

(2.12) 

 

∑ 𝑝𝑚𝑖𝑗𝑡
A

𝑀

𝑚=1

= 1      ∀𝑖, 𝑗, 𝑡 (2.13) 
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∑ 𝑝𝑚𝑖𝑓𝑡
C

𝑀

𝑚=1

= 1      ∀𝑖, 𝑓, 𝑡 (2.14) 

 

∑ 𝑝𝑚𝑣𝑗𝑡
W

𝑀

𝑚=1

= 1      ∀𝑣, 𝑗, 𝑡 (2.15) 

 

∑ 𝑝𝑚𝑣𝑓𝑡
D

𝑀

𝑚=1

= 1      ∀𝑣, 𝑓, 𝑡 (2.16) 

 

∑𝑝ℎ𝑗𝑡
γ

𝐻

ℎ=1

= 1      ∀𝑗, 𝑡 (2.17) 

 

The minimand (Equation 2.7) is the K-L cross-entropy measure and is divided into five 

terms.  The first term measures the divergence between the posterior probabilities for matrix Z 

and the annual prior (𝑞𝑚𝑖𝑗
AA ), each column in each quarter weighted by 𝛾𝑗𝑡.  The second term is the 

divergence with respect to the quarterly prior (𝑞𝑚𝑖𝑗𝑡
AQ

), each column in each quarter weighted by 

1 − 𝛾𝑗𝑡 (notice that the weights (𝛾𝑗𝑡 = ∑ 𝑏ℎ
γ
𝑝ℎ𝑗𝑡
γ𝐻

ℎ=1 ) are endogenously estimated).  The next 

three terms quantify the divergence of the posterior probabilities for matrices Y, O and K with 

their respective annual priors.  The last term quantifies the divergence for the weights from the 

uniform distribution.  We chose this uninformative prior as we do not have any preference 

among the two matrices, similarly to Fernández-Vázquez et al. (2015). 

Equations 2.8-2.11 are the temporal consistency constraints, and they assure that the sum 

of each element throughout the quarters adds up to its annual value.  Equation 2.12 is an internal 

consistency constraint and guarantees the balance between total sales and total purchases by 

industry.  Finally, Equations 2.13-2.17 are the probability consistency constraints and bound the 

sum of probabilities to 1. 

This nonlinear program estimates the optimal probabilities that minimize the dissimilarity 

with the weighted prior distributions and are consistent with the limited information in the data.  

We can then recover the coefficients following the last column of Table 2.2.  The estimated 
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Lagrange multipliers indicate the impact of each constraint to the solution, and the data weights 

reflect the preferred prior for each industry in each quarter.27 

Following Golan et al. (1994), we can also obtain a normalized measure of uncertainty 

associated with each estimated matrix value.  For instance, taking �̃�𝑖𝑗𝑡, we have: 

𝑆(�̃�𝑖𝑗𝑡) = (−∑ �̃�
𝑚𝑖𝑗𝑡
A ln �̃�

𝑚𝑖𝑗𝑡
A

𝑀
)  ln𝑀⁄  (2.18) 

 

𝑆(�̃�𝑖𝑗𝑡) is the Shannon’s entropy measure normalized by the size of the support vector, so 

that it reflects the randomness (uncertainty) of the probability distribution attached to a given 

matrix element (in this case �̃�𝑖𝑗𝑡).  Moreover, we can also calculate the variance of an estimated 

element by (Golan et al., 1994): 

𝜎2(�̃�𝑖𝑗𝑡) = ∑(𝑏𝑚)
2𝑝𝑚𝑖𝑗𝑡
A

𝑀

𝑚=1

− (∑ 𝑏𝑚𝑝𝑚𝑖𝑗𝑡
A

𝑀

𝑚=1

)

2

 (2.19) 

 

The advantage of the maximum entropy framework is its flexibility in including 

additional exogenous constraints if the researcher has more information from a particular region.  

In our case, we proxy the total household expenditure with the total labor income from either 

QCWE or QWI.  Denoting the rescaled total expenditure for each quarter as 𝑢𝑡, we have: 

(∑ 𝑏𝑚𝑝𝑚𝑖H𝑡
C

𝑀

𝑚=1

)𝑔H
𝑌𝐸𝐴𝑅 + (∑ 𝑏𝑚𝑝𝑚𝑣H𝑡

D

𝑀

𝑚=1

)𝑔H
YEAR = 𝑢𝑡    ∀𝑡 (2.20) 

 

 Also, for some regions in which there is information on the agricultural growing season, a 

constraint about the trend in this sector’s output can be added.  In the case of Illinois, for 

example, corn and soybeans represented more than 93% of total harvested acres in 2009 (USDA, 

2010).  Given their similar growing seasons (Figure 2.5), we can add three constraints on total 

output: 

                                                           
27 Notice that the objective function and constraints are continuously differentiable and convex for ∀𝑝𝑖 > 0, which 

satisfy the sufficient conditions for a global minimum (Golan, Judge, & Miller, 1996). 
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Figure 2.5: Most active periods for planting and harvesting, Illinois 2010 (USDA, 2010) 

 

 Finally, at the county level we have the possibility of using three different priors for the 

interindustrial transaction matrix: the county’s annual table (𝐐AA), the state’s quarterly tables 

(𝐐AQs) or the national quarterly tables (𝐐AQn).   Therefore, we do a straightforward modification 

of the K-L cross-entropy measure in Equation 2.7 to consider more than two priors: 
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(2.24) 

 

 The probabilities for each weight are still bounded between 0 and 1 and are subject to the 

modified probability consistency constraint ∑ 𝑝𝑢ℎ𝑗𝑡
γ𝐻

ℎ=1 = 1     ∀𝑢, 𝑗, 𝑡  (similar to the one in 

Equation 2.17).  We also include the constraint that the weights themselves sum to 1: 

∑𝛾𝑢𝑗𝑡

3

𝑢=1

=∑(∑𝑏ℎ
γ
𝑝𝑢ℎ𝑗𝑡
γ

𝐻

ℎ=1

)

3

𝑢=1

= 1      ∀𝑗, 𝑡 (2.25) 

 

 In sum, the basic DWP CE program for states is composed of Equations 2.7-2.17 (Model 

1), and for counties of the objective function in Equation 2.24, constraints 2.8-2.17 and 2.25 

(Model 2).  A simple application using the standard datasets and procedures aforementioned is 

presented next. 

 

2.3. Application 

To illustrate the applicability of the methodology presented in Section 2.2, we perform 

the quarterly temporal disaggregation of the 2015 IO tables for the US, State of Illinois, Cook 

County (where the city of Chicago is located) and Iroquois County (a rural county in Central 

Illinois).  To reduce loss of data fidelity at county level, we use NAICS 2-digit aggregation at all 
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geographical levels, although a disaggregation up to 60 sectors is possible at the national level.  

Data sources are the same presented in Section 2.2.  The annual IO table for the US was obtained 

from BEA’s Input-Output Accounts Data (BEA, 2018a), and the tables for Illinois and its 

counties were obtained from IMPLAN (2018).  We use MATLAB to run the T-EURO algorithm 

for the US, and GAMS28 to solve the following non-linear programs: Model 1 plus constraints in 

Equations 2.20-2.23 for Illinois; Model 2 plus constraint in Equation 2.20 for Cook County 

(urban); and Model 2 plus constraints in Equations 2.20-2.23 for Iroquois County (rural). 

We expect to observe strong seasonality in agriculture and construction industries, in 

which activity should reduce significantly during winter months (especially in the first quarter).  

For agriculture in particular, planting/growing periods should generate higher backward linkages, 

while harvest periods should induce more forward linkages, similar to the results found for 

Brazil in Chapter 1.  We also expect accentuated seasonality in utilities and mining/oil extraction 

due to peak in energy use for heating during the winter and tourism related sectors (NAICS 71 

and 72) with higher activity during the end of the year holiday season. 

For each region, we report its quarterly GDP, its quarterly output by industry, the spread 

of the quarterly output multipliers (the direct and indirect output necessary to supply $1 increase 

in final demand), the weighted type I income multiplier (the direct and indirect labor income 

impact of an increase of 1% in the final demand of a given sector), and the contribution of the 

sector to the regions’ total value added (using a Hypothetical Extraction Method).  A complete 

description and discussion of these measures are available in Miller and Blair (2009). 

The estimated quarterly GDP by region is reported in Table 2.3. For the US, Illinois and 

Cook County, the GDP has a U-shaped pattern throughout the quarters, mainly driven by 

manufacturing and service activities.  In Iroquois County, where agriculture is the dominant 

sector, the evolution of the GDP follows the growing pattern of corn and soybeans with the 

lowest value added in the first quarter, and the highest in the fourth quarter. 

 

 

 

                                                           
28 We use the CONOPT3 solver, version 3.14T. 
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Table 2.3: Quarterly GDP (Million dollars), not seasonally adjusted, 2015 

 

Adm. Unit Q1 Q2 Q3 Q4 Annual 

US National  4,529,684  4,346,978   4,387,557  4,856,480     18,120,700  

Illinois State       197,407      189,225    189,559     205,003        781,193  

Cook County        96,809         91,497         91,964      100,187         380,456  

Iroquois County              190              209              210             223                832  

 

The output evolution in the quarterly IO tables for the US follows the overall expected 

seasonality pattern described earlier.  The fourth quarter is the strongest for most activities, 

although the first quarter also shows a significant role in Manufacturing (NAICS 31-33), 

Information (NAICS 51) and FIRE29 sectors (Table 2.4).  The output multiplier varies on average 

2.1% intra-year, with the largest variation concentrated in service activities (Figure 2.6).  Among 

those, Healthcare (NAICS 62) and tourism related sectors (NAICS 71 and 72) change the most 

(3.7%, 2.7% and 2.8% respectively). 

Agriculture (NAICS 11) follows its expected seasonal pattern, with output growing 

throughout the quarters but concentrated in the middle of the year when several crops are 

growing simultaneously in the US.  As shown ahead, this pattern will differ in Illinois and in 

particular Iroquois county due to climate conditions, with output peaking in Q4 following the 

growing season of corn and soybeans.  In the US, backward linkages are the highest in Q1 when 

inputs are purchased for the planting period, while forward linkages increase in Q3 and Q4 

during harvesting when crops are pushed downstream in the food industry chain.  Another 

interesting pattern to notice is the increase in forward linkages in mining and oil extraction 

during Q1 and Q4, driven mainly by utilities during the winter months. 

A more significant indicator of the impact of a sector in the economy is its effect on local 

income weighted by the sector’ size, presented in Figure 2.7.  These income multipliers show 

high variance within the year. Public Administration (NAICS 92), Healthcare and Manufacturing 

have the largest effects throughout the quarters, with Healthcare exhibiting the largest variance in 

Q4, and Construction (NAICS 23) and Finance and Insurance (NAICS 52) the largest in Q1.  

The deviation from the annual multiplier is also the largest for Construction and Finance and 

Insurance.  The widest spread in output multipliers is the greatest for the latter (50% intra-year). 

                                                           
29 FIRE: Finance, Insurance, Real Estate, and Rental and Leasing (NAICS 52-53). 
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Table 2.4: Total quarterly output by industry in the US, 2015, million dollars 

NAICS Description Q1 Q2 Q3 Q4 

11 Agriculture, Forestry, Fishing and Hunting 99850 111392 117062 121946 

21 Mining, Quarrying, and Oil and Gas Extraction 121993 106548 104745 104953 

22 Utilities 112156 94231 93213 103793 

23 Construction 305367 361278 392181 388143 

31-33 Manufacturing 1431398 1360247 1361160 1482486 

42 Wholesale Trade 385581 366352 369281 412568 

44-45 Retail Trade 368180 364799 369393 413585 

48-49 Transportation and Warehousing 267447 260292 263425 289521 

51 Information 395766 355347 367612 400143 

52 Finance and Insurance 700238 523971 521520 595921 

53 Real Estate and Rental and Leasing 839262 773553 786350 911223 

54 Professional, Scientific, and Technical Services 566426 546659 550838 636980 

55 Management of Companies and Enterprises 175779 141861 138531 156053 

56 Adm. and Sup. and Waste Mmgt. 214561 214320 218828 242785 

61 Educational Services 69611 69632 70122 76043 

62 Health Care and Social Assistance 524010 516596 528904 596461 

71 Arts, Entertainment, and Recreation 69444 71779 75733 89926 

72 Accommodation and Food Services 249562 252624 258987 275836 

81 Other Services (except Public Administration) 198955 197968 200748 220107 

92 Public Administration 823641 833350 830662 851647 

 

At national level, Manufacturing has the largest contribution to GDP throughout the year, 

Mining, Utilities, FIRE and Management Services have the most significant effect on Q1’s GDP, 

Public Administration on Q2-Q3, while margins (Transportation, Wholesale and Retail sectors), 

FIRE and health activities drive the growth in Q4 (Figure 2.8).  
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Figure 2.6: Output multiplier spread throughout the year by industry, US, 2015 

 

 

 

Figure 2.7: Weighted type I income multiplier, US, 2015 
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Figure 2.8: Quarterly sectoral contribution to the GDP, US, 2015 

 

In 2015, Manufacturing, FIRE and Public Administration represented 44% of the annual 

GDP in the State of Illinois, varying between 43 and 46% during the year.  Although Illinois is a 

large grain producer (corn and soybeans), the agricultural industry is relatively small regarding 

its GDP participation.  Nonetheless, this sector follows the expected pattern for midwestern 

states with growing output and multiplier effects from Q1 to Q4 (Table 2.5), and a significant 

spread in income multiplier (27%, Figure 2.10).  As noted for the national level, agriculture has 

declining backward linkages and growing forward linkages throughout the year, reflecting the 

major planting and harvesting periods in the state (see Figure 2.5).  Construction also tracks the 

expected pattern of higher activity from Q2 onwards. 

The rest of the sectors have a similar intra-year pattern as the national one, but with lower 

variance.  Overall the output multipliers are lower than the nation’s (as we should expect of a 

smaller economy) with also lower average spread intra-year (1.7%), although there is 

significantly higher spread (4.2%) for Management Services (NACIS 55) (Figure 2.9).  

Manufacturing, Public Administration and Healthcare have the highest income multipliers and 

follow the intra-year dynamics for the US (Figure 2.10).  Manufacturing shows a stable GDP 
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contribution throughout the quarters, while Finance and Insurance varies the most, being 

particularly important in Q1 during pre-harvest when loans, insurance and other financial 

instruments are contracted (Schnitkey & Coppess, 2018).  Professional Services (NAICS 54) and 

Healthcare have an increasing participation in the state’s value added in the year (Figure 2.11).  

 

Table 2.5: Total quarterly output by industry in Illinois, 2015, million dollars 

NAICS Description Q1 Q2 Q3 Q4 

11 Agriculture, Forestry, Fishing and Hunting 3909 4082 4204 4379 

21 Mining, Quarrying, and Oil and Gas Extraction 1462 1400 1392 1415 

22 Utilities 7898 7398 7276 7545 

23 Construction 13979 14941 15574 15947 

31-33 Manufacturing 82769 80451 80873 83317 

42 Wholesale Trade 21874 21247 21194 22521 

44-45 Retail Trade 13628 13527 13735 14826 

48-49 Transportation and Warehousing 15332 14824 14953 15733 

51 Information 15100 14304 14367 14992 

52 Finance and Insurance 37918 31116 30886 33279 

53 Real Estate and Rental and Leasing 33590 32344 32583 34190 

54 Professional, Scientific, and Technical Services 26887 26117 26676 29858 

55 Management of Companies and Enterprises 7342 5995 5930 6635 

56 Adm. and Sup. and Waste Mmgt. 9649 9567 9674 10422 

61 Educational Services 3441 3492 3527 3659 

62 Health Care and Social Assistance 20893 20996 21108 23543 

71 Arts, Entertainment, and Recreation 2972 3068 3162 3261 

72 Accommodation and Food Services 8965 9194 9328 9761 

81 Other Services (except Public Administration) 13125 12666 12828 13749 

92 Public Administration 19173 19795 17956 19743 
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Figure 2.9: Output multiplier spread throughout the year by industry, Illinois, 2015 

 

 

 

Figure 2.10: Weighted type I income multiplier, Illinois, 2015 
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Figure 2.11: Quarterly sectoral contribution to the GDP, Illinois, 2015 

 

Cook County is characterized by large Manufacturing, Finance and Professional Services 

sectors which output tend to follow a U-shape curve intra-year (Table 2.6).  The first quarter is 

particularly strong for Finance and Insurance activities, while the last quarter is stronger for 

Professional Services.  Output multipliers have a higher spread than the state and the US, 

especially in service sectors, the largest observed in Educational Services (Figure 2.12).  When 

we look at the income multiplier accounting for the sector size (Figure 2.13), Finance and 

Insurance, Professional Services and Healthcare activities have the largest impacts in the local 

labor income, largely concentrated in Q4 for the latter two.  Their multipliers vary 66%, 46% and 

47% respectively over the year.  In terms of contributions to the local GDP, Information (NAICS 

51) and FIRE sectors affect almost 50% of the local economy, with the highest impact on Q1 and 

lowest in Q2 (Figure 2.14).  Manufacturing has a more stable contribution throughout the year. 

The county also concentrates 55% of tourism activities’ GDP in Illinois.  These activities 

exhibit an interesting pattern in the region with accommodation growing consistently from Q1 to 

Q4 and recreational activities peaking during the summer months in Q2 and Q3.  Their 
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multipliers also vary considerably intra-year: 5.3% and 1.6% for output and 37% and 20% for 

labor income respectively, and their importance in the GDP peaks in the middle of the year. 

 

Table 2.6: Total quarterly output by industry in Cook County, 2015, million dollars 

NAICS Description Q1 Q2 Q3 Q4 

11 Agriculture, Forestry, Fish. and Hunt. 5 6 7 7 

21 Mining, Quarrying, and Oil and Gas Extraction 100 118 120 129 

22 Utilities 1454 1409 1396 1424 

23 Construction 5760 6156 6294 6502 

31-33 Manufacturing 23181 22769 22807 23561 

42 Wholesale Trade 8418 8079 8004 8438 

44-45 Retail Trade 5485 5481 5552 6009 

48-49 Transportation and Warehousing 8669 8506 8521 8856 

51 Information 9609 9172 9159 9488 

52 Finance and Insurance 21619 17575 17460 18694 

53 Real Estate and Rental and Leasing 17765 17168 17188 17976 

54 Professional, Scientific, and Technical Services 16425 16272 16602 18636 

55 Management of Companies and Enterprises 3565 2908 2845 3034 

56 Adm. and Sup. and Waste Mmgt. 4981 4984 5064 5482 

61 Educational Services 2457 2622 2038 2631 

62 Health Care and Social Assistance 9676 9765 10035 11052 

71 Arts, Entertainment, and Recreation 1592 1823 1862 1748 

72 Accommodation and Food Services 4497 4654 4697 4940 

81 Other Services (except Public Administration) 6635 6487 6579 6974 

92 Public Administration 8497 7720 8018 8264 
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Figure 2.12: Output multiplier spread throughout the year by industry, Cook County, 2015 

 

 

 

 

Figure 2.13: Weighted type I income multiplier, Cook County, 2015 
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Figure 2.14: Quarterly sectoral contribution to the GDP, Cook County, 2015 

 

Iroquois is a small, predominantly agricultural county in east central Illinois.  Hence, we 

should expect to observe a higher intra-year seasonality than in the other regions (Table 2.7).  

Indeed, from Figures 2.16 and 2.17, one can note the significant impact of Agriculture to the 

local community besides the strong variation in terms of income impacts and GDP contribution 

throughout the year.  The income multiplier grows 54% from winter (Q1) to harvest season in 

Q4 when the contribution to the region’s GDP reaches 25%.  This variation exerts significant 

error if we use annual income multipliers instead of quarterly ones: the effects of a shock in this 

sector would be overestimated by 27% in Q1 and underestimated by 18% in Q4.  Directly 

connected to Agriculture is Food Manufacturing which is the major component of sector 31-33, 

in which backward linkages increase in the Q4.  Forward linkages for Agriculture do not vary 

significantly intra-year since most of the production is exported and processed outside of the 

county. 
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Table 2.7: Total quarterly output by industry in Iroquois County, 2015, million dollars 

NAICS Description Q1 Q2 Q3 Q4 

11 Agriculture, Forestry, Fishing and Hunting 107 112 113 119 

21 Mining, Quarrying, and Oil and Gas Extraction 1 1 1 1 

22 Utilities 14 14 14 14 

23 Construction 33 37 37 37 

31-33 Manufacturing 92 92 92 93 

42 Wholesale Trade 40 41 41 43 

44-45 Retail Trade 27 28 29 29 

48-49 Transportation and Warehousing 26 27 27 28 

51 Information 8 8 8 8 

52 Finance and Insurance 23 23 23 24 

53 Real Estate and Rental and Leasing 37 37 37 38 

54 Professional, Scientific, and Technical Services 10 10 10 11 

55 Management of Companies and Enterprises 3 3 3 3 

56 Adm. and Sup. and Waste Mmgt. 2 3 3 3 

61 Educational Services 1 1 1 1 

62 Health Care and Social Assistance 29 30 31 32 

71 Arts, Entertainment, and Recreation 1 2 2 2 

72 Accommodation and Food Services 9 9 9 9 

81 Other Services (except Public Administration) 13 13 14 15 

92 Public Administration 20 22 21 22 
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Figure 2.15: Output multiplier spread throughout the year by industry, Iroquois County, 2015 

 

 

Figure 2.16: Weighted type I income multiplier, Iroquois County, 2015 
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Figure 2.17: Quarterly sectoral contribution to the GDP, Iroquois County, 2015 

 

2.4. Conclusions 

In this Chapter, we provide a roadmap of procedures and public data sources to estimate 

quarterly multisectoral tables for any US state and county, taking the annual IO table for the 

region as given.30  The advantage of the maximum entropy program proposed is its flexibility in 

including additional idiosyncratic information available for a particular region, complementing 

the common value added dataset available to all states/counties.  We recommend using all 

information pertaining to the intra-year dynamics of the community, as it will improve the 

accuracy of the estimates.  This maximum entropy program can also be adapted for the national 

level if the minimum information requirements for the T-EURO method are not met. 

The disaggregation of the IO tables presented in Section 2.3 shows the ability of this 

approach in reflecting seasonal patterns, which is particularly important for small economies that 

rely on seasonal industries.  The application for Iroquois County exemplifies the need for 

quarterly data when assessing shocks in local communities, as annual indicators would 

significantly mismeasure the effects on the regional labor income of the agricultural sector 

throughout the year. 

                                                           
30 Annual state and county tables can be obtained commercially from IMPLAN (http://www.implan.com/) or IO-

Snap (https://www.io-snap.com). 
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Three important caveats need to be considered when applying the procedures presented in 

this Chapter: first, a high sectoral aggregation might have a dampening effect on seasonal 

patterns and obfuscate which sector is driving this effect; second, the datasets provided constitute 

a consistent source to temporally disaggregate any state/county in the US, but the use of specific 

local information is essential to improve the estimates of the CE program.  In the application on 

Section 2.3, there is still considerable uncertainty in sectors 51 to 54 (Figures C.3-C.5 in the 

Appendix); third, both the T-EURO method and the DWP CE program proposed were designed 

for non-negative entries and, thus, any value that can lead to a negative share (such as change in 

inventories and subsidies) needs to be aggregated before using these procedures.  Allowing both 

positive and negative entries is subject of ongoing research. 

This Chapter aims at providing the tools and inputs to allow researchers and practitioners 

to better capture the effects of intra-year interventions in regional economies.  We hope that 

future research and analysis benefit from a better snapshot of the local economic structure at 

different points in time, and acknowledge that the timing of the shock is critical for the size and 

scope of its outcomes. 
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CHAPTER 3: THE CHALLENGE OF ESTIMATING THE IMPACT OF DISASTERS: 

MANY APPROACHES, MANY LIMITATIONS AND A COMPROMISE 

 

 

3.1. Introduction 

Disasters have unique features and effects that pose challenges to traditional economic 

modeling techniques.  Most of them derive from a time compression phenomenon (Olshansky, 

Hopkins, & Johnson, 2012) in which, instead of a gradual transition phase after the steady-state 

is disrupted, an accelerated adjustment process (due to recovery efforts) brings the economy to a 

new steady-state.31  Even though some activities compress better than others (e.g., money flows 

in relation to construction), it creates an intense transient economic shock (non-marginal) that is 

spatially heterogeneous and simultaneous, and that depends on the intensity of damages, the 

local economic structure, and the nature and strength of interregional linkages.  As a result of the 

speed of disaster recovery, there is significant uncertainty, simultaneous supply constraints with 

different forward and backward linkages effects due to production chronology and schedules, 

and behavioral changes that affect both the composition and volume of demand (Okuyama, 

2009).  Timing is, therefore, fundamental in determining the extent of impacts since capacity 

constraints, inventories and production cycles vary throughout the year (see Chapters 1 and 2). 

In terms of economic modeling, the aforementioned features translate into a series of 

effects for which the net outcome (positive/negative) is unknown, as it depends on the 

idiosyncrasies of the region.  In the aftermath of a disaster, the previous steady-state of the 

economy is disrupted by changes in both supply and demand.  Household displacement, income 

loss, structural changes in expenditure patterns, diminished government expending, and 

reconstruction efforts imply positive and negative effects to final demand.  Industrial response to 

the latter, in terms of output scheduling, affects intermediate demand.  Conversely, supply may 

be locally constrained due to physical damage to capital and loss of inventory, or externally 

constrained by limited input availability for production (due to accessibility issues or disruptions 

in the production chain).  Whether the net effect on the region is positive or negative will depend 

on the characteristics of the disaster, the resilience of local industries, the volume of 

                                                           
31 E.g., a large amount of damaged assets is intensely replaced during recovery, moving the dynamics of capital 

depreciation and replacement to a new steady-state in the region or across regions. 



 

60 

 

reconstruction funds made available and the size of interregional linkages.  Spillover effects 

spread through supply chains’ disruptions and resource allocations for reconstruction in different 

regions at different times. 

Hence, modeling efforts are essential to understand the role of different constraints in the 

post-disaster recovery path and to better inform mitigation planning.  Regional industrial 

linkages topologies have a key role in spreading or containing disruptions, as well as sectoral 

robustness in terms of inventories, excess capacity, and trade flexibility (Rose & Wei, 2013).  

Supply chain disruptions can have significant impacts on the financial health of firms by 

constraining sales, diminishing operating income and increasing share price volatility (Hendricks 

& Singhal, 2005).  Nonetheless, most firms do not properly quantify these risks, with few 

developing backup plans for production shutdowns due to physical damage or alternative 

suppliers in case of disruptions (University of Tennessee, 2014).  Assessing the dynamics of 

dissemination and identifying crucial industrial nodes can lead to more resilient economic 

systems. 

As highlighted by Oosterhaven and Bouwmeester (2016), ideally, the assessment of 

regional impacts should be based on an interregional computable general equilibrium (CGE) 

framework.  However, as a set of such models is required to account for both short-run (when 

substitution elasticities are minimal) and long-run impacts, the cost-time effectiveness of this 

approach is usually problematic (Rose, 2004; Pan & Richardson, 2015).  The widely used 

alternative has been input-output (IO) models due to their rapid implementation, easy tractability 

and integration flexibility with external models that are essential in the estimation of impacts 

post-disaster.  The tradeoff between its CGE counterpart is more rigid assumptions on 

substitutability of goods, price changes and functional forms, which make IO more appropriate 

for short-term analysis.  A variety of IO models has been proposed to deal with disruptive 

situations, most of them built upon the traditional demand-driven Leontief model (Okuyama, 

2007; Okuyama & Santos, 2014).  Nevertheless, these contributions are fragmented in different 

models, many of which either fail to incorporate the aforementioned constraints or do so in an 

indirect way that may be inconsistent with the assumptions of the IO framework (Oosterhaven & 

Bouwmeester, 2016; Oosterhaven, 2017). 
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In this Chapter, we offer a compromise that encompasses the virtues of intertemporal 

dynamic IO models with the explicit intratemporal modeling of production and market clearing, 

thus allowing for supply and demand constraints to be simultaneously analyzed.  The 

Generalized Dynamic Input-Output (GDIO) framework is presented and its theoretical basis 

derived.  The GDIO synthetizes many of the early contributions in the disaster literature, 

especially those contained in the Inventory Adaptive Regional IO Model (Hallegatte, 2014), 

complementing them with the Sequential Interindustry Model, a demo-economic extension and 

seasonality effects.  We integrate in a single model inventory dynamics, expectations’ 

adjustment, timing of the event, impacts of displacement, unemployment and reconstruction.  

The GDIO provides insights into the role of pivotal production chain bottlenecks, population 

dynamics and interindustrial flow patterns that can guide the formulation of better recovery 

strategies and mitigation planning. 

In the next Section, we present a concise literature review of models focused on 

disruptive events using the IO framework.  Section 3.3 describes the intuition, mathematical 

formulation and solution of the GDIO model.  Section 3.4 presents a simple 3-sector example to 

show the basic feedbacks in the model and compares these results with the recovery paths of 

other models in the literature.  Conclusions follow. 

 

3.2. Literature Review 

The input-output literature on natural disasters is vast, and although a comprehensive 

review is outside the scope of this Chapter, it is available in Okuyama (2007), Przyluski and 

Hallegatte (2011) and Okuyama and Santos (2014).  In this Section, we briefly highlight the 

main contributions and some of the pitfalls from the current literature. 

In explicitly considering supply, demand and trade constraints, and their sources inside 

the framework, Cochrane (1997), Oosterhaven and Bouwmeester (2016) introduced rebalancing 

algorithms for squared IO tables, which were later extended by Koks and Thissen (2016) and 

Oosterhaven and Többen (2017) to supply and use tables (SUT).  Alternatively, Rose and Wei 

(2013) use both supply- and demand-driven models to capture backward and forward spillovers 

from shortfalls in intermediate inputs.  These approaches, however, rely on an implicit 

assumption of perfect information to rebalance the economy and calculate total multiplier 



 

62 

 

effects.  A way to incorporate the increase in uncertainty in the aftermath of a disaster – arising 

from information asymmetries (Okuyama & Santos, 2014) – is to include these constraints in the 

IO framework by explicitly modeling the market clearing process (in a Marshallian sense).  In 

the Adaptive Regional IO Model (ARIO) model (Hallegatte, 2008), sectors produce according to 

an expected demand level that might differ from the actual demand resulting in over- or under-

supply (a reflection of highly uncertain environments).    

For ex-ante analyses, it is also essential to consider the interaction between local demand-

production conditions and the evolution of these constraints instead of imposing an exogenous 

recovery trajectory.  Lian and Haimes (2006) provide an alternative in the Dynamic Inoperability 

Input-Output Model (DIIM) by transforming the Leontief Dynamic growth model into a 

recovery model.32  The DIIM determines the speed with which the production gap post-disaster 

closes in each period according to supply-demand unbalances. 

In terms of dynamics, a few studies have proposed formulations focused on industrial 

chronologies and production sequencing in order to capture intertemporal disruption leakages.  

The time-lagged model proposed by Cole (1988, 1989)33 and the Sequential Interindustry Model 

(SIM) by Romanoff and Levine (1981) relax the assumption of production simultaneity, instead 

accounting for production timing.  This is essential, as production delays can have ripple effects 

in different industrial chains, and perpetuate in the economy for several periods, influencing 

output intertemporally (Okuyama, Hewings, & Sonis, 2002; 2004).  However, the role of 

seasonality in the economic structure is still unaccounted for in the available dynamic models.  

Although some sectors have more stable production structures over the course of a year, the bias 

of using annual multipliers in seasonal sectors such as agriculture can be significant, as 

highlighted in Chapters 1 and 2.  Hence, fluctuations in production capacity and interindustrial 

linkages intra-year have a significant impact on the magnitude, spread and duration of 

unexpected disruptive events, which affect sectoral adaptive responses. 

                                                           
32 The DIIM is the dynamic version of the Inoperability Input-Output Model (IIM) (Santos, 2003; Santos & Haimes, 

2004).  Despite its wide application in the literature, it offers no methodological advances in relation to the 

traditional IO model.  In fact, as shown in Dietzenbacher and Miller (2015) and Oosterhaven (2017), it is just a 

normalization of the Leontief model. 
33 The time-lagged model has been criticized in a series of papers by Jackson, Madden and Bowman (1997), Jackson 

and Madden (1999) and Oosterhaven (2000), due to Cole’s assumption of a fully endogenized system which is 

theoretical inconsistent and non-solvable.  No other disaster applications are available. 
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The important role of inventories in mitigating short-term effects of disruptions has also 

been incorporated in the dynamic literature: the Inventory-SIM (Romanoff & Levine, 1990; 

Okuyama & Lim, 2002), the Inventory-DIIM (Barker & Santos, 2010) and the Inventory-ARIO 

(Hallegatte, 2014).  However, there is still limited consideration of different types of inventories 

(materials and supplies, work-in-progress, finished goods) and their formation in the same 

framework.  Besides inventories, Rose and Wei (2013) also consider other mitigation strategies 

such as using goods destined for export in the local economy, input conservation and production 

recapture.  Further, Koks and Thissen (2016)’s MRIA model allows increasing local production 

of by-products to reduce inoperability. 

Natural disasters also tend to change expenditure patterns both in the affected region (due 

to layoffs, reduced production, governmental assistance programs) and outside of it (relief aid).  

These have been incorporated in Okuyama et al. (1999) and Li, Crawford-Brown, Syddall and 

Guan (2013), but the main issue is to properly identify and quantify such behavioral changes.  

Another important challenge is the application of a systems approach to disaster modeling, i.e., 

the integration of regional macro models with physical networks (transportation, utilities, etc.) 

that operate at different scales and frequencies.  There are temporal mismatches between low 

frequency economic models (monthly, quarterly, yearly basis) and high frequency physical 

networks (day, hourly intervals), as well as spatial mismatches in terms of systems boundaries 

and granularity (economic models usually defined over administrative boundaries at macro level 

versus micro level larger/smaller networks).   Efforts in integrating physical networks include the 

Southern California Planning Model (Pan & Richardson, 2015), the National Interstate 

Economic Model (Park & Richardson, 2014) combining a MRIO with transportation networks, 

and the work of Rose and Benavides (1998) who focused on electricity supply. 

In sum, several alternatives have been proposed, but their contributions are fragmented in 

several models without a common synthesis framework.  The Inventory-ARIO model introduces 

many of the aforementioned contributions, such as modeling supply-demand in a dynamic 

context to explicitly incorporate constraints, consideration of inventory formation (materials and 

supplies only), and some adaptation behavior from agents, but such model is still incomplete.  

Missing are a more comprehensive accounting of production scheduling, seasonality in the 

production structure, and demographic dynamics post-event.  The next Section introduces a new 
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model that departs from the Inventory-ARIO model and integrates these points in a consistent 

and theoretically sound way. 

 

3.3. Methodology 

When dynamics are introduced in the IO framework, the economic system becomes a 

combination of intratemporal flows and intertemporal stocks.  Intertemporal stocks are key to 

exploit such dynamics and are essential to fulfill both reproducibility (conditions for production 

in the next period) and equilibrium conditions (market clearing) across time periods.  Inventories 

assure irreversibility of production (i.e., inputs need to be available before output is produced) 

and the feasibility of free disposal in a consistent accounting sense (by absorbing unused 

inputs/outputs) (Debreu, 1959).  Therefore, as echoed by Aulin-Ahmavaara (1990), a careful 

definition of flows and stocks is paramount to avoid theoretical inconsistencies in the model. 

Following the past literature (Leontief, 1970; Romanoff & Levine (1977); ten Raa, 1986), 

time is discretized into intervals 𝑡 ∈  Τ, Τ ⊃  ℤ, of length ℎ.  The discretization of a continuous 

process (production), requires that any flow 𝐙𝑖𝑗  occurring during the length ℎ be time-

compressed, as ∄ 𝐙𝑖𝑗(𝑡
∗), ∀𝑡∗  | 𝑡 < 𝑡∗ < 𝑡 + 1.  Moreover, since the production process is not 

explicitly modeled per se, production begins and ends simultaneously and synchronously within 

ℎ for all industries, and output is sold at the end of the period to final demand or inventories 

(stocks).34 

Flows and stocks need to be organized in a certain way in order to comply with time-

relevant neoclassical assumptions on production sets.  If production is to occur in period 𝑡, 

irreversibility mandates that all required inputs be available in advance and, therefore, input 

purchases occur in 𝑡 − 1.  Note that the discretization displaces all interindustrial flows that 

would occur within ℎ to a single purchase event in the previous period, i.e., industries cannot 

purchase inputs during production.  In addition, free disposal requires the existence of 

inventories, so that unused materials and finished goods can be consistently accounted for and 

transferred intertemporally. 

                                                           
34 This includes both finished and work-in-progress goods. 
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Based on these assumptions, the length ℎ can be divided into a sequence of events that 

starts with the formation of supply from production, and ends with demand being realized, 

markets cleared and goods allocated, thus creating the necessary conditions for production in the 

next period.35  We assume intratemporal asymmetric information between producers and 

consumers and, hence, production schedules cannot be changed in response to demand shifts 

within ℎ, but they can and will be adjusted between periods. 

An overview of the model is presented in Figure 3.1.  The intuition behind it is 

straightforward: producers determine the feasibility of their production schedules for the period, 

given the current availability of industrial inputs, capital and labor.  Assuming non-

substitutability between finished goods for intermediate and final consumptions, if the total 

schedule is not feasible, producers use a rationing rule to set how much to offer in each market in 

excess of any inventories from the previous period (Section 3.3.1).  Therefore, final demand, 

influenced by reconstruction efforts, displacement, labor conditions and income, might be under- 

or over-supplied.  Industries react to this supply-demand unbalance by adjusting their 

expectations for the next production cycle and by attempting to purchase the necessary level of 

inputs (Section 3.3.2).  Because this interindustrial demand may also be under- or over-supplied, 

after markets clear, each sector determines a feasible production schedule for the upcoming 

period (Section 3.3.3).  The stock losses of a disaster occur between periods, diminishing inputs, 

capital and displacing population, thus affecting production feasibility and demand 

level/composition for the next period. 

                                                           
35 It follows from ten Raa (1986): all outputs for the period are assumed to form together at the end of ℎ. 
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Figure 3.1: Overview of the Generalized Dynamic Input-Output Model (GDIO) 

 

The generic formulation of the GDIO model is detailed in Figure 3.2,36 so no specific 

functional forms are presented where there is flexibility (although examples are provided).  

                                                           
36 The standard IO notation is used in this Chapter.  Moreover, matrices are named in bold capital letters, vectors in 

bold lower-case letters (except inventories denoted by 𝐈) and scalars in italic lower-case letters.  The Greek letter 𝛊 
(iota) denotes a unitary row vector of appropriate dimension.  Finally, a hat sign over a vector indicates 

diagonalization, a prime sign transposition, × standard multiplication, and ⊗, ⊘ indicate element-wise 

multiplication and division respectively. 
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Assume an economy with 𝑛 industries and 𝑇 production periods of length ℎ.  An industry 𝜇 ∈

1, … , 𝑛 and time period 𝑡 ∈ 1, … , 𝑇 are taken as reference points for expositional purposes. 

 

Figure 3.2: Detail view of the Generalized Dynamic Input-Output Model (GDIO) 

 

3.3.1. Supply Side 

It is imperative to distinguish between a local direct input requirement matrix (�̃�) and a 

proper technical coefficient matrix (𝐀), as the terminology has often been indiscriminately used 

in the literature.  The former is derived from locally purchased inputs only, while the latter arises 

from all inputs required for production, both local and imported, thus reflecting the structure of a 

Leontief production function.  Local direct input requirement matrices change when regional 
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purchase coefficients (RPC) vary since �̃�(𝑡) = 𝐑𝐏𝐂(𝑡)⨂𝐀, i.e., when there is a change in the 

share of domestic/external suppliers.  This is quite frequently the case in disaster situations as 

local supply plunges.  Conversely, technical coefficient tables are stable and may only change 

due to seasonality – if intra-year tables are used (Chapters 1 and 2) – or due to the adoption of 

alternative production technologies, the choice of which might depend on the availability of local 

supply.37 

In contrast to traditional IO specifications, the Leontief production function is extended 

to include primary inputs (𝐥) and assets/capital (𝐤), besides industrial inputs (𝐙).  This 

modification introduces supply constraints due to limited input availability, physical damage to 

capital or displacement of the workforce.  Hence, production capacity in industry 𝜇 is given by 

available industrial inputs, and by the coefficients 𝐚𝜇
L(𝑡) and 𝐚𝜇

K(𝑡), which reflect primary inputs 

and assets requirements per unit of output respectively.38 

Total available industrial inputs from industry 𝑖 for production of industry 𝜇 at time 𝑡 is 

the sum of locally purchased inputs (𝐙A), imports (𝐌I) and materials and supplies inventories 

(𝐈M) from the previous period:39 

𝐙𝑖𝜇
T (𝑡) = 𝐙𝑖𝜇

A (𝑡) + 𝐌𝑖𝜇
I (𝑡) + 𝐈𝑖𝜇

𝑀(𝑡 − 1)     ∀𝑖 (3.1) 

 

Total labor supply 𝑙𝑇(𝑡) is determined endogenously as a fixed share 𝜏 of the current 

resident population 𝑝(𝑡), which in itself depends on total net migration (�̅�(𝑡)) for the period, 

plus any external commuting labor 𝑙E̅(𝑡).40 

𝑝(𝑡) = 𝑝(𝑡 − 1) − �̅�(𝑡) (3.2) 

 

                                                           
37 Technology choice with constraints could be modeled using Duchin and Levine’s (2011) framework. 
38 E.g., suppose an industry 𝜇 relies on a 10,000 sqft factory to produce $10 million of output.  Given the traditional 

linearity assumption, 𝐚𝜇
K(𝑡) = 103 sqft/million $.  These coefficients change with the economic structure, i.e., due to 

seasonality, labor and capital requirements might change to accommodate different production functions. 
39 The inventory strategy in the GDIO is quite different from the Inv-ARIO model.  The latter is based on the 

premise that all industries seek to maintain a target level of M&S inventories similar to “order-point systems” used 

in managing inventories prior to the 1970s (Ptak & Smith, 2011).  The issue with such approach is that modern 

inventory management relies on “material requirement planning” systems that consider the full supply chain 

conditions when a firm re-orders inputs, not only its own inventory position (Ptak & Smith, 2011).  In the GDIO, 

priority is given to attend demand in the post-disaster period, instead of rebuilding inventories. 
40 In a multiregional specification, external labor availability would be bounded by unemployed individuals in other 

regions.  Also, if housing data is available, net migration can be endogenous: the amount of in- (out-)migration as a 

proportion 𝜑 of added (lost) residential squared footage in the previous period (𝑛(𝑡) =  𝜑 ∗ ∆𝑠𝑞𝑓𝑡RES(𝑡 − 1)). 
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𝑙T(𝑡) = 𝜏 × 𝑝(𝑡) + 𝑙E̅(𝑡) (3.3) 

 

The labor supply can have different degrees of substitutability between industries 

depending on available information on skills, age, and/or education (Kim, Kratena, & Hewings, 

2014; Kim & Hewings, 2018).  In the simplest case, it can be assumed perfectly substitutable so 

that 𝐥(𝑡) = 𝑙T(𝑡) × 𝐥(0) × (𝛊 × 𝐥(0))−1. 

Given available industrial inputs (𝐙T(𝑡)), primary inputs (𝐥(𝑡)) and capital (𝐤(𝑡)), 

industries produce in the current period following a Leontief production function, up to a total 

potential output �̃�𝜇
A(𝑡): 

�̃�𝜇
A(𝑡)  = 𝑓(𝐙T, 𝐥, 𝐤) = min {

𝐙1𝜇
T (𝑡)

𝐀1𝜇(𝑡)
, … ,

𝐙𝜇𝜇
T (𝑡)

𝐀𝜇𝜇(𝑡)
, … ,

𝐙𝑛𝜇
T (𝑡)

𝐀𝑛𝜇(𝑡)
,
𝐥𝜇(𝑡)

𝐚𝜇L(𝑡)
,
𝐤𝜇(𝑡)

𝐚𝜇K(𝑡)
} (3.4) 

 

As aforementioned, the only reason for 𝐀𝑖𝑗(𝑡 − 1) ≠ 𝐀𝑖𝑗(𝑡) is a change in production 

technology.  If regional purchase coefficients change from 𝑡 − 1 to 𝑡, they may not affect 𝐀𝑖𝑗(𝑡). 

The actual total output 𝐱𝜇
A(𝑡) depends on the scheduled total output for the period 𝐱𝜇

S(𝑡) 

(which is further discussed in Section 3.3.3) and any available inventory of finished goods for 

intermediate demand 𝐈𝜇
FI from the last period (inventories of finished goods for final demand 𝐈𝜇

FF 

were already embedded in 𝐱𝜇
S(𝑡)): 

𝐱𝜇
A(𝑡) = min {�̃�𝜇

A(𝑡),   𝐱𝜇
S(𝑡) − 𝐈𝜇

FI(𝑡 − 1)} (3.5) 

 

After production is completed, unused inputs enter the stock of materials and supplies 

inventories (𝐈M) at period 𝑡.  We assume that imported inputs are used first in the production 

process and then local inputs are consumed.41  In addition, note that 𝐈𝑖𝜇
M(𝑡) ≥ 0, although ∆𝐈𝑖𝜇

M(𝑡) 

can be either positive or negative: 

𝐈𝑖𝜇
M(𝑡) = [𝐙𝑖𝜇

T (𝑡)] − [𝐀𝑖𝜇(𝑡) × 𝐱𝜇
A(𝑡)]    ∀𝑖 (3.6) 

 

 

                                                           
41 In this way, there is no change in inventory for external industries. 
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3.3.2. Demand Side 

On the demand side, a semi-exogenous final demand vector (𝐟𝜇(𝑡)) and endogenous 

intermediate demands (𝐙𝜇𝑗
R (𝑡)) are locally supplied by 𝐱𝜇

A(𝑡) and any available finished goods 

inventory.  We assume that there is non-substitutability between finished goods for final demand 

and finished goods for intermediate demand (analogous to the use of the Armington assumption 

for local versus imported goods in most CGE models), although there is perfect substitution of 

the latter among industries.42  The amount of 𝐱𝜇
A(𝑡) destined for each type of demand is 

determined by the scheduled total output 𝐱𝜇
S(𝑡) and scheduled demands 𝐙𝜇𝑖

S (𝑡) ∀𝑖, 𝐟𝜇
S(𝑡) that 

were set when purchasing inputs in 𝑡 − 1.  In the case when 𝐱𝜇
S(𝑡) ≠ 𝐱𝜇

A(𝑡), a rationing scheme 

𝐫(𝑡) |  ∑ 𝐫𝑖(𝑡)𝑖 = 1 must be applied (Bénassy, 2002).  This scheme can reflect a uniform or 

proportional rationing, or an industrial prioritization, for example considering the production 

chronology in the sequential interindustry model and prioritizing supply to those flows closer to 

final demand (Li et al., 2013; Hallegatte, 2014).  Notice that it is still possible to model such 

imbalance between supply and demand in an IO framework as long as 𝑡 is not too large, since 

prices may not be able to adjust rapidly.  The rationing rule is constrained by: 

𝐱𝜇
A(𝑡) =∑𝐙𝜇𝑖

S (𝑡) × 𝐫𝜇(𝑡)

𝑖

+ 𝐟𝜇
S(𝑡) × 𝐫𝜇(𝑡) (3.7) 

 

The composition and mix of final demand (𝐟𝜇(𝑡)) are usually affected during the 

recovery period due to displacement of households, changes in income distribution, financial aid, 

government reconstruction expenditures and investment in capital formation.  Most studies 

model final demand change exogenously with a recovery function that gradually returns it to the 

pre-disaster conditions (Okuyama et al., 1999; Li et al., 2013), and a few attempt to endogenize 

it in the core modeling framework by closing the system regarding households (Bočkarjova, 

2007). 

However, the simple endogenization of households to estimate induced effects implies 

strong assumptions: it assumes a linear homogeneous consumption function, i.e., there is a 

constant proportional transmission of changes in income to/from changes in consumption; that 

                                                           
42 Thus the existence of two types of finished goods inventories: 𝐈𝜇

FF(𝑡) and 𝐈𝜇
FI(𝑡) respectively. 
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all employed individuals have the same wage and consumption pattern (consumption of 

unemployed individuals is exogenous); and it ignores the source of new workers (Batey & 

Weeks, 1989; Batey, Bazzazan, & Madden, 2001).  Of particular interest for disaster analysis is 

the fact that Type II multipliers artificially inflate induced effects by excluding the expenditure 

of workers who are unemployed in the region.  As highlighted in Batey (2018), when the 

consumption of unemployed individuals is ignored, any change in labor requirements results in a 

significant change in the level of final demand as new hires suddenly “enter” the local economy.  

Thus, in negative growth scenarios this technique overstates the impact of the regional decline.  

Further, there is the additional problem, noted by Okuyama et al. (1999), that households may 

delay purchases of durable goods in the aftermath of an unexpected event, confining 

expenditures to immediate needs (necessity goods). 

 A way to mitigate these issues is to build upon the demo-economic framework that has 

been developed in the last thirty years.  These integrated (demographic) models attempt to relax 

some of the previous assumptions by explicitly considering indigenous and in-migrant wages and 

consumption responses, as well as unemployment, social security benefits and contractual 

heterogeneity (van Dijk & Oosterhaven, 1986; Madden, 1993). 

The demo-economic framework will be used to capture part of the change in level/mix 

post-disaster and its implication in terms of induced effects.  We focus on the impact of 

displacement, unemployment, and shifts in income distribution and expenditure patterns between 

households within the final demand.  The other components of final demand are still considered 

to be exogenous (𝐟O̅) and reconstruction demand is treated as an external shock (�̅�).43  We build 

upon a simplified version of Model IV proposed in Batey and Weeks (1989), by aggregating the 

intensive and extensive margins (see Equation D.1 in the Appendix).44 

Therefore, once the actual total output of industry (𝐱A) is determined, the model 

estimates total employment for the period (𝑙A(𝑡)) using Equation 3.8, and the total final demand 

                                                           
43 In many Regional Econometric IO models, state and local government expenditures are assumed to be 

endogenous with the revenues coming from a variety of direct and indirect taxes.  After an unexpected event, this 

relationship might be uncoupled as disaster relief, funded by the federal government, pours into the region.  Further, 

the allocation of these funds is likely to be different from the “average” portfolio of state and local government 

expenditures. 
44 We use this simplified version for expositional purposes only.  Empirical applications should include a further 

demographic disaggregation, considering the number of individuals displaced and the expenditure pattern change of 

those rebuilding. 
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from employed residents (𝐟HE(𝑡)) using Equation 3.9.  Total unemployment determines the 

amount of final demand for these households (𝐟HU(𝑡)) according to Equation 3.10.  

𝑙A(𝑡) = 𝐚L × �̂� × 𝐱A(𝑡) (3.8) 

 

𝐟HE(𝑡) = 𝐡c
E × (𝐡r

E × �̂� × 𝐱A(𝑡) + 𝑓H(𝑡)) (3.9) 

 

𝐟HU(𝑡) = 𝑠 × 𝐡r
U × (𝑙T(𝑡) − 𝑙A(𝑡)) (3.10) 

 

Total final demand for the period (𝐟(𝑡)) is estimated by combining resident households’ 

expenditures, other final demand components (exogenous) and reconstruction stimulus 

(exogenous). 

𝐟(𝑡) = 𝐟HE(𝑡) + 𝐟HU(𝑡) + 𝐟O̅(𝑡) + �̅�(𝑡) (3.11) 

 

Given this semi-exogenous final demand, the actual demand supplied locally (𝐟𝜇
A(𝑡)) 

depends on finished goods produced in the period and any inventory from the previous period: 

𝐟𝜇
A(𝑡) = min(𝐟𝜇(𝑡) , 𝐟𝜇

S(𝑡) × 𝐫𝜇(𝑡) + 𝐈𝜇
FF(𝑡 − 1)) (3.12) 

 

In the case where local supply is insufficient for final demand, imports (𝐦FD) are 

required.  The amount of available imports can be exogenously imposed in a single region 

setting, or it can be endogenized in a multiregional setting, where firms produce to satisfy both 

local and external final demand.  In the latter case, spatio-temporal disruption spillover effects 

can be assessed.  Availability can also be linked to accessibility through an additional 

transportation model (Sohn, Hewings, Kim, Lee, & Jang, 2004).45  In our single region 

exposition, we assume an external import constraint 𝐓𝜇
FD(𝑡) that determines how much trade 

                                                           
45 Such extension is not included in the model’s exposition.  Moreover, accessibility could also consider commuting 

to/from the region, constraining available labor force. 
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flexibility there is in terms of finished goods for final demand consumption in the external 

industry 𝜇.46 

𝐦𝜇
FD(𝑡) = min(𝐟𝜇(𝑡) − 𝐟𝜇

A(𝑡), 𝐓𝜇
FD(𝑡) ) (3.13) 

 

Sectors that can hold finished goods inventories47 update their stocks: 

𝐈𝜇
FF(𝑡) = 𝐟𝜇

S(𝑡) × 𝐫𝜇(𝑡) + 𝐈𝜇
FF(𝑡 − 1) − 𝐟𝜇

A(𝑡)  (3.14) 

 

Next, industries form expectations regarding final demand in the following period in 

order to purchase the required inputs at 𝑡.  Industries do so by means of an expectation function 

E[𝐟𝜇(𝑡 + 1)| info], whose form is to be defined by the modeler, and may include an inventory 

strategy that varies according to the uncertainty in the system.48  At this point, the GDIO 

intersects with the SIM, allowing sectors to behave as anticipatory, responsive or just-in-time 

(JIT).  Anticipatory industries forecast final demand and, thus, their expectation function may or 

may not match the actual final demand in the next period.  Just-in-time industries are a particular 

case which E[𝐟𝜇(𝑡 + 1) | info, JIT] = 𝐟𝜇(𝑡 + 1), because they produce according to actual 

demand next period.  Finally, responsive industries react to orders placed in previous periods (for 

a discussion on this terminology see Romanoff & Levine, 1981).49 

The required output for 𝑡 + 1 (𝐱R(𝑡 + 1)) is determined by its expected final demand via 

the Leontief model (Equation 3.15).  After accounting for any labor or capital constraints 

(Equation 3.16), and any available materials and supplies inventory, industries determine the 

                                                           
46 In case there is an upper bound to imports, final demand not supplied in some sectors can be accumulated to next 

period (e.g., construction demand), reflecting a backlog in orders: 𝐟O̅(𝑡 + 1) = 𝐟O̅(𝑡 + 1) + [𝐟𝜇(𝑡) − 𝐟𝜇
A(𝑡) −

𝐦𝜇
FD(𝑡)]. 

47 See Section 3.3.6 for notes on inventories. 
48 Such strategy could be included either as a deterministic (see Hallegate, 2014) or a stochastic component. 
49 An example of a SIM formulation with a simple inventory formation mechanism sensitive to the uncertainty in the 

system is:  

E[𝐟𝜇(𝑡 + 1)| info,mode] = {

𝐟𝜇(𝑡)  + 𝜎 × [𝐟𝜇(𝑡) − 𝐟𝜇
A(𝑡)] , if anticipatory

𝐟𝜇(𝑡 + 1) + 𝜎 × [𝐟𝜇(𝑡) − 𝐟𝜇
A(𝑡)], if just in time

𝐟𝜇(𝑡 − 1) + 𝜎 × [𝐟𝜇(𝑡) − 𝐟𝜇
A(𝑡)], if responsive

 

where the adjustment parameter 𝜎 reflects the reaction of the sectors to such uncertainty.  Therefore, we relax the 

assumption of perfect knowledge for production scheduling, a critique raised by Mules (1983) on the original SIM. 
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total intermediate input requirements in the period 𝐙𝑖𝜇
R (𝑡) (that includes both local and imported 

goods) (Equation 3.17).50 

𝐱R(𝑡 + 1) = (𝐈 − �̃�(𝑡))
−1
[E[𝐟(𝑡 + 1) | info,mode] − 𝐈FF(𝑡)] (3.15) 

 

𝐱𝜇
R(𝑡 + 1) =  min(𝐱𝜇

R(𝑡 + 1), 𝐥𝜇(𝑡) 𝐚𝜇
L(𝑡 + 1)⁄ , 𝐤𝜇(𝑡) 𝐚𝜇

K(𝑡 + 1)⁄ ) (3.16) 

 

⟹    𝐙𝑖𝜇
R (𝑡 + 1) = 𝐀𝑖𝜇(𝑡 + 1) × 𝐱𝜇

R(𝑡 + 1) − 𝐈𝑖𝜇
M(𝑡)    ∀𝑖 (3.17) 

 

Each industry then attempts to purchase its required inputs from other industries in the 

economy.  Input supply of industry 𝑖 to industry 𝜇 depends on the scheduled production, on any 

imposed rationing scheme, and on inventory of finished goods for intermediate demand of 𝑖.  

Since there is perfect substitutability of finished goods for intermediate demand among sectors, 

an inventory distribution scheme 𝐝(𝑡) is required to allocate any available inventories between 

industries that are undersupplied.  In its simplest form, this scheme may distribute equally within 

those demands that exceed current supply, or it can prioritize certain industries.  The actual 

amount of inputs purchased locally is given by: 

𝐙𝑖𝜇
A (𝑡 + 1) = min(𝐙𝑖𝜇

R (𝑡 + 1), 𝐙𝑖𝜇
S (𝑡) × 𝐫𝑖(𝑡) + 𝐈𝑖

FI(𝑡 − 1) × 𝐝𝑖(𝑡))    ∀𝑖 (3.18) 

 

In case local supply is insufficient for intermediate demand, imports are required.  

Besides possible trade constraints, for consistency we need to account for the production modes 

of external industries.  In this single region exposition, the lag in production for anticipatory 

industries and foreign inventories is embedded in the constraint 𝐓𝑖𝜇
I (𝑡) that provides import 

flexibility.51  In a multiregional framework, external adjustments are explicitly modeled in the 

other region. 

𝐦𝑖𝜇
I (𝑡 + 1) = min(𝐙𝑖𝜇

R (𝑡 + 1) − 𝐙𝑖𝜇
A (𝑡 + 1), 𝐓𝑖𝜇

I (𝑡))   ∀𝑖 (3.19) 

                                                           
50 If an industry is just-in-time, for the model to be consistent with perfect foresight under discretization, labor and 

capital availability in Equation 3.16 would be indexed 𝑡 + 1. 
51 This constraint can be endogenized.  A simple example would be a logistic function 𝐓𝑖𝜇

I (𝑡) = 𝑓(𝛼, 𝑘) =

(𝛼𝑖 ×𝐌𝑖𝜇
I (0)) (1 + 𝑒𝑖

−𝑘𝑖𝑡)⁄ , where 𝛼𝑖 indicates the amount of underutilized external capacity and 𝑘𝑖 an industry 

specific speed of production increase.  𝐓𝑖𝜇
I (𝑡) can also be a constant number that represents external inventories. 
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Inventories of finished goods for intermediate demand are updated, allowing free disposal 

for industries that cannot hold inventories: 

𝐈𝜇
FI(𝑡) = {

∑𝐙𝜇𝑗
S (𝑡) × 𝐫𝜇(𝑡)

𝑗

+ 𝐈𝜇
FI(𝑡 − 1) −∑𝐙𝜇𝑗

A (𝑡 + 1)

𝑗

 ,   if μ can hold inventories

0          ,     o.w.

 (3.20) 

 

 

3.3.3. Production Scheduling for the Next Period 

Finally, given the amount of inputs effectively purchased, industries determine the 

production schedule for the next period:52 

𝐱𝜇
S(𝑡 + 1) = min {

𝐙1𝜇
T (𝑡 + 1)

𝐀1𝜇(𝑡)
, … ,  

𝐙𝜇𝜇
T (𝑡 + 1)

𝐀𝜇𝜇(𝑡)
, … ,  

𝐙𝑛𝜇
T (𝑡 + 1)

𝐀𝑛𝜇(𝑡)
,
𝐥𝜇(𝑡)

𝐚𝜇L(𝑡)
,
𝐤𝜇(𝑡)

𝐚𝜇K(𝑡)
} (3.21) 

 

𝐙𝑖𝜇
S (𝑡 + 1) = �̃�𝑖𝜇(𝑡) × 𝐱𝜇

S(𝑡 + 1)   ∀𝑖 (3.22) 

 

𝐟�̅�
S(𝑡 + 1) = min(E[𝐟(𝑡 + 1) | info,mode],  𝐱𝜇

S(𝑡 + 1) − ∑𝐙𝜇𝑗
S (𝑡 + 1)

𝑗

+ 𝐈𝜇
FF(𝑡)) (3.23) 

 

Equations 3.21-3.23 create the necessary conditions for production in the next period.  

Note that the disaster significantly impacts anticipatory industries, since they base decisions 

about the level of future production on previous final demands.  Inventories, thus, have an 

essential role in smoothing production mismatches due to asymmetric information.  

Regional purchase coefficients for the period are, therefore, implicitly determined as a 

function of local supply capacity (see Section 3.3.5).  The assumption of price stability is 

adequate in disruptions arising from unexpected events, as prices are slower to adjust.  Also, if 

the analysis is performed in a small region, the assumption of price taking can be effective. 

 

                                                           
52 See footnote 49 regarding the time indexes for JIT industries. 
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3.3.4. Solution Procedure 

Recall that the SIM assumes that, in any period, JIT and responsive industries have 

perfect information on current and future final demands.  If we assumed complete exogeneity of 

the latter, this requirement is easily satisfied and the model could be solved sequentially.  With 

the demo-economic extension, however, households’ final demand is endogenous and an 

iterative correcting approach is necessary.  The SIM assumption is satisfied by reiterating periods 

in which the expected final demand and the actual final demand differ for responsive and JIT 

industries.  For instance, at the first iteration of period 𝑡, expected final demand for these 

industries is set to a prior (the pre-disaster household’s final demand) in Equation 3.15 and the 

model is solved until 𝐟(𝑡 + 1) is calculated via Equation 3.11.  If there is a mismatch between 

E[𝐟𝜇(𝑡 + 1) | info, JIT or Responsive] and 𝐟𝜇(𝑡 + 1) for ∀𝜇 | JIT or Responsive, the prior is 

updated according to the convex adjustment function: 

 

E[𝐟𝜇(𝑡 + 1) | info, J or R]

= {
(1 + (∆(𝑡 + 1) × 100)𝜀/100) ∗ E[𝐟𝜇(𝑡 + 1) | info, J or R]        if ∆(𝑡 + 1) > 0

(1 − (−∆(𝑡 + 1) × 100)𝜀/100) ∗ E[𝐟𝜇(𝑡 + 1) | info, J or R]     if ∆(𝑡 + 1) < 0
 

(3.24) 

 

where ∆(𝑡 + 1) = (𝐟(𝑡 + 1) E[𝐟𝜇(𝑡 + 1) | info, J or R]⁄ ) − 1 and 𝜀 = 0.9 is the adjustment 

elasticity.53  The current process halts and period 𝑡 is reiterated with the adjusted prior.  Period 

𝑡 + 1 is finally allowed to proceed when E[𝐟𝜇(𝑡 + 1) | info, JIT or Resposive] = 𝐟𝜇(𝑡 + 1) .
54 

 

3.3.5. Recovering the Input-Output Table for the Period 

An IO table reflecting actual flows can be extracted for each period according to Figure 

3.3.  Most of the vectors are determined directly from the previous equations.  Interindustrial 

flows are determined by 𝐙(𝑡) = (𝐀(𝑡) × �̂�A(𝑡)) − 𝐌I(𝑡), since imported inputs are consumed 

first.  Hence, total change in inventories is derived as: 

                                                           
53 By letting 𝜀 < 1, the adjustment portrayed in Equation 3.24 becomes non-linear, implying a smoother 

convergence correction so that each iteration allows some error room for adjustment in the next round. 
54 In case of responsive industries with forward lags > 1, the algorithm requires reiterating previous periods when the 

forward lag is reached.  
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∆𝐈(𝑡) = {[𝐙(𝑡 + 1) + 𝐈M(𝑡)] × 𝛊 + 𝐈FI(𝑡) + 𝐈FF(𝑡)}

− {[𝐙(𝑡) + 𝐈M(𝑡 − 1)] × 𝛊 + 𝐈FI(𝑡 − 1) + 𝐈FF(𝑡 − 1)} 
(3.25) 

 

 

 

Figure 3.3: Extracted input-output table for period 𝑡 

 

 

3.3.6. A Note on Inventories 

First, recall that we assumed that besides relative prices, nominal prices do not change 

intertemporally.  If they did, it would be necessary to account for holding gains/losses in 

inventories from period to period.  Second, service sectors are assumed not to hold any finished 

goods inventory.  It could be argued that they hold work-in-progress inventories (in case of 

consulting, entertainment, etc.), but it is assumed that these can be compartmentalized and 

produced in each time period.  Unless ℎ is very short (say, a day), one would expect finished 

services to be delivered in each time period.  
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Finally, the concept of partitioning transactions adopted in the System of National 

Accounts (which directly translates to the definition of distribution sectors – retail, wholesale and 

transportation – in the IO framework) needs to be accounted for when defining inventories.  

Transactions of retailers, wholesalers and transportation are recorded as their respective margins 

and, thus, represent services provided and not goods sold per se (United Nations, 2009).  They 

do not hold any finished goods inventory, and material and supplies inventories consist only of 

operating expenses (rent, electricity, packaging, etc.) without purchases for resale. 

 

3.4. Application Example 

We illustrate the GDIO with a 3-sector example for a small economy.  The pre-disaster 

IO table for the region is presented in Figure 3.4 and its parametrization in Tables 3.1 and 3.2.  

The model runs for 36 periods and we assume an unexpected event in period 13, when 15% of 

manufacturing becomes inoperable.  There is no population displacement.  Recovery happens 

during the subsequent 5 periods (Table 3.2).  In this example, we compare the effects of trade 

restrictions to losses in the region, simulating a fully flexible scenario and a restricted one.  

These import constraints are implemented using the amount of foreign inventories / external 

available capacity at each period as proxies (𝜃 = 100 and 𝜃 = 1.5 respectively).55 

 

 

Figure 3.4: Pre-disaster IO table, flow values in thousands of dollars 

 

 

                                                           
55 The code and data for this example are available upon request. 

Agriculture Manufacturing Services Employed Unemployed Exports Output

Agriculture 5,129                  27,147                788                      13,107                713                      5,917                  52,801                

Manufacturing 9,192                  121,491              38,735                127,063              3,959                  42,109                342,549              

Services 3,084                  44,835                76,574                233,534              4,043                  13,367                375,436              

Agriculture 387                      2,459                  743                      1,724                  57                        -                       

Manufacturing 967                      7,378                  5,940                  7,760                  257                      -                       

Services 580                      14,757                743                      7,760                  257                      -                       

Taxes 1,632                  16,353                12,535                24,527                1,180                  4,067                  

Value Added (Labor) 31,831                108,130              239,378              

Output 52,801                342,549              375,436              

Employment 4,906                  3,700                  11,905                

Area (thousand sqft) 817                      812                      823                      

Im
p

o
rt

s

Final Demand



 

79 

 

Table 3.1: Regional characteristics 

Variable Description Value 

𝜏 Labor force participation rate 0.60 

𝜎 Expectations’ adjustment parameter 0.05 

𝜎M Foreign sectors expectations’ adjustment parameter 0.01 

𝜀 Error allowed for JIT and responsive industries 0.01 

𝑝 Resident population 40,000 

𝑙E̅ External labor force available 1,000 

𝑠 Unemployment benefits per period $3,000 

 

Table 3.2: Industrial characteristics 

 Agriculture Manufacturing Services 

Production Mode 
Long Anticipatory 

(2 months) 

Short Anticipatory 

(1 month) 
Just-in-Time 

Hold Inventories Yes Yes No 

𝛒 0.99 0.98 0.98 

Wages (per period) $ 6,488  $ 29,224 $ 20,107 

Capital Inoperability 0% 15% 0% 

Capital Recovery Time - 5 - 

  

Figures 3.5-3.7 compare the results of both scenarios.  Overall, under full trade 

flexibility, production losses are lower and recovery occurs faster than in the second scenario, 

since imports mitigate part of the supply restrictions in the economy.  The model illustrates the 

major role that inventories and uncertainty have on losses and, especially, on their duration. 

The initial periods post-disaster follow a similar pattern in both scenarios: first, 

manufacturing production declines due to capacity constraints, causing a reduction in local 

income (due to layoffs) and a subsequent small impact on Services.  Agriculture maintains the 

same level of production since it is anticipatory, thus overproducing and building up inventories.  

In the next period, a substantial decline is observed in all sectors due to supply constraints from 

manufacturing (indirect effects), available inventories in Agriculture, and lower final demand.  

Lower outputs also translate into increasing unemployment in the region, shifting the final 

demand mix towards less services and more agricultural goods. 
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Capacity restoration, expectation adjustments and enough inventories of intermediate 

goods allow a reduction in losses in periods 15-16, during which most of the inventory created in 

the previous two periods is consumed.  The depletion of inventories, however, leads to 

insufficient intermediate local supply to support production from the service sector in the next 

period (when capacity is almost fully restored in the manufacturing sector).  The negative impact 

in Services is exacerbated by the increase in unemployed residents who spend a significantly 

smaller share of their income than employed residents in this sector.  As the most labor-intensive 

sector in the economy, this leads to a negative inertial effect that exacerbates output losses until 

period 17.  The two scenarios diverge from this point forward.  The flexibility in trade in the first 

scenario, combined with the recovery experienced by Agriculture and Manufacturing, allows the 

Service sector to overcome local input supply restrictions and break its inertial effect, rebounding 

in the next periods.  Conversely, trade restrictions in the second scenario slow such adjustment, 

especially for anticipatory industries in which supply-demand unbalances increase the 

uncertainty in the economy, compromising their expectations’ correction.  This longer 

realignment process permeates the system for several periods, feeding the negative inertial effect 

in Services, expanding unemployment and reducing final demand.  In time, inventory and final 

demand heteroscedasticity decline, allowing the economy to rebound. 

 

 

Figure 3.5: Production losses by industry 
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Services is the most sensitive sector in this example due to 2/3 of its output being 

consumed by the local final demand.  Hence, changes in the composition and volume of 

household’s demand have a crucial role in the dynamics of this sector. 

 

Figure 3.6: Evolution of total demand (intermediate + final) by industry 

 

 

Figure 3.7: Evolution of demographic indicators 
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By embedding intertemporal expectation adjustments via the SIM, and the demo-

economic framework, this model reflects a non-smooth recovery process in contrast to other 

models currently available.  We compare our estimates in the “flexible trade” scenario with four 

commonly used single-region models in the literature: the traditional Leontief model, a 

simplified version of Cochrane’s rebalancing model, the Inventory-DIIM, and the Inventory-

ARIO model (see Table D.1 in the Appendix for details on their specifications.  Induced effects 

are not considered). 

Overall, the recovery curve is monotonic increasing and similarly smooth across all 

models (Figure 3.8).  Since there is no change in demand composition nor heterogeneous 

production chronology, the recovery path is very homogeneous between sectors, which is in 

clear contrast with Figure 3.5, in which the SIM framework, combined with the explicit 

consideration of labor market changes, influences the amount and timing of impacts.  Moreover, 

by not considering labor market conditions and their effect on final demand, Services is the least 

impacted sector in these models.  The simulations shown in Figure 3.8 do not consider induced 

effects, however, which may partially explain the smaller total losses in relation to our model. 

Because of their static formulations, both the Leontief and rebalancing models have no 

disruption spillovers beyond the 5-period recovery time for Manufacturing.  Since each period’s 

inoperability is contained within itself, the resulting recovery path is completely dependent on 

the exogenous recovery timing imposed, and therefore linear.  The rebalancing model shows 

larger losses than the Leontief model, as it captures part of the forward effects besides backward 

impacts. 

Conversely, both dynamic models portrayed in the bottom of Figure 3.8 account for 

intertemporal inoperability, resulting in longer recovery paths. In the Inventory-DIIM, the 

restoration pace is endogenously determined by the size of unbalance between supply-demand in 

each period, as well as the resilience and repair coefficient of the sectors.  The Inventory-ARIO 

model operates in a somewhat similar fashion as the GDIO, however without considering final 

demand mix changes nor different types of production modes.  It is the model that generates the 
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closest amount of total losses to ours56,  although it overestimates them by 18.8% mainly because 

the GDIO corrects the induced effect for unemployed households. 

 
Figure 3.8: Production losses and final demand, other models 

 

3.5. Conclusions 

Disaster events present unique challenges to economic assessment due to its time-

compression characteristic, i.e., a non-marginal negative shock followed by simultaneous and 

                                                           
56 Total losses from the other models amount to 15.5% (Leontief), 28.6% (rebalancing) and 16.2% (Inv-DIIM) of the 

total estimates for the GDIO. 
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intense recovery efforts in the affected areas.  Due to modern “lean” production systems with 

high specialization, little spare capacity (to exploit scale economies), and longer production 

chains, disruptions and subsequent production delays in one node of a network can quickly 

spread to other chains and create lingering disruptive effects.  Thus, there is a need to assess 

these transient phenomena in an industrial network perspective, accounting for the spatio-

temporal spillovers within and between affected and unaffected regions. 

Modeling such industrial linkages’ interdependence has been the main advantage of the 

IO framework, especially due to its relatively low data requirements, tractability and connectivity 

to external models.  Given the simplicity and inadequacy of some of the assumptions in the 

traditional Leontief demand-driven model, several extensions have been proposed to address 

issues of supply constraints, dynamics and spatio-temporal limitations, but these contributions 

are still fragmentation in different models. 

In a step towards a more complete methodology, this Chapter proposes the GDIO model.  

It combines insights from the past literature, building upon the Inventory-ARIO model, while 

also accounting for production scheduling, seasonality and demographic changes in a single 

framework.  The GDIO, thus, encompasses the virtues of intertemporal dynamic models with the 

explicit intratemporal modeling of production and market clearing, which allows for supply and 

demand constraints to be simultaneously analyzed.  The key roles of inventories, expectation 

adjustments, timing of the event, displacement, primary inputs and physical assets are addressed.  

Seasonality can be included by using intra-year IO tables that can be derived via the T-EURO 

method proposed in Chapter 1 or by the maximum entropy solution proposed in Chapter 2.  

Through a demo-economic extension, we include induced effects post-disaster, accounting for 

level and mix changes in labor force and household income/expenditure patterns.  The GDIO is 

“general” in the sense that simpler models as the Leontief formulation, SIM and demo-economic 

models can be easily derived by using simplifying assumptions.  The model also allows for the 

extraction of balanced IO tables at each time step, which might be advantageous in optimizing 

recovery efforts. 

Despite these advances in modeling disaster events, the current version of the GDIO has 

several limitations.  We are still restricted to assessing short-term effects, as in the long-term the 

underlying socio-economic structure might exhibit significant changes (e.g., New Orleans after 
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Hurricane Katrina (The Data Center, 2015)).  The model also does not consider the impact of 

business cycles, when excess capacity might be extremely reduced (Hallegatte & Ghil, 2008), 

nor does it endogenize the recovery process according to local conditions in each period (the 

recovery schedule is exogenously imposed).  Related to the latter, although we account for the 

impact of labor force availability in the region, this constraint needs to be modeled exogenously 

accounting for accessibility and housing stock.  Moreover, additional mitigation strategies 

beyond inventories need to be implemented in future developments of the GDIO, as those 

suggested by Rose and Wei (2013). 

A simple application showed the advantage of the GDIO in capturing the impact of 

uncertainty in the recovery process, through intertemporal expectation adjustments that are 

affected by heteroscedasticity in inventory levels and final demand (endogenous in our model).  

The new system offers a more natural recovery curve in which breaks in the recovery process are 

common.  Further research will be needed, especially for an application of the model in a real 

natural disaster situation in a multi-region context with seasonal IO tables, and where 

comparison of the results with existing methodologies can be made. 
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CHAPTER 4: COMPARING THE ECONOMIC IMPACT OF NATURAL DISASTERS 

GENERATED BY DIFFERENT INPUT-OUTPUT MODELS: AN APPLICATION TO 

THE 2007 CHEHALIS RIVER FLOOD (WA)57 

 

4.1. Introduction 

Major disaster databases (Emergency Events Database (EM-DAT), Natural Hazards 

Assessment Network (NATHAN), Spatial Hazard Events, and Losses Database for the United 

States (SHELDUS)) tend to compile information only on stock damages, i.e. damages to 

physical or human capital, as these data are routinely collected and reported in the aftermath of a 

disaster (Gall, Borden, & Cutter, 2009).  For example, in the US, the National Weather Service is 

required to provide monetary estimates of damages after flood events, paying special attention to 

property losses (National Oceanic and Atmospheric Administration, 2007).  The amount of 

physical destruction and associated repair costs in the aftermath of a disaster are usually 

measured via engineering models (traditionally damage-depth functions for floods), and these 

estimated damages can then be validated through actual post-event assessments from public 

(local governments) and/or private insurance companies.  Given their wide availability, stock 

damages are commonly used in hazard mitigation planning, especially in cost-benefit analyses, 

and are usually reported as the total impact of a disaster event.  However, these values offer an 

incomplete picture of the underlying economic impact, since they do not account for the business 

interruptions induced either locally or in their trade partners.  

Conversely, flow losses provide a more comprehensive economic view of the event by 

considering the direct loss in production arising from capital damages (first-order effects, 

according to Rose (2004)), the spillovers to non-affected industries and regions (higher-order 

effects), and the length of the recovery process.  Flow losses capture ripple effects that can be 

significant if major industrial chains are disrupted or infrastructure is compromised.  For 

instance, the 1993 Midwest flood halted freight in the Mississippi River, as well as highways and 

rail lines along the inundated areas, which led to $2 billion in losses.  In Iowa, damaged crops 

from the flood caused $3.6 billion in losses to the state (Hewings & Mahidhara, 1996).  More 

                                                           
57 Part of this chapter is reprinted with permission from Avelino, A., & Dall’erba, S. (2018). Comparing the 

Economic Impact of Natural Disasters Generated by Different Input-Output Models. An Application to the 2007 

Chehalis River Flood (WA). Risk Analysis. Advance online publication. DOI: 10.1111/risa.13006. Copyright 2018 

by Wiley. 
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recently, physical damage from the 2012 Hurricane Sandy caused direct and indirect losses 

totaling $1.2 billion in New Jersey due to a plunge in tourism spending (U.S. Department of 

Commerce, 2013). 

In the disaster literature, detailed data on flow losses are limited and usually incomplete, 

since their comprehensive assessment would entail tracking businesses inside and outside the 

affected area for an extensive time.  Most available studies on business recovery are 

geographically constrained to the affected region(s) and qualitative in nature, and only a few 

provide a long-term assessment that extends beyond the reconstruction phase (exceptions are 

Tierney (1997) on the impact of the Northridge earthquake in the Greater Los Angeles area, and 

Green, Miles, Gulacsik, & Levy (2008) on the 2007 Chehalis flood in Lewis County, which is 

part of our study area). 

Due to these pitfalls, several economic models have been proposed to estimate flow 

losses, most of which are rooted in the Input-Output (IO) framework that inherently captures 

linkages and feedbacks between the productive sectors of an economy.  However, a lack of 

consensus on a preferred model has led to an increasing number of alternative specifications with 

varying results (Koks et al., 2015).  This Chapter explores the trade-offs of choosing between 

commonly used IO models in the disaster literature for single region analysis: the traditional 

Leontief model; a simplified version of Cochrane’s rebalancing algorithm (Cochrane, 1997); the 

sequential interindustry model (Okuyama et al., 2004); the dynamic inoperability IO model (Lian 

& Haimes, 2006); its inventory extension (Barker & Santos, 2010); and the inventory Adaptive 

Regional Input-Output model (Hallegatte, 2014).  Additionally, we explore the use of the 

generalized dynamic input-output model (GDIO), a more comprehensive framework that 

combines the contributions of the previous models, while accounting for seasonality and 

demographic changes post-disaster (see Chapter 3).  Taking a practitioner’s view, we discuss the 

advantages, data requirements and underlying assumptions of each model, and highlight 

common theoretical misconceptions in their application when translating stock damages into 

flow impacts.  Then, we compare each model’s capacity to assess sectorial vulnerability and 

overall losses by using standard datasets and assumptions in evaluating the same benchmark 

event, the 2007 Chehalis flood in Washington State, which affected three counties with different 

economic structures and varying degrees of damages.  Notwithstanding that every disaster is 

unique, the chosen benchmark event is typical of the US, where more than 60% of the floods 
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with disaster declarations were issued in rural counties in the last six decades (Federal 

Emergency Management Agency [FEMA], 2017). 

We conclude this Chapter by introducing the contributions of Chapters 1-3 in terms of 

datasets and methodologies to estimate the impact of the Chehalis flood.  We use multisectoral 

quarterly data and explore the full capabilities of the GDIO model to show how demographics, 

seasonality and timing of the disruption can affect the estimation of flow losses.  We contrast 

these results with the ones obtained using standard data and assumptions, which usually ignore 

such issues.     

In the next Section we review the aforementioned models.  Section 4.3 describes the 

roadmap to convert stock damages to flow losses and highlights the theoretical mistakes 

commonly made in the literature.  Section 4.4 presents the benchmark event, and Section 4.5 

discusses and compares the results of each model using standard datasets and assumptions.  

Section 4.6 re-work the flood assessment using the new data and methods proposed in this 

Chapters 1-3 and contrast with the results from Section 4.5.  Section 4.7 concludes and offers 

some recommendations for future disaster analysis studies.  

 

4.2. Methodology 

In the disaster literature, econometric, computable general equilibrium (CGE) and IO 

models comprise the most used frameworks for flow loss estimation (Okuyama, 2007; Przyluski 

& Hallegatte, 2011).  The strength of an econometric approach derives from estimations based 

on historical data.  While they provide a statistical base for forecasting, time-series usually 

convey limited information on future disasters due to their infrequency and idiosyncrasy, and 

most specifications overlook interindustrial and interregional feedbacks.  As a result, most 

models only represent partial equilibrium conditions, and estimated marginal effects obtained 

from this framework are not generalizable (Greenberg, Lahr, & Mantell, 2007).  Conversely, 

CGE models provide a more comprehensive system-wide view of impacts, since they account for 

the complete flow of income across industries, factors and institutions within a region and 

between regions.  They provide a greater degree of flexibility when modeling supply-demand co-

movements, such as allowing non-linear specifications, substitution effects and behavioral 

responses (Okuyama & Santos, 2014).  However, the practical applicability of CGE is limited by 
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its large data requirements and the technical knowledge needed to build the models.  Moreover, 

Greenberg et al. (2007) highlight that the source of many behavioral parameters is usually 

questionable: when the lack of regional data makes their estimation at the local level unfeasible, 

the missing data are regularly “borrowed” from national or international studies, which may lead 

to biased results.  Oosterhaven (2017) also notes the challenge of separating short-run input 

substitution, which is fairly minimal, from long-run substitution effects, which are more flexible.  

In fact, due to these substitution effects and optimizing behavior assumptions, CGE models tend 

to present lower bound estimates (i.e., underestimate impacts) in disaster analyses (Meyer et al., 

2013; Przyluski & Hallegatte, 2011; Rose, 2004). 

Even though the IO framework provides a more restricted focus on productive activities 

and rigidity in terms of inputs substitution and prices – that usually leads to upper bound 

estimates of losses and portrays a more short-run industrial behavior (Oosterhaven, 2017) – it 

offers several advantages over the other two frameworks: similarly to CGE, it models the 

economic linkages between industries and regions, which allows for the assessment of the spread 

of disruptions among different production chains; the relatively lower data requirements in 

comparison to CGE or survey analysis permit a faster and easier implementation to different 

regions and events; it has the benefit of portability, in that the same methodology can be applied 

to structurally different regions and the results can be compared; and the IO framework also 

permits an easy integration with external models (e.g. engineering models), and the incorporation 

of a diverse set of constraints.  In practical terms, IO models have been commonly used in 

disaster assessments, particularly in the US, given the availability of IO data and standard models 

in off-the-shelf software like IMPLAN, which require minimal technical knowledge. 

Among the various IO specifications applied in the literature, the traditional Leontief 

demand-driven model is one of the simplest and the most popular (see Miller & Blair (2009) for 

a detailed explanation).  This model assumes linear production functions with perfectly 

complementary inputs that are portrayed in 𝐀P, the pre-disaster direct input requirement table.  

Total output is a function of the interdependencies among industries presented in the Leontief 

inverse matrix (𝐈 – 𝐀P)−1 and the final demand to be supplied in the period (𝐟).  Impact analysis 

is performed by calculating the Leontief inverse from an IO table, changing the demand vector to 
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reflect post-disaster conditions (𝐟∗̅) and pre-multiplying it by the original Leontief inverse to 

obtain the post-disaster output 𝐱∗ (Equation 4.1).58 

𝐱∗(𝑡) = (𝐈 − 𝐀P)−1𝐟̅∗(𝑡) (4.1) 

 

Total flow losses per period are easily retrieved by subtracting the pre-disaster output 

from the post-disaster output.  Hence, these flow losses define the amount of “inoperability” in 

the economy, i.e., the inability of the region to generate its intended production level (Haimes & 

Jiang, 2001).59  This is the approach used by the Washington State Department of Transportation 

[WSDOT] (2008) in estimating the total economic impact of the I-5 and I-90 highways closures 

during the 2007 Chehalis flood. 

The traditional Leontief model (LM) assumes that production is simultaneous and 

contained in each time period, i.e. all the output necessary to satisfy a given final demand is 

produced within the time interval without any lag, and that there are no trade constraints.  The 

model is demand-driven and any supply constraint is therefore introduced indirectly through a 

reduction in final demand by, for example, applying the corresponding capacity constraint (𝛾𝑖) to 

𝐟P (Equation 4.2). 

𝑓�̅�
∗(𝑡) = (1 − 𝛾𝑖(𝑡))𝑓𝑖

𝑃     ∀𝑖, 𝑡 (4.2) 

 

This simplified model has several limitations in modeling disruptive events.  By 

assuming constant local input requirement coefficients (𝐀P) throughout the aftermath of the 

disaster, it cannot incorporate input substitution effects caused by local supply constraints.  The 

static nature of the model combined with the assumption of production simultaneity, also limits 

the scope of the analysis because it restricts disruptive leakages within and between production 

chains as well as through time.  The availability of inventories, that traditionally smooth volatile 

periods, are also not accounted for in this model.  Therefore, the recovery process portrayed in 

the Leontief model underestimates losses since, despite demand changes, the local economic 

structure is constant from the pre-disaster scenario. 

                                                           
58 The standard IO notation is used in this Chapter.  Moreover, matrices are named in bold capital letters, vectors in 

bold lower-case letters (except inventories denoted by 𝐈) and scalars in italic lower-case letters.  Finally, a hat sign 

over a vector indicates diagonalization and a prime sign transposition.  Industries are indexed by 𝑖 and time by 𝑡. 
The pre-disaster output vector is denoted 𝐱P and the pre-disaster final demand by 𝐟P. 
59 Inoperability is defined as total output for the period divided by total output pre-disaster minus one. 
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In order to incorporate supply constraints explicitly in the demand-driven model, 

Cochrane (1997) and Oosterhaven and Bouwmeester (2016) propose a rebalancing of the post-

disaster IO table.  Oosterhaven and Bouwmeester rely on a nonlinear programming model that 

minimizes information gains subject to output and trade constraints, and recalculates the 

economic flows to support the post-disaster final demand.  Such methodology can be 

implemented in both single and multi-regional environments, although it is primarily designed 

for the latter.60  A simpler single-region rebalancing algorithm was introduced by Cochrane 

(1997): it is an iterative routine that checks for excess supply/demand and existing flexibility in 

inventories and trade to reallocate production accordingly (Figure 4.1).  HAZUS (HAZard US), a 

standardized hazard risk assessment tool created by the Federal Emergency Management Agency 

that is widely used in mitigation planning and cost-benefit analysis, relies on a version of 

Cochrane’s model in its Indirect Losses Module (Federal Emergency Management Agency 

[FEMA], 2015).  

 

 

Figure 4.1: Cochrane’s rebalancing scheme (Cochrane, 1997) 

                                                           
60 In practice, interregional IO tables are usually not readily available to researchers, especially at small spatial units 

such as counties/municipalities.  Hence, in this Chapter we focus only on single region applications. 
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 The set of rebalanced IO tables reflect the new steady-state of the economy at each time 

period.  If one assumes no trade constraints nor inventories, both models yield the same 

rebalanced matrix 𝐀∗(𝑡), that can be directly calculated by pre-multiplying the pre-disaster input 

requirement table by a matrix of post-disaster remaining capacity 𝐀∗(𝑡) = (𝐈 − 𝚪(𝑡))𝐀P, where 

𝚪(𝑡) is a diagonal matrix with 𝛾𝑖(𝑡) as the non-zero elements.  This simplified version of the 

rebalancing model (RM) is shown in Equation 4.3. 

𝐱∗(𝑡) = (𝐈 − (𝐈 − 𝚪(𝑡))𝐀P)
−1
𝐟̅∗(𝑡) (4.3) 

 

Both rebalancing procedures overcome the supply-demand incompatibility of the 

Leontief model, relaxing the previous assumption of constant economic structure and mitigating 

its bias.  However, additional assumptions on trade constraint are required.  The models also 

expand the idea of the hypothetical extraction method (HEM) suggested by Dietzenbacher and 

Miller (2015) as another modeling option for disasters.  They consider the impact of production 

constraints on both purchase and sales structures of the affected sectors, like the HEM, but also 

rebalance the rest of the economy to reach a new steady-state.  Nonetheless, the static nature of 

these models implicitly assumes that the effects of the disruption are contained within the time 

interval, as if production was not a continuum.  Hence, all constraints are exogenously imposed 

and intertemporal production restrictions cannot arise endogenously.  The resulting bias in the 

estimates will depend on the length of the model’s time interval, since shorter periods ignore 

larger intertemporal disruptive “leakages” on future production. 

As highlighted by Cole (1989) and Romanoff and Levine (1977), the idea of an 

instantaneous production process is unrealistic because contractual obligations and production 

delays can linger in the economic system for several months, thus influencing output inter-

temporally.  A dynamic approach is, therefore, needed to more accurately assess the total impact 

of a disaster. 

One of the first works attempting to incorporate dynamics in disruptive events is the 

time-lagged model applied to industrial plants closures proposed by Cole (1988, 1989).  Its core 

assumption is that an income shock in the economy propagates with different levels of inertia 

(lags) at various points of the supply/demand chain that the traditional model ignores.  However, 

Cole advocates for a full closure of the single-region model (i.e. endogenizing all components of 
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final demand including trade), drawing a series of criticisms by Jackson, Madden and Bowman 

(1997), Jackson and Madden (1999) and Oosterhaven (2000) over the model’s theoretically 

consistency and solvability. 

An alternative dynamic formulation is the Sequential Interindustry Model (SIM). 

Proposed by Romanoff and Levine (1977) and based on the series expansion of the Leontief 

inverse, it introduces production timing in the IO framework.  While developed before Cole’s 

model, the SIM was applied to disaster contexts much later (Okuyama et al., 2004).  In the SIM, 

industries are classified according to three production schedules: anticipatory, just-in-time or 

responsive.  Anticipatory industries are those sectors that produce before orders are placed – they 

anticipate the demand as their production process is lengthy and goods are standardized.  

Primary and manufacturing sectors fall in this category.  Responsive sectors, such as 

construction, receive orders before they start production, while just-in-time sectors produce and 

deliver in the same period as orders are received due to shorter production times.  In this model 

time is discretized, it is assumed constant, identical for all industries and synchronized across 

sectors.  The Core SIM is derived from the supply-demand identity in the IO table as follows: 

𝑥𝑖(𝑡) ≡∑𝑧𝑖𝑗(𝑡)

𝑗

+ 𝑓𝑖(𝑡)    ∀𝑖, 𝑡 (4.4) 

 

 Partitioning the traditional input requirement table (𝐀) between the different production 

types (𝐀𝐚: anticipatory; 𝐀𝐣: just-in-time; and 𝐀𝐫: responsive), we derive one equation for each 

“pure” production mode as if all industries followed the same schedule: 

𝐱(𝑡) = 𝐀𝐚𝐱(𝑡 + 1) + 𝐟(𝑡) (4.5) 

 

𝐱(𝑡) = 𝐀𝐣𝐱(𝑡) + 𝐟(𝑡) (4.6) 

 

𝐱(𝑡) = 𝐀𝐫𝐱(𝑡 − 1) + 𝐟(𝑡) (4.7) 

 

Since each sector follows one of these three modes, a mixed model for the whole 

economy is derived by combining the “pure” models in Equations 4.5-4.7: 

𝐱∗(𝑡) = 𝐀𝐚
P𝐱∗(𝑡 + 1) + 𝐀𝐣

P𝐱∗(𝑡) + 𝐀𝐫
P𝐱∗(𝑡 − 1) + 𝐟∗̅(𝑡) (4.8) 
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Notice that the traditional IO model is a special case of the SIM when all industries are 

just-in-time.  Hence, the Core SIM reproduces the same accumulated total losses from the 

traditional Leontief model, but spreads them through time.  However, it relies on a set of strong 

assumptions, such as perfect foresight of demand and perfect knowledge of interindustrial 

requirements (Mules, 1983), perfect knowledge of changes in the economic structure, and perfect 

sectoral adaptability to the disruption (no inventories).  Romanoff and Levine (1986, 1990) have 

remedied some of these issues by including inventories, post-disaster technology changes and 

delivery delays, but their implementation is not straightforward (Okuyama et al., 2004).   

Additionally, the system’s inoperability in the SIM is inter-temporal only to the extent that intra-

temporal impacts are carried over via production lags. 

On the other hand, the Dynamic Inoperability Input-Output Model (DIIM) proposed by 

Lian and Haimes (2006) aims at introducing a framework that bridges intra-temporal and inter-

temporal inoperability.  The DIIM is the dynamic version of the Inoperability Input-Output 

Model (IIM) (Santos, 2003; Santos & Haimes, 2004) that we do not cover in this review because 

it offers no methodological advances compared to the traditional Leontief model (Dietzenbacher 

& Miller, 2015; Oosterhaven, 2017).  The DIIM is based on the classic Dynamic Leontief model 

which assumes that current output accounts for both the production required to meet current 

demand and for any required capital to make possible production in the next period via the 

capital formation matrix 𝐁 (Equation 4.9). 

𝐱(𝑡) = 𝐀𝐱(𝑡) + 𝐟(𝑡) + 𝐁[𝐱(𝑡 + 1) − 𝐱(𝑡)] (4.9) 

 

However, while the Dynamic Leontief model is a growth model through investment, the 

DIIM models a recovery process where the economy moves back to the pre-disaster condition.  

Hence, the capital formation matrix is replaced by a resilience matrix 𝑲 = �̂� that represents the 

speed at which the pre- vs. post-disaster production gap closes (Equation 4.10). 

𝑩=−�̂�−1

⇒     𝐱(𝑡) = 𝐀𝐱(𝑡) + 𝐟(𝑡) − 𝐊−1[𝐱(𝑡 + 1) − 𝐱(𝑡)] 
⟺ 𝐱(𝑡 + 1) = 𝐱(𝑡) + 𝐊 [𝐀𝐱(𝑡) + 𝐟(𝑡) − 𝐱(𝑡)] 

(4.10) 
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Note that besides the conceptual difference from the Dynamic Leontief model, the DIIM 

is not constrained by inversion issues (the capital formation matrix in the former may not be 

invertible) nor exhibits inconsistent output paths (the latter converges to the original equilibrium 

while the former does not usually converge to a steady-state growth path and can exhibit 

negative outputs after several interactions).  The main contribution of the DIIM is its ability to 

model the recovery trajectory dynamically, and to account for how inoperability in one period 

impairs production in the following period.  Also, instead of being treated exogenously, recovery 

is endogenously modeled as it depends on each sector’s resilience and on the gap between supply 

and demand in each period (Baroud, Barker, Ramirez-Marquez, & Rocco, 2015; Pant, Barker, 

Grant, & Landers, 2011). 

Taking 𝑡 = 0 as the first period post-disaster and 𝑡 = 𝑇𝑖 the time industry 𝑖 takes to 

recover to a target (minimal) level of inoperability 𝑞𝑖, the interdependency recovery rate 𝑘𝑖 is 

defined as: 

𝑘𝑖 =
ln (
𝑞𝑖(0)

𝑞𝑖(𝑇𝑖)
⁄ )

𝑇𝑖(1 − 𝑎𝑖𝑖
P)

 (4.11) 

 

Notice that Equation 4.11 defines an exponential recovery path.  Moreover, the spread of 

inoperability among industries and its inertia in the system depends on the size of 𝑘𝑖.  The larger 

the value of 𝑘𝑖, the faster is the recovery.  In their original exposition, all matrices are normalized 

with the pre-disaster total output levels: 𝐪(𝑡) = [�̂�P
−1
(𝐱P − 𝐱∗(𝑡))], 𝐜∗(𝑡) = [�̂�P

−1
(𝐟P − 𝐟(̅𝑡))] 

and 𝐀∗ = [�̂�P
−1
𝐀P�̂�P], where �̂�P is the pre-disaster output vector diagonalized and 𝐟 ̅is the post-

disaster final demand.  Barker and Santos (2010) describe such final demand vector as equivalent 

to the one used in the IIM, thus representing “a forced demand reduction from diminished supply 

and due to lingering consumer fear or doubt.” (p. 133).  This yields the model: 

𝐪(𝑡 + 1) = 𝐪(𝑡) + 𝐊 [𝐀∗𝐪(𝑡) + 𝐜∗(𝑡) − 𝐪(𝑡)] (4.12) 

 

 The connection between intra-temporal and inter-temporal inoperability is embedded in 

Equation 4.12, where an increase in current inoperability creates contemporaneous supply 

constraints that also influence the next period, hence accounting for both effects.  The DIIM 
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assumes that all industries operate in anticipatory mode using the previous period’s demand-

production imbalance as a measure of expected output.  A key aspect of this model is the fact 

that the gap between actual production (𝐱∗(𝑡)) and “potential final demand” (𝐟(̅𝑡)) determines 

the speed of recovery post-disaster, i.e. the model accounts for local conditions to drive its 

recovery pace that, as a result, can diverge from the exogenously imposed schedule from the 

previous models.  Such feature, however, makes the model very sensitive to the definition of 

𝐟(̅𝑡), as the latter can cause results to vary significantly (see Section 4.5).  An ad-hoc 

proportional rationing rule is implicitly assumed to redistribute reduced output; there are no trade 

constraints and inventories are not available to mitigate inoperability.  With regards to this latter 

issue, Barker and Santos (2010) extended the DIIM to include finished goods inventories (𝐼𝑖
𝐹) 

which magnitude defines a sector-specific inoperability 𝑝𝑖 that is distinct from the overall 

inoperability 𝑞𝑖.  The Inventory-DIIM introduces a sector-specific recovery rate (𝑙𝑖) denoted 

“repair coefficient” that is similar to 𝑘𝑖 in Equation 4.11, and that informs the speed of recovery 

from a physical inoperability (Equation 4.13). 

𝑙𝑖 =
ln (
𝑝𝑖(0)

𝑝𝑖(𝑇𝑖)
⁄ )

𝑇𝑖
 

(4.13) 

 

Different functional forms could be applied to the recovery function, but Barker and 

Santos (2010) use the following: 

𝑝𝑖(𝑡) = 𝑒
−𝑙𝑖𝑡𝑝𝑖(0) (4.14) 

 

The initial overall inoperability conditions 𝑞𝑖(0) are determined by the available finished 

goods inventory in the aftermath of the event (𝐈𝐅(0)), by the total anticipated output in the 

aftermath of the disaster (𝑥𝑖(0)) and by the supply constraints (sector-specific inoperability post-

disaster 𝑝𝑖(0)): 

𝑞𝑖(0) =  {

0
1 − 𝐼𝑖

𝐹(0) 𝑝𝑖(0)𝑥𝑖(0)⁄      

𝑝𝑖(0)

𝑖𝑓 𝐼𝑖
F(0) ≥ 𝑝𝑖(0)𝑥𝑖(0)

𝑖𝑓 0 < 𝐼𝑖
F(0) < 𝑝𝑖(0)𝑥𝑖(0)

 𝑖𝑓 𝐼𝑖
F(0) = 0

 (4.15) 
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 As a result, the evolution of each industry in the system depends on the remaining 

inventories in relation to output constraints (Equation 4.16).  If the inventories are numerous 

enough to supplant the lost output, then a sector’s inoperability will depend solely on its own 

previous inoperability and on the inoperability of the other sectors (condition 1).  In case some 

inventory remains, but it is not enough to fully compensate the new production constraints, then 

the level of inoperability is mitigated proportionally (condition 2).  If the inventories become 

depleted in the next period, but are still positive in the current period, an additional supply 

constraint appears in the system, which increases the overall inoperability (condition 3).  Finally, 

if there are no contemporaneous inventories, we revert back to the traditional DIIM model 

(condition 4).  Any remaining inventories (𝐼𝑖
F(𝑡)), as well as the sector-specific inoperability 

(𝑝𝑖(𝑡)), are updated at the end of each time step. 

𝑞𝑖(𝑡 + 1) =  

{
 
 
 
 
 

 
 
 
 
 𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖

∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗
∗ 𝑞𝑗(𝑡)

𝑛

𝑗=1
]  𝑖𝑓 𝐼𝑖

F(𝑡 + 1) ≥ 𝑝𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1)

max {

𝑝𝑖(𝑡 + 1) − 𝐼𝑖
F(𝑡 + 1) 𝑥𝑖(𝑡 + 1)⁄

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
]
𝑖𝑓 0 < 𝐼𝑖

F(𝑡 + 1) < 𝑝𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1)

max {

𝑝𝑖(𝑡 + 1)

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
]
 𝑖𝑓 𝐼𝑖

F(𝑡 + 1) = 0,  𝐼𝑖
F(𝑡) > 0 

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
] 𝑖𝑓 𝐼𝑖

F(𝑡 + 1) = 0,  𝐼𝑖
F(𝑡) = 0

  (4.16) 

 

Although the approach above assesses the impact of pre-disaster inventories of finished 

goods, it does not explain their formation nor accounts for the presence of materials and supplies 

(M&S) inventories.  Furthermore, the model lacks different production modes because it 

assumes all industries are anticipatory, and lacks trade constraints by assuming no import/export 

restrictions.  The Inventory-DIIM still assumes that the external sectors can absorb local 

imbalances by providing more imports and purchasing excess production.  As the latter is 

unlikely in real situations, overproduction can further decrease local production due to additions 

to inventories. 

Building on these previous contributions, Hallegatte (2008, 2014) proposes a more 

comprehensive model that explicitly considers supply and demand restrictions as well as 

adaptive behavior post-disaster.  In the Adaptive Regional Input-Output (ARIO) model, 
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production bottlenecks arise when either industrial capacity or required intermediate inputs are 

binding constraints, and a rationing scheme prioritizes supply to other industries when total 

output in a particular sector is insufficient to attend total demand.  Additionally, the ARIO model 

estimates price changes and the resulting impact on profits, although neither affects production, 

only local and external demand.61 

 

 

Figure 4.2: ARIO model schematics 

 

The model is not intertemporal but iterates in each period until all flows converge (Figure 

4.2, see full description of the model in Hallegatte (2008)).  Starting from a first-guess demand 

level (𝐟(𝑡)), the production capacity (𝐤(𝑡)) and available intermediate inputs (𝐙(𝑡)) in each 

industry determine the total output (𝐱(𝑡)) of the sector and whether rationing will occur.  

Available supply is then distributed to final demand (local and exports), intermediate 

consumption (𝐙(𝑡)) and reconstruction (𝐑(𝑡)).  Deviations in production from the pre-disaster 

levels determine new prices (𝐩(𝑡)) that affect profits (𝛑(𝑡)) and overall local macroeconomic 

                                                           
61 Price changes are not entirely consistent with the IO framework, in which prices are constant to any level of 

production. 
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conditions (𝑚𝑎𝑐𝑟𝑜(𝑡)).  Final demand is adjusted via an adaptation process that considers the 

new prices, actual demand supplied and macroeconomic conditions (𝐟Ad(𝑡)).  Supply conditions 

also affect local input requirements (𝐀Ad(𝑡)), imports (𝐌Ad(𝑡)) and reconstruction (𝐑(𝑡)), the 

latter also influencing capacity constraints (𝐤Ad(𝑡)).  These new levels of demand, available 

intermediate inputs and capacity constraints update the priors and are used to recalculate total 

output for the period.  This iterative process proceeds until convergence is achieved in the 

period.  The adaptation processes depend on the sensitivity of the demand to undersupply and the 

speed of recovery to pre-disaster levels, as well as a price-elasticity of substitution (local and 

external demands only). 

 

 

Figure 4.3: Inventory-ARIO model schematics 

 

The ARIO model was later modified to include inventory dynamics (Hallegatte, 2014).  

In the Inventory-ARIO model, intertemporal dynamics is captured using materials and supplies 

inventories which hold enough intermediate inputs to sustain production for a given minimum 

number of days.  Industries attempt to keep a target inventory level in each period, and this 
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inventory dynamics substitutes the adaptation processes for final demand and direct input 

requirements from its previous version.  The model schematics is presented in Figure 4.3 and a 

complete description is provided in Hallegatte (2014).  As in the ARIO, production depends on 

capacity constraints (𝐤(𝑡)) and intermediate inputs (𝐈M(𝑡)), which are now drawn from 

inventories replenished in the previous period.  Total supply for the period is then rationed 

between final demand, intermediate inputs (now inventories for the following period 𝐈M(𝑡 + 1)) 

and reconstruction.  Macroeconomic conditions determine the new local and external final 

demand and imports for the next period.  The remainder of the model is the same as the ARIO. 

The Inventory-ARIO model allows for intertemporal inoperability, inventory formation 

and depletion, and modeling of backward and forward effects.  Nonetheless, it does not 

distinguish between finished goods and intermediate goods inventories, nor includes labor 

constraints and induced effects (Hallegatte, 2014). 

An important factor that is not considered in any of the previous models, neither by most 

of the literature on disasters, is the role of seasonality on estimated losses.  Intra-year fluctuations 

in production capacity have a significant impact on the magnitude and distribution of impacts by 

affecting inventory levels and the sectoral adaptive response (see Chapters 1 and 2).  Given the 

transient nature of natural disasters, “timing” plays a significant role in the amount of flow losses 

and affects both recovery paths and industrial interdependence.  Also absent in most IO models 

is a proper representation of the effects of labor market changes and local consumption post-

disaster, when displacement and loss of income might have a significant impact in the economy 

(Okuyama et al., 1999 and Li et al., 2013). 

In an effort to integrate the methodological advances from the previous models and 

mitigate their limitations, Chapter 3 proposes the generalized dynamic input-output (GDIO) 

model.  The GDIO models production as an intertemporal process (building on the scheduling 

scheme of the SIM framework) and supply-demand balance as an intratemporal process 

combining an extended demo-economic model to consider labor force changes.  Expanding on 

the Inventory-ARIO model, it explicitly accounts for the formation/depletion of both M&S and 

finished goods inventories, inoperability from capital, and rationing procedures to handle supply 

restrictions.  Seasonality is introduced by using intra-year IO tables.  An overview of the model 
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is presented in Figure 3.1.  We direct readers to see the complete exposition of the GDIO in 

Chapter 3.  In the next paragraph we provide a concise intuition for the model. 

At the beginning of each period, producers determine the feasibility of their production 

schedules considering their current availability of M&S inventories (industrial inputs), capital 

and labor.  Assuming non-substitutability between finished goods for intermediate and final 

consumptions, if the total scheduled production is not feasible, producers use a rationing rule to 

determine how much to offer in each market in excess of any inventories from the previous 

period.  Therefore, final demand, influenced by reconstruction efforts, displacement, labor 

conditions and income, might be under- or over-supplied.  Industries react to this supply-demand 

unbalance by adjusting their expectations for the next production cycle, and by attempting to 

purchase the necessary level of inputs.  Since this interindustrial demand may also be under- or 

over-supplied, after markets clear, each sector determines a feasible production schedule for the 

upcoming period.  The stock losses of a disaster occur between periods, diminishing inputs, 

capital and displacing population, thus affecting production feasibility and demand 

level/composition for the next period. 

A summary of the main characteristics of each of the models and required data is 

available in Table E.1 in the Appendix.  Notice that all models are demand-driven and measure 

the impacts of disasters mostly in terms of backward effects.  Nonetheless, disasters also lead to 

important forward effects in the production chain that might be exacerbated if input substitution 

is limited, but the current literature still lacks comprehensive solutions to fully account for them: 

while the Gosh’ supply-driven model relies on unrealistic core assumptions, CGE models present 

challenges in terms of data requirements and underlying assumptions, as noted earlier, and the 

rebalancing models presented above lack micro-economic foundations to explain the reallocation 

of production among industries and regions (Oosterhaven, 2017). 

According to Oosterhaven (2017), disasters can have six different types of impacts: 

disruption in the supply of goods and services, which creates forward negative effects; disruption 

in the supply of non-replaceable inputs (such as labor), which also leads to negative forward 

effects; technical or spatial substitution effects (positive backward effects for the supplying 

industries); drops in demand levels due to income and supply constraints, which creates negative 

backward effects; change in demand composition, which can lead to positive/negative backward 
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effects depending on the industry; and reconstruction demand (positive backward effects).  The 

set of impacts that each model accounts for is shown in Table 4.1.  Since each model captures a 

different subset of impacts, the results will necessarily vary between models, as will be discussed 

in Section 4.5. 

 

Table 4.1: Types of impacts captured by model 

 

Supply 

goods/svcs. 

Supply 

non-repl. 

inputs 

Input 

substitution 

Demand 

level drop 

Demand 

composition 

change 

Reconst. 

demand 

LM    Yes Yes Yes 

RM Yes Yes1 Yes Yes Yes Yes 

SIM    Yes Yes Yes 

DIIM 

Inv-DIIM 
   Yes Yes Yes 

Inv-ARIO Yes Yes2 Yes Yes Yes Yes 

GDIO Yes Yes Yes Yes3 Yes3 Yes 

Notes: 1Not in our simplified implementation of the model.  See Oosterhaven and Bouwmeester (2016) for a more 

flexible implementation in a non-linear programming framework; 2Only capital; 3Endogenous via a demo-

economic model. 

 

 

4.3. From Stock Damages to Flow Losses 

In order to calculate flow losses, we need to convert estimated or assessed stock damages 

into first-order flow losses for use in the IO model.  When water-depth grids are available, the 

usual procedure involves two steps: first, the flood water-depth grids are run through an 

engineering model to estimate stock damages; second, the stock damages are used in an 

economic model to estimate flow losses.  The relationship between all these components is 

shown in Figure 4.4. 
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Figure 4.4: Modeling approach overview, stock damages to flow losses 

 

HAZUS has been the most widely applied engineering model in the literature evaluating 

economic losses and performing cost-benefit analysis because it offers a balanced trade-off 

between modeling capability and required technical engineering knowledge (Banks, Camp, & 

Abkowitz, 2014).  HAZUS uses water-depth grids to determine the percentage of damaged 

square footage by occupancy class at the census block level.  These capital stock damages are 

measured in terms of repair costs, inventory, content, crop losses and vehicle replacement costs.  
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Damage to transportation infrastructure is only evaluated in terms of impacted bridges, so a 

comprehensive assessment of transportation disruptions is lacking.  HAZUS provides estimates 

of first-order flow losses in business interruptions and rental income based on average sales data 

for the occupancy class, but in order to generate more accurate results we reestimate these first-

order flow losses using the region’s own IO table instead. 

 

Table 4.2: Input-output table disaggregation and assumptions 

NAICS Sector Description 

Prod. 

Mode 

Hold 

Inventories 

HAZUS Occupancy 

Classes 

11 Ag., Forestry, Fishing & Hunting A (90) Yes AGR1 

21 Mining A (30) Yes - 

22 Utilities JIT No - 

23 Construction JIT Yes IND6 

31-33 Manufacturing A (58) Yes 
IND1, IND2, IND3, 

IND4, IND5 

42 Wholesale Trade JIT No COM2 

44-45 Retail Trade JIT No COM1 

48-49 Transportation & Warehousing JIT No - 

51-53 Information, Finance & Real Estate JIT No COM5 

54-56 Professional, Mgmt. & Adm. JIT No COM4 

61 Educational Services JIT No EDU1, EDU2 

62 Health & Social Services JIT No RES6, COM6, COM7 

71 Arts, Entertainment & Recreation JIT No COM8, COM9 

72 Accommodation & Food Services JIT No RES4 

81 Other Services JIT No 
COM3, COM10, 

REL1 

92 Government & non-NAICS JIT No GOV1, GOV2 

Notes: Production modes: A = anticipatory (number in parenthesis is the production lag in days), JIT = just-in-time, 

R = responsive. 

 

Natural disasters generate both negative economic impacts (via capacity constraints and 

reduced final demand) and positive economic impacts (via reconstruction efforts), but not 

necessarily in the same region.  Capacity constraints 𝚪(𝑡) are determined by assuming both a 

homogeneous productivity per square foot for each industry in a specific county, and that 

industries operate at full capacity before the disaster.  Using information on crop losses, on 

damaged squared footage from the General Building Stock (GBS), as well as information about 
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the economic sectors these buildings belong to (HAZUS occupancy class classification is 

matched to NAICS classification, see Table 4.2), we set the capacity constraints based on the 

pre-disaster total output by industry (Figure 4.4).  Besides capital damages, Agriculture 

production is reduced proportionally to the share of crop and livestock output in the county.  

Livestock losses are not considered independently as they are not reported by HAZUS. 

The total square footage per industry before the disaster (𝑠𝑖
T), the damaged square footage 

(𝑠𝑖
D) and the timing of the disruption are used to determine the capacity constraints and the 

reduced local final demand in the economic model.  We also assume that recovery is 

proportionally distributed through time according to the restoration timeframe provided by 

HAZUS.  Details on these elements appear in tables 14.1, 14.5 and 14.12 of FEMA (2015).  

Based on this information, we define the level of inoperability of a particular industry 𝑖 at time 𝑡 

as: 

𝛾𝑖(𝑡) =
𝑠𝑖
D(𝑡)

𝑠𝑖
T

 (4.17) 

 

As mentioned in Equation 4.3, the matrix [𝐈 − 𝚪(𝑡)], where 𝚪(𝑡) is a matrix with 𝛾𝑖(𝑡) in 

the main diagonal, represents the available production capacity for each industry at each time 

period in the post-disaster phase. 

Due to labor restrictions and displacement, final demand is reduced from the pre-disaster 

level (𝐟P) to 𝐟.̅  We assume that the expenditure structure remains fixed in the post-disaster 

period and that demand decreases proportionally to the plunge in income.  Thus, in order to 

account for both capacity constraints and reduced household expenditure due to wage loss, we 

define the demand vector in the post-disaster period (𝐟∗̅) for all models, except the Inventory-

ARIO and GDIO62, as: 

𝑓�̅�
∗(𝑡) = min ((1 − 𝛾𝑖(𝑡))𝑓𝑖

P, 𝑓�̅�(𝑡))      ∀𝑖, 𝑡 (4.18) 

 

The reconstruction demand 𝐑(𝑡) is determined by repair costs of the GBS and lifelines 

(construction stimuli), and replacement of building content and vehicles (manufacturing stimuli).  

                                                           
62 The Inv-ARIO models demand changes endogenously.  The GDIO endogenously determine income and 

consumption levels, so it only requires the inoperability level of each industry given by Equation 4.17. 
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Since IO models are based on producer prices and HAZUS provides repair costs in purchase 

prices63, we assume that manufacturing orders include margins split 20/80% between 

transportation and trade (see Figure 4.4). 

In addition to the intricacies noted so far, two important misconceptions that have 

recurrently appeared in the empirical literature need to be addressed: first, since the IO 

framework is defined in terms of flows, stocks should not enter the models directly, but should 

do so via a measure of a sector’s reduced ability to provide goods/services at the same level as 

before.  As explained above, we use the amount of substantially damaged physical space a sector 

occupies as a proxy for loss of productive capacity.  Hallegatte (2008, 2014), however, allocates 

total housing stock and consumer durable goods damaged as direct productive capital losses to 

the FIRE sector to determine its inoperability.  Because the production of this sector represents 

payment for services provided (e.g., for processing insurance claims), capital damages that do 

not directly affect this sector have no impact on its operations; second, transportation, retail and 

wholesale sectors are derived from margins (see Section 3.3.6 on Chapter 3), hence these sectors 

cannot hold finished goods inventories because they only provide services.  However, Barker 

and Santos (2010) mistakenly allocate finished goods’ inventories to retail and wholesale sectors 

using BEA’s inventory-to-sales ratio, and similarly, Koks, Bočkarjova, de Moel and Aerts (2015) 

assume that inventories in trade sectors represent merchandise for sale.  In sum, researchers 

willing to apply the IO framework appropriately should be aware of the methodology’s nuances 

and avoid the above misconceptions. 

 

4.4. Case Study: The 2007 Chehalis Flood 

4.4.1. Region Overview 

In order to compare the results of the IO methodologies listed before, we rely on the same 

benchmark event: the 2007 Chehalis Flood in Washington State.  Over the period of December 

1-4 2007, a system of storms formed by an atmospheric river hit the U.S. West Coast and led to a 

record-breaking 14 inches of precipitation at the Willapa Hills that feeds the main branches of 

both the Chehalis and the South Fork rivers.  The surrounding areas experienced an additional 3-

                                                           
63 Purchase prices = producer prices + trade margin + transportation margin. 
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8 inches of rain.  This event led to landslides, failed levees, overtopped dikes (Chehalis River 

Basin Flood Authority [CRBFA], 2010) and floods in western Washington and Oregon states.  

Traditionally, this region experiences an average precipitation of 7-13 inches for the entire 

October to March period (CRBFA, 2010).  Most of the damage was concentrated alongside the 

Chehalis River Basin, southwest Washington.  The flood extent is shown in Figure 4.5. 

 

 

Figure 4.5: Flood-depth grid for the Chehalis Basin 

 

 The counties of Grays Harbor, Thurston and Lewis were the most affected and were 

declared major disaster areas on December 8, 2007.  Around 75,000 customers lost power and 

several roads became impassable (Green et al., 2008).  The cities of Centralia and Chehalis, both 

in Lewis County, sustained the most damage with 25% and 33% of their respective areas 

inundated.  The flood affected more than half of the commercial land-use and 32% of the 

industrial zones in the Centralia-Chehalis Urban Growth Area.  Direct building damages in the 

county were assessed at $166 million and around 10,702 acres of the 22,919 acres of agricultural 

land in western Lewis County were flooded at an estimated replanting cost of $188-$490 million 

(Lewis County, 2009). 

The tri-county region impacted by the 2007 Chehalis flood has contrasting 

characteristics: while Grays Harbor and Lewis counties are more primary-based economies with 
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a significant commercial logging cluster64, Thurston County is a service-based economy and is 

part of the Seattle-metro area.  Economic data for 2008 indicates that, in terms of total output and 

employment, Thurston is the largest and the most diversified economy among the three (Figure 

4.6).  Lewis and Grays Harbor have similar sized economies with a combined output that is a 

third of Thurston’s.  The largest employers in Lewis County are the Government (17%), Retail 

(13%) and Manufacturing (13%) sectors.  Grays Harbor has a somewhat similar economic 

structure (24%, 11% and 13%, respectively), whereas Government and Retail are the largest 

employers in Thurston County (34% and 11% of the jobs, respectively).  On average 56-69% of 

all industrial inputs are imported in these counties, mostly by local Utilities, Construction and 

Manufacturing sectors, that mainly import manufacturing goods, professional, information and 

financial services. 

 

Figure 4.6: Annual share of output by sector, 2008 

 

In terms of industrial linkages, agriculture in general and its commercial logging activity 

in particular, are the most intertwined sectors.  Manufacturing sectors exhibit significant 

                                                           
64 The commercial logging cluster comprises logging activities and wood related manufacturing (sawmills, paper 

manufacturing, etc.).  Grays Harbor has also a large oil refinery sector (considered manufacturing in the IO table 

aggregation). 
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backward linkages in Grays Harbor (especially between “Commercial Logging” and “Sawmills 

and Wood Preservation” sectors), while service sectors are the most interconnected in Lewis and 

Thurston.  As a result, any disruption affecting these key sectors will lead to additional 

inoperability in the rest of the local economy. 

 

4.4.2. Data Sources 

This Chapter relies on a fine scale estimate of floodplain and water-depth maps derived 

from the 2007 event.  Observed data collected by the U.S. Army Corps of Engineers (USACE) 

from gauges along several river branches in the Chehalis basin were used in HEC-RAS to 

generate a water-depth map for the area (U.S. Army Corps of Engineers, 2010). 

Direct losses were estimated in HAZUS-MH version 3.0 using the default dasymetric 

datasets and assuming a warning time of 48h (which implies a 35% loss reduction in building 

damage according to the embedded Day Curve).  No reduction in vehicle damage is assumed 

since no reliable source of information is available.  As the software informs both day and night 

losses for vehicles, we follow the flood timing reported by the National Weather Service (2008) 

and select day losses for Grays Harbor and Thurston, and night losses for Lewis County. 

For the comparison between models in Section 4.5, we use the 2008 annual IO tables 

extracted from IMPLAN (2015) at a 16 sectors aggregation level (Table 4.2).  We chose this 

level of aggregation to minimize incompatibilities when bridging HAZUS’ occupancy class 

classification and the NAICS classification used by IMPLAN.  For the full implementation of the 

GDIO model in Section 4.6 that requires intra-year data, we estimate the quarterly 2008 IO 

tables for the three counties following the methodology and databases presented in Chapter 2.  

The production modes and timing shown in Table 4.2 are ad hoc, except for manufacturing that 

was estimated using a variant of the methodology proposed by Thomas and Kandaswamy (2017) 

and based on data from the Manufacturers’ Shipments, Inventories and Orders (M3) survey 

(Census Bureau, 2018b).65 

                                                           
65 Flow time (𝐹𝑇𝑖) for an industry 𝑖 is calculated from the not-seasonally adjusted series of value of shipments (𝑣𝑖) 
and total inventories (𝑡𝑖) between two dates, 𝑑0 < 𝑑1, and Little’s Law (Thomas & Kandaswamy, 2017): 

𝐹𝑇𝑖 = (𝑑1 − 𝑑0) ((∑ 𝑣𝑖(𝑡)
𝑑1

𝑡=𝑑0

) ((∑ 𝑡𝑖(𝑡)
𝑑1

𝑡=𝑑0

) (𝑑1 − 𝑑0)⁄ )⁄ )⁄  
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We do not explicitly model interregional trade but assume that given the small size of the 

affected counties’ economy relatively to Washington’s (3.8% of the state’s GDP), all imports are 

produced by the rest of the state and their production leads to negligible positive feedback to the 

affected counties.  Moreover, all the reconstruction stimuli are allocated to the rest of 

Washington.  Notice that the assumption of fixed prices holds here because of the small size of 

the affected region. 

The inventory data for the DIIM are based on the December 2007 inventory-to-sales ratio 

for manufacturing reported by the Federal Reserve Bank of St. Louis (2016), as suggested in 

Barker and Santos (2010).  This not-seasonally-adjusted ratio is 1.23 for the period under study, 

and we choose to apply it homogeneously to all counties.  Data for wholesale and retail are not 

considered since these sectors’ activities are recorded as margins, so they cannot hold finished 

goods inventories and, although they could hold “materials and supplies” and “work-in-progress” 

inventories, such data are not available.  Besides Manufacturing (NAICS 31-33), resource 

activities (NAICS 11, 21) and Construction (NAICS 23) are the only sectors assumed to hold 

finished goods inventories (Table 4.1).  Demographic information for the GDIO model (total 

population, employment and unemployment) was obtained from the Washington State 

Employment Security Department (2018). 

All data were normalized to daily level since the models were estimated at a daily step.  

Annual data were distributed uniformly throughout the year, and quarterly data were distributed 

uniformly in each quarter.  The results were aggregated to monthly level for presentation 

purposes.  Finally, we assume total anticipated output for the Inv-DIIM is always equal to the 

pre-disaster output, i.e. 𝐱(𝑡) = 𝐱P ∀𝑡, and the parametrization for the Inv-ARIO is the same as in 

Hallegatte (2014) except for overproduction capacity which is set to zero for all industries. 

 

4.4.3. Stock Damages Estimates via HAZUS 

Using the water-depth grids in HAZUS, physical damages were estimated at $678 million 

and, as expected, the largest impact occurred in Lewis County (a breakdown of damages is 

provided in Table 4.3).  The only available counterfactual for direct losses is from Lewis County, 

where the total building losses (structure + inventory) were assessed at $166.2 million (Lewis 

County, 2009), while our HAZUS-based estimates were $150.5 million ($142.5 million in 
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buildings and $8.1 million in inventories).  This 9.4% difference can be explained, in part, by the 

fact that our model estimates the total number of buildings moderately damaged at 898, when 

957 of them were actually reported (Lewis County, 2009).  Also, five fire stations were affected 

during the flood, at a total repair cost of $6 million (Lewis County, 2009), but these were not 

reported by HAZUS.  Such discrepancies are due to the mismatch between the software’s 

datasets and the event’s year, its spatial scale (census block level), and the fact that the buildings’ 

densities and locations are estimated.  More accurate results would be obtained by using 

georeferenced building inventory data from local tax assessor offices (Ding, White, Ullman, & 

Fashokun, 2008; Tate, Muñoz, & Suchan, 2014), but since we only need a benchmark estimate 

of stock damages to compare the models, this step is out of the scope of this Chapter. 

 

Table 4.3: Stock damages by county, in 2008 million dollars 

  

Grays 

Harbor Lewis Thurston 

Agriculture 

Crops -  - -    

Building Stock 

Capital Stock Damages 

 

Building Damage $ 71.3   $ 142.5   $ 22.2  

 

Contents Damage  $ 52.2  $ 192.1  $ 23.7  

 

Inventory Damage $   1.0  $     8.1  $   0.4  

Vehicles 

  

 $ 18.4   $ 46.3  $   9.6  

Infrastructure 

Transportation -   -  -    

Utilities  $ 26.7  $ 31.5 $ 20.0  

Essential Facilities       

 

Fire Station   -     -     -    

 

Police Station  -     -    -    

 

Hospitals  -    -     -    

 

Schools $ 7.4 $   4.6  -    

Total Stock Damage 

  

 $ 176.9    $ 425.1  $ 75.8  
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When it comes to the estimated square footage damaged per industry, most of the 

affected area is concentrated in Lewis County, followed by Grays Harbor and then Thurston (see 

Figure 4.7).   Agriculture, Construction and Healthcare are the main impacted industries, the 

latter being almost exclusively located in Lewis County.  In Grays Harbor and Thurston, 

Agriculture is the main affected sector (Figure 4.8). 

 

 

 

 

 

Figure 4.7: Initial inoperability by county 
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Notes: The damage restoration time is based on HAZUS (table 14.12 in FEMA, 2015) according to the average 

construction time by occupancy class and dominant restoration element. Inoperability, determined by the 

share of damage area by occupancy class and restoration time, is aggregated to NAICS classification 

according to Table 4.2. 

 

Figure 4.8: Total inoperability by month (lines) and distribution by sector (pie charts)  

 

 

4.5. Comparison Between Models 

Considering the default recovery timing from HAZUS, we estimate a total direct output 

loss of $26.3 million over 25 months.  First-order effects are the same across models and 

Healthcare, Agriculture and Manufacturing are the most affected sectors.  Given the economic 

structure of the counties, Lewis has the most losses in service sectors, while Thurston 

experiences the most losses in government activities (Figure 4.7).  Such loss of output translates 

into a $10.5 million decrease in direct labor income.  Next, we use the models described in 

Section 4.2 to estimate higher-order effects.  The full results by model, county and sector are 

presented in Tables 4.4-4.6. 
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Table 4.4: Estimated flow losses by sector and model, in 2008 million dollars, Grays Harbor 

   

Demand Reduced by 

Labor Income Losses 

and Supply 

Restrictions 

Demand Reduced 

by Labor Income 

Losses 

  

Sector LM RM DIIM Inv-DIIM DIIM Inv-DIIM Inv-ARIO GDIO 

11 
-0.73 -1.98 

(+170%) 
-2.04 

(+177%) 
-2.01 

(+174%) 
-1.31 

(+79%) 
-1.29 

(+76%) 
-3.46 

(+371%) 
-1.38 

(+88%) 

21 
-0.00 -0.00 

(+13%) 
-0.01 

(+73%) 
-0.01 

(+69%) 
-0.00 
(-18%) 

-0.00 
(-22%) 

-0.00 
(-99%) 

-0.00 
(-23%) 

22 
-0.00 -0.00 

(+13%) 
-0.00 

(+36%) 
-0.00 
(29%) 

-0.00 
(0%) 

-0.00 
(-8%) 

-0.00 
(-97%) 

-0.00 
(-62%) 

23 
-0.45 -0.51 

(+13%) 
-0.92 

(+104%) 
-0.92 

(+104%) 
-0.48 
(+5%) 

-0.48 
(+5%) 

-1.23 
(+172%) 

-0.49 
(+8%) 

31-33 
-0.44 -0.52 

(+20%) 
-0.83 

(+91%) 
-0.54 

(+22%) 
-0.46 
(+4%) 

-0.16 
(-64%) 

-0.69 
(+58%) 

-0.37 
(-15%) 

42 
-0.10 -0.18 

(+92%) 
-0.21 

(+116%) 
-0.20 

(+109%) 
-0.15 

(+56%) 
-0.14 

(+49%) 
-0.08 
(-15%) 

-0.13 
(+37%) 

44-45 
-0.17 -0.17 

(+4%) 
-0.21 

(+26%) 
-0.21 

(+26%) 
-0.19 

(+16%) 
-0.19 

(+15%) 
-0.02 
(-88%) 

-0.07 
(-59%) 

48-49 
-0.02 -0.03 

(+45%) 
-0.04 

(+75%) 
-0.04 

(+64%) 
-0.03 

(+17%) 
-0.03 
(+6%) 

-0.00 
(-95%) 

-0.02 
(-26%) 

51-53 
-0.35 -0.39 

(+13%) 
-0.43 

(+23%) 
-0.43 

(+22%) 
-0.36 
(+4%) 

-0.36 
(+3%) 

-0.00 
(-100%) 

-0.10 
(-70%) 

54-56 
-0.21 -0.49 

(+129%) 
-0.50 

(+133%) 
-0.50 

(+131%) 
-0.32 

(+49%) 
-0.31 

(+47%) 
-0.19 
(-10%) 

-0.39 
(+83%) 

61 
-0.01 -0.01 

(+12%) 
-0.01 

(+69%) 
-0.01 

(+69%) 
-0.01 
(+5%) 

-0.01 
(+5%) 

-0.00 
(-49%) 

-0.01 
(+2%) 

62 
-0.17 -0.17 

(0%) 
-0.17 
(0%) 

-0.17 
(0%) 

-0.17 
(0%) 

-0.17 
(0%) 

-0.00 
(-100%) 

-0.05 
(-72%) 

71 
-0.03 -0.03 

(+2%) 
-0.03 
(+4%) 

-0.03 
(+4%) 

-0.03 
(+3%) 

-0.03 
(+2%) 

-0.00 
(-98%) 

-0.00 
(-96%) 

72 
-0.07 -0.07 

(+6%) 
-0.08 

(+11%) 
-0.08 

(+10%) 
-0.07 
(+2%) 

-0.07 
(+1%) 

-0.00 
(-100%) 

-0.01 
(-90%) 

81 
-0.08 -0.11 

(+30%) 
-0.14 

(+67%) 
-0.14 

(+66%) 
-0.11 

(+31%) 
-0.11 

(+30%) 
-0.03 
(-68%) 

-0.06 
(-23%) 

92 
-0.78 -0.85 

(+9%) 
-1.29 

(+66%) 
-1.29 

(+65%) 
-0.58 
(-26%) 

-0.57 
(-26%) 

-0.40 
(-48%) 

-0.81 
(+4%) 

TOTAL 
-3.61 -5.54 

(+53%) 
-6.91 

(+91%) 
-6.56 

(+82%) 
-4.26 

(+18%) 
-3.92 
(+8%) 

-6.11 
(+69%) 

-3.90 
(+8%) 

Notes: The top 3 sectors with the highest losses by column are shaded (darker grays indicate higher losses). 

Percentage in parenthesis indicates the increase (positive) or decrease (negative) in flow losses in a given 

model with respect to the results from the Leontief model (LM). 
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Table 4.5: Estimated flow losses by sector and model, in 2008 million dollars, Lewis 

   

Demand Reduced by 

Labor Income Losses 

and Supply 

Restrictions 

Demand Reduced by 

Labor Income Losses 

  

Sector LM RM DIIM Inv-DIIM DIIM Inv-DIIM Inv-ARIO GDIO 

11 
-0.84 -2.01 

(+140%) 
-2.17 

(+159%) 
-1.99 

(+138%) 
-1.37 

(+63%) 
-1.19 

(+42%) 
-4.09 

(+387%) 
-1.27 

(+52%) 

21 
-0.01 -0.01 

(+8%) 
-0.02 

(+54%) 
-0.02 

(+36%) 
-0.01 
(-8%) 

-0.01 
(-26%) 

-0.00 
(-99%) 

-0.01 
(-23%) 

22 
-0.39 -0.41 

(+4%) 
-0.48 

(+22%) 
-0.46 

(+17%) 
-0.36 
(-9%) 

-0.34 
(-15%) 

-0.00 
(-100%) 

-0.22 
(-45%) 

23 
-1.05 -1.13 

(+8%) 
-2.06 

(+97%) 
-2.06 

(+97%) 
-1.05 
(+1%) 

-1.05 
(0%) 

-3.53 
(+238%) 

-1.10 
(+5%) 

31-33 
-1.88 -1.96 

(+4%) 
-3.42 

(+82%) 
-1.92 
(+2%) 

-1.66 
(-12%) 

-0.16 
(-92%) 

-4.77 
(+154%) 

-1.84 
(-2%) 

42 
-0.34 -0.47 

(+37%) 
-0.56 

(+65%) 
-0.53 

(+55%) 
-0.43 

(+26%) 
-0.39 

(+15%) 
-0.16 
(-54%) 

-0.28 
(-19%) 

44-45 
-1.73 -1.82 

(+6%) 
-2.82 

(+63%) 
-2.81 

(+63%) 
-2.11 

(+22%) 
-2.11 

(+22%) 
-1.10 
(-36%) 

-1.71 
(-1%) 

48-49 
-0.16 -0.17 

(+10%) 
-0.22 

(+41%) 
-0.20 

(+28%) 
-0.15 
(-6%) 

-0.13 
(-19%) 

-0.00 
(-100%) 

-0.10 
(-38%) 

51-53 
-2.54 -2.63 

(+3%) 
-2.98 

(+17%) 
-2.96 

(+16%) 
-2.23 
(-12%) 

-2.21 
(-13%) 

-0.00 
(-100%) 

-1.44 
(-43%) 

54-56 
-1.12 -1.86 

(+67%) 
-2.11 

(+89%) 
-2.08 

(+86%) 
-1.21 
(+8%) 

-1.18 
(+6%) 

-0.81 
(-28%) 

-1.30 
(+16%) 

61 
-0.07 -0.07 

(+1%) 
-0.07 
(+7%) 

-0.07 
(+7%) 

-0.07 
(+5%) 

-0.07 
(+5%) 

-0.00 
(-95%) 

-0.01 
(-92%) 

62 
-12.09 -12.24 

(+1%) 
-16.20 
(+34%) 

-16.20 
(+34%) 

-5.40 
(-55%) 

-5.40 
(-55%) 

-6.40 
(-47%) 

-12.09 
(0%) 

71 
-0.18 -0.19 

(+5%) 
-0.29 

(+61%) 
-0.29 

(+60%) 
-0.25 

(+38%) 
-0.25 

(+37%) 
-0.11 
(-38%) 

-0.17 
(-4%) 

72 
-0.42 -0.43 

(+2%) 
-0.46 

(+10%) 
-0.46 
(+9%) 

-0.39 
(-7%) 

-0.39 
(-8%) 

-0.00 
(-100%) 

-0.18 
(-58%) 

81 
-0.84 -0.97 

(+16%) 
-1.40 

(+67%) 
-1.39 

(+66%) 
-0.90 
(+7%) 

-0.89 
(+6%) 

-0.52 
(-38%) 

-0.81 
(-3%) 

92 
-0.35 -0.36 

(+3%) 
-0.43 

(+21%) 
-0.42 

(+19%) 
-0.35 
(-2%) 

-0.34 
(-4%) 

-0.02 
(-93%) 

-0.11 
(-69%) 

TOTAL 
-24.01 -26.75 

(+11%) 
-35.71 
(+49%) 

-33.86 
(+41%) 

-17.94 
(-25%) 

-16.10 
(-33%) 

-21.52 
(-10%) 

-22.64 
(-6%) 

Notes: The top 3 sectors with the highest losses by column are shaded (darker grays indicate higher losses). 

Percentage in parenthesis indicates the increase (positive) or decrease (negative) in flow losses in a given 

model with respect to the results from the Leontief model (LM). 
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Table 4.6: Estimated flow losses by sector and model, in 2008 million dollars, Thurston 

   

Demand Reduced by 

Labor Income Losses 

and Supply 

Restrictions 

Demand Reduced by 

Labor Income Losses 

  

Sector LM RM DIIM Inv-DIIM DIIM Inv-DIIM Inv-ARIO GDIO 

11 
-0.36 -0.49 

(+37%) 
-0.72 

(+101%) 
-0.72 

(+101%) 
-0.36 
(+2%) 

-0.36 
(+2%) 

-0.95 
(+166%) 

-0.39 
(+9%) 

21 
-0.00 -0.00 

(+7%) 
-0.00 

(+64%) 
-0.00 

(+64%) 
-0.00 
(-14%) 

-0.00 
(-14%) 

-0.00 
(-35%) 

-0.00 
(-27%) 

22 
-0.01 -0.01 

(+5%) 
-0.02 

(+16%) 
-0.02 

(+16%) 
-0.01 
(+1%) 

-0.01 
(+1%) 

-0.00 
(-100%) 

-0.00 
(-90%) 

23 
-0.20 -0.20 

(+4%) 
-0.38 

(+96%) 
-0.38 

(+96%) 
-0.19 
(-2%) 

-0.19 
(-2%) 

-0.49 
(+150%) 

-0.20 
(+1%) 

31-33 
-0.03 -0.03 

(+4%) 
-0.04 

(+26%) 
-0.04 

(+26%) 
-0.03 
(0%) 

-0.03 
(0%) 

-0.00 
(-100%) 

-0.02 
(-47%) 

42 
-0.20 -0.27 

(+31%) 
-0.36 

(+78%) 
-0.36 

(+78%) 
-0.22 
(+8%) 

-0.22 
(+8%) 

-0.11 
(-45%) 

-0.23 
(+13%) 

44-45 
-0.15 -0.15 

(+2%) 
-0.19 

(+28%) 
-0.19 

(+28%) 
-0.18 

(+23%) 
-0.18 

(+23%) 
-0.03 
(-82%) 

-0.07 
(-54%) 

48-49 
-0.02 -0.02 

(+14%) 
-0.02 

(+39%) 
-0.02 

(+39%) 
-0.02 
(+4%) 

-0.02 
(+4%) 

-0.00 
(-90%) 

-0.00 
(-76%) 

51-53 
-0.39 -0.42 

(+6%) 
-0.44 

(+12%) 
-0.44 

(+12%) 
-0.40 
(+2%) 

-0.40 
(+2%) 

-0.00 
(-100%) 

-0.06 
(-86%) 

54-56 
-0.22 -0.38 

(+77%) 
-0.41 

(+91%) 
-0.41 

(+91%) 
-0.26 

(+22%) 
-0.26 

(+22%) 
-0.13 
(-41%) 

-0.27 
(+24%) 

61 
-0.02 -0.02 

(+2%) 
-0.02 

(+14%) 
-0.02 

(+14%) 
-0.02 

(+11%) 
-0.02 

(+11%) 
-0.00 
(-91%) 

-0.00 
(-82%) 

62 
-0.19 -0.19 

(0%) 
-0.19 
(0%) 

-0.19 
(0%) 

-0.19 
(0%) 

-0.19 
(0%) 

-0.00 
(-100%) 

-0.04 
(-80%) 

71 
-0.02 -0.02 

(+2%) 
-0.02 
(+8%) 

-0.02 
(+8%) 

-0.02 
(+5%) 

-0.02 
(+5%) 

-0.00 
(-96%) 

-0.00 
(-92%) 

72 
-0.06 -0.06 

(+4%) 
-0.06 
(+6%) 

-0.06 
(+6%) 

-0.06 
(+1%) 

-0.06 
(+1%) 

-0.00 
(-100%) 

-0.00 
(-97%) 

81 
-0.06 -0.06 

(+7%) 
-0.07 

(+19%) 
-0.07 

(+19%) 
-0.06 
(+5%) 

-0.06 
(+5%) 

-0.00 
(-95%) 

-0.01 
(-84%) 

92 
-0.97 -1.01 

(+4%) 
-1.59 

(+63%) 
-1.59 

(+63%) 
-0.67 
(-31%) 

-0.67 
(-31%) 

-0.48 
(-51%) 

-0.99 
(+2%) 

TOTAL 
-2.89 -3.34 

(+15%) 
-4.53 

(+57%) 
-4.53 

(+57%) 
-2.70 
(-7%) 

-2.70 
(-7%) 

-2.19 
(-24%) 

-2.28 
(-21%) 

Notes: The top 3 sectors with the highest losses by column are shaded (darker grays indicate higher losses). 

Percentage in parenthesis indicates the increase (positive) or decrease (negative) in flow losses in a given 

model with respect to the results from the Leontief model (LM). 
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First, notice that the distribution of losses by sectors is somewhat homogenous across 

models in each county. This result makes sense since the economic structure does not vary 

considerably; however, it might not hold in an event that generates large capacity constraints 

because the rebalancing model may significantly alter local linkages. 

The size of the difference in total flow losses between the Leontief model (LM) and the 

rebalancing model (RM) reflects the forward effects of the disruption in supply of goods and 

services, an impact that is not captured in LM (see Table 4.1).  The increase in losses in RM is 

driven by the amount of inoperability in industries with high “fields of influence”, i.e. industries 

in which small changes in the 𝐀P matrix (Equation 4.3) affect the coefficients in the Leontief 

Inverse the most (Figure E.1 in the Appendix).  This is the case in Grays Harbor where 

agriculture is both the most impacted sector and the one with the largest effect on the Leontief 

Inverse, leading to a 53% difference with LM results.  The same sector has also high fields of 

influence in Thurston but since its inoperability is small, the difference in losses is significantly 

lower (15%).  In the case of Lewis, the most inoperable sectors have small effects on the overall 

linkages in the economy, leading to reduced forward effects and the least difference between the 

regions (11%). 

When it comes to monthly losses by county (Figures 4.9, 4.10 and 4.11), the RM shows 

the highest production plunges in the initial post-disaster periods, when the economic structure is 

the most impaired.  This highlights the importance of accounting for both capacity constraints 

and local interdependence, i.e. backwards and forwards effects, because if highly interdependent 

sectors are affected and the economic structure is kept fixed, the bias is exacerbated.  As the 

economy rebounds and returns to its original steady state, RM approaches the traditional LM 

model estimates. 

Moreover, because the Leontief and rebalancing models are static, the initial inoperability 

does not spread inter-temporally, so the large loss in the first post-disaster months fades quickly.  

Although not shown, the SIM distributes losses in time due to perfect foresight, so the efficient 

output path begins pre-disaster and involves lower reductions in output in each period.  While we 

are aware that an event like the one studied here cannot be expected, it is important to recall that 

the SIM is originally designed for positive shocks.  Total losses in the SIM are the same as in the 

RM, since the latter only spreads the inoperability through time (they both capture the same set 
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of impacts).  The shape of the recovery process will vary with the assumed production timing of 

each sector. 

 

 

Figure 4.9: Monthly output (top) and accumulated flow losses (bottom) by model, Grays Harbor 

 

 



 

119 

 

 

 

 

Figure 4.10: Monthly output (top) and accumulated flow losses (bottom) by model, Lewis 

 

 

 



 

120 

 

 

 

 

Figure 4.11: Monthly output (top) and accumulated flow losses (bottom) by model, Thurston 
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With the current assumptions that final demand is reduced by income loss and by the 

sectoral inoperability (Equation 4.18), both DIIM and Inv-DIIM provide the upper-bound 

estimate of the total losses.  Based on our case study, they are 41-91% higher than the LM 

estimates.  Although these models are only able to capture the same set of impacts as the simple 

Leontief model (Table 4.1), the large discrepancy is generated by the speed of the endogenous 

recovery process that is slower than the exogenously imposed schedule (see Figures 4.9-4.11), 

since the imbalance between supply and demand in each period is not large.  Now, using the 

same resilience and repair coefficients, we re-estimated the models assuming that the post-

disaster demand is only reduced by labor income losses (Tables 4.4-4.6 columns 5-6).  The 

results indicate that the total losses vary significantly from the previous assumptions, with the 

Inventory-DIIM going from the upper-bound to the lower-bound of total losses in Lewis County.  

This result highlights that defining the components of the final demand vector requires some care 

in the DIIM framework.  On the other hand, the definition of the demand vector in the LM and 

RM models is straightforward: in the former, both inoperability and demand perturbation need to 

be included in order to account for demand/supply constraints, while in the latter, the demand 

vector is entirely determined by the rebalancing algorithm. 

The difference between the DIIM and its inventory version depends on the composition 

of demand and on the importance and intersectoral linkages of the sectors that have finished 

goods inventories.  These sectors are usually primary and secondary industries, but in our case it 

is simply the manufacturing sector due to data restrictions.  Both models yield very close results 

in Thurston due to the low presence of local manufacturing in its economy (94% of 

manufacturing inputs are imported and this sector represents only 9% of final demand).  

Conversely, manufacturing represents a significant share of final demand (mostly through 

exports) in Grays Harbor (44%) and Lewis (34%) due to their commercial logging cluster.  

Therefore, inventories directly mitigate the disruption in that sector, and indirectly reduce the 

inoperability in the rest of the economy through the agricultural sector which has the largest 

backward linkages. 

The Inventory-ARIO model (and the GDIO) captures most of the disaster impacts 

described in Oosterhaven (2017).  The net effect of positive and negative impacts will vary 

between regions, which partially explains the higher losses in Grays Harbor and lower losses in 

Lewis and Thurston when compared to the Leontief Model (Tables 4.4-4.6).  The Inventory-
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ARIO also concentrates flow losses on the sectors directly affected by the initial inoperability, as 

its target inventory approach (90-day inventories) restricts the spread of the disruption to 

downstream sectors (i.e. forward effects).  Total flow losses are close to the ones from the GDIO 

model, except for Grays Harbor, where losses in Agriculture are the largest from all models, 

since the sector itself consumes 31% of its own production. 

Except for the GDIO (and Inv-ARIO), all previous models account for changes in post-

disaster household consumption exogenously by reducing the final demand of a given period by 

the amount of labor income lost due to the inoperability of the sectors (Equation 4.18).  It is also 

common practice in the literature to consider induced effects by endogenizing households in the 

model as an additional “sector” in the economy.  A major drawback of such solutions is the 

implicit assumption that if an individual becomes unemployed he/she stops consuming locally as 

his/her wage income ceases (Batey and Weeks, 1989; Batey et al., 2001).  In the context of 

negative shocks in a demand-driven model, the flow losses are overestimated since the 

expenditures of non-working households are ignored (Batey, 2018).  The GDIO is the only 

framework that models induced effects endogenously using a demo-economic approach that 

considers changes in income and consumption of all residents (Figure 3.2), thus capturing 

demand composition change impacts.  This explains the relatively low estimates of the GDIO in 

comparison to the other models, even though its results reflect direct, indirect and induced 

effects.  Also contributing to these results is the dynamic behavioral response of industries in the 

GDIO – through formation of inventories of both raw materials and finished goods, and 

adjustment time (most industries are just-in-time) – that reduces the inertial effect of the 

disruption. 

 

4.6. Timing of the Event: The Role of Seasonality in Disaster Analysis 

 As shown in Chapters 1 and 2, the economic structure of a region can vary substantially 

within the year, especially if it is primarily dependent on seasonal industries such as agriculture 

and tourism.  Hence, the timing of a disaster will affect the scale and scope of its impacts 

depending on how production is organized at that moment.  Consideration of such structural 

changes in the economy has been lacking in most of the disaster literature, particularly in 

modeling flow losses.  Disaster assessments are usually based on annual IO tables, and implicitly 
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assume a homogenous economic structure throughout the year, as presented in the previous 

Section.  In order to show the importance of intra-year production fluctuations to calculate 

losses, we reestimated the Chehalis flood event using quarterly data in the GDIO model. 

 We follow the same specifications as before but use the quarterly IO tables for each 

county instead of the annual tables.  Total losses were calculated as the difference between the 

baseline simulation (no disruption) and the disaster simulation.  We use the GDIO model since it 

was designed to handle intra-year tables in a dynamic fashion, besides endogenously accounting 

for demographic changes within the year (see Chapter 3). 

 The quarterly GDP by county is presented in Table 4.7.  For all regions, Q3 generates the 

highest regional income in the year, while Q1 generates the lowest in Lewis and Thurston, and 

Q2 in Grays Harbor.  Thurston has the largest intra-year production variability of all counties, 

especially in Construction, Wholesale Trade and Public Administration.  In Lewis County, 

Agriculture, Construction, Healthcare and Manufacturing show high fluctuation within the year.  

The former three sectors are directly impacted by the flood, so we should expect different results 

when using quarterly data instead of annual.  Grays Harbor exhibits larger Q1 multipliers overall, 

in clear contrast with Lewis and Thurston, where Q1 has overall lower linkages in relation to the 

rest of the year. 

 

Table 4.7: Evolution of total GDP per quarter, 2008 million dollars 

 

Q1 Q2 Q3 Q4 Annual 

Grays Harbor             483              479              499              482          1,942  

Lewis             504              513              526              511          2,054  

Thurston          2,155           2,187           2,264           2,248          8,855  

 

 

The use of intra-year data reduces the total flow losses in both Lewis and Thurston 

counties (Table 4.8), since the initial months post-disaster (when inoperability is the highest) 

coincide with the quarter in which production is the lowest in the year (Q1).  As expected, the 

largest decline is observed in Thurston (-1.3%), the county with the highest variability between 

quarters.  Thurston’s estimates reduce due to weaker first and second quarters when compared to 
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the rest of the year, especially driven by Wholesale Trade and Professional Services, which are 

very seasonal and represent a significant portion of the losses.  Lewis has a somewhat uniform 

reduction in losses across all sectors, caused primarily by weaker linkages in Q1.  Notice that 

Grays Harbor shows a small, but positive change from the annual data estimates (+0.1%), as Q1 

and Q4 have a similar level of interindustrial connectivity. 

 

 Table 4.8: Comparison of results using annual vs quarterly data 

 

Grays Harbor Lewis Thurston 

Sector Annual Quarterly Annual Quarterly Annual Quarterly 

11 Ag., Fore., Fish & Hun.  -1.38  -1.36  -1.27  -1.26  -0.39  -0.39 

21 Mining  -0.00  -0.00  -0.01  -0.01  -0.00  -0.00 

22 Utilities  -0.00  -0.00  -0.22  -0.22  -0.00  -0.00 

23 Construction  -0.49  -0.49  -1.10  -1.07  -0.20  -0.20 

31-33 Manufacturing  -0.37  -0.37  -1.84  -1.83  -0.02  -0.02 

42 Wholesale Trade  -0.13  -0.13  -0.28  -0.28  -0.23  -0.16 

44-45 Retail Trade  -0.07  -0.07  -1.71  -1.71  -0.07  -0.06 

48-49 Transp. & Ware.  -0.02  -0.02  -0.10  -0.10  -0.00  -0.00 

51-53 Inf. & FIRE  -0.10  -0.11  -1.44  -1.44  -0.06  -0.11 

54-56 Prof., Mgmt. & Adm.  -0.39  -0.40  -1.30  -1.30  -0.27  -0.23 

61 Educational Svcs.  -0.01  -0.01  -0.01  -0.01  -0.00  -0.00 

62 Health & Social Svcs.  -0.05  -0.05  -12.09  -12.05  -0.04  -0.06 

71 Arts, Ent. & Rec.  -0.00  -0.00  -0.17  -0.17  -0.00  -0.00 

72 Accom. & Food Svcs.  -0.01  -0.01  -0.18  -0.17  -0.00  -0.01 

81 Other Svcs.  -0.06  -0.06  -0.81  -0.81  -0.01  -0.02 

92 Gov. & non-NAICS  -0.81  -0.81  -0.11  -0.11  -0.99  -0.99 

TOTAL  -3.90  -3.90  -22.64  -22.53  -2.28  -2.25 

 +0.1% -0.5% -1.3% 

 

 

Next, we analyze how the timing of the event affects the estimated losses.  The date in 

which the disruption occurs is irrelevant when the models are based on annual data, since the 

underlying economic structure does not change within the year.  Nonetheless, using sub-annual 

data, the time dimension becomes significant because the direct and indirect linkages between 

industries are varying.  To understand its implications, we simulate the Chehalis flood with the 

same parametrization as before, but we start the event at different months in 2007. 
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Figure 4.12 shows the differences in total losses between the simulations and the actual 

event.  Grays Harbor and Lewis County have the lowest variation within the year and Thurston 

the largest, as expected from the previous discussion.  The estimated total impact of the flood in 

Grays Harbor is larger than the yearly-based estimates if the disruption occurred in the first and 

third quarters, driven mainly by increased losses in Retail and FIRE activities (Figure 4.13).   

 

 

Figure 4.12: Change in total losses from December due to different event dates 

 

The distribution of sectoral losses in Lewis County are quite stable irrespectively of the 

timing of the disruption (Figure 4.14), and are very close to the yearly-based distribution.  

Healthcare, the most impacted sector in the flood, shows only a 1% difference when varying the 

timing of the disruption.  Construction fluctuates the most (8%), with larger total losses in Q3 

when it is more active in the region.  In this case, the use of the annual IO table does not bias the 

scope of the losses (although it affects the scale, see Table 4.8). 
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Notes: (11) Ag., Fore., Fish & Hun.; (21) Mining; (22) Utilities; (23) Construction; (31-33) Manufacturing; 

(42) Wholesale Trade; (44-45) Retail Trade; (48-49) Transp. & Ware.; (51-53) Inf. & FIRE; (54-56) 

Prof., Mgmt. & Adm.; (61) Educational Svcs.; (62) Health & Social Svcs.; (71) Arts, Ent. & Rec.; 

(72) Accom. & Food Svcs.; (81) Other Svcs.; (92) Gov. & non-NAICS. 

 

Figure 4.13: Changes in losses by industry due to different event dates, Grays Harbor 

 

Thurston’ simulations show a more pronounced variation in scale and scope of the losses 

especially in Construction, Trade, Services and Public Administration (Figure 4.15).  Except for 

Wholesale Trade, these sectors would have their largest losses if the flood had occurred in the 

middle of the year, when their output and linkages to the rest of the economy are the strongest.  

Hence, for this particular county, the timing of the flood is a significant factor in determining its 

impact and the distribution of effects.  Although these variations at first seem small, recall that 

Thurston had the least amount of inoperability among all counties (less than 1%), so we expect 

these differences to become more significant in a larger disruption. 

In sum, these results allude to how regional idiosyncrasies can have diametrical effects 

when the timing of the event and the seasonality in the economic structure are ignored.  Since we 
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cannot generalize these observations to other counties or disasters, practitioners need to be aware 

of the bias that they might incur from the common practice of using annual data to assess 

transient phenomena. 

 

 

 

Notes: (11) Ag., Fore., Fish & Hun.; (21) Mining; (22) Utilities; (23) Construction; (31-33) Manufacturing; 

(42) Wholesale Trade; (44-45) Retail Trade; (48-49) Transp. & Ware.; (51-53) Inf. & FIRE; (54-56) 

Prof., Mgmt. & Adm.; (61) Educational Svcs.; (62) Health & Social Svcs.; (71) Arts, Ent. & Rec.; 

(72) Accom. & Food Svcs.; (81) Other Svcs.; (92) Gov. & non-NAICS. 

 

Figure 4.14: Changes in losses by industry due to different event dates, Lewis 
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Notes: (11) Ag., Fore., Fish & Hun.; (21) Mining; (22) Utilities; (23) Construction; (31-33) Manufacturing; 

(42) Wholesale Trade; (44-45) Retail Trade; (48-49) Transp. & Ware.; (51-53) Inf. & FIRE; (54-56) 

Prof., Mgmt. & Adm.; (61) Educational Svcs.; (62) Health & Social Svcs.; (71) Arts, Ent. & Rec.; 

(72) Accom. & Food Svcs.; (81) Other Svcs.; (92) Gov. & non-NAICS. 

 

Figure 4.15: Changes in losses by industry due to different event dates, Thurston 

 

The estimated flow losses have so far assumed absence of trade restrictions during the 

post-disaster period.  However, according to WSDOT (2008) the Chehalis flood also led to a 4-

day closure of interstate I-5 (Dec-3 to Dec-6), during which accessibility to the region was 

compromised, especially in Lewis County.  Since we are able to more properly capture local 

economic conditions at the time of the disaster using the quarterly data, and accessibility 

constraints can be easily implement in the GDIO model, we simulated this highway closure by 

reducing the trade volume in the counties in 50% during these four days. 
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Figure 4.16: Differences in flow losses between annual and quarterly IO tables 

 

The results indicate a significant increase in impacts in all counties, particularly in 

Thurston, where public administration, FIRE, construction and manufacturing sectors are the 

most impacted (Figure 4.16).  Lewis County has the lowest increase, due to the higher 

inoperability in its economy during the closure period that led to a forced reduction in local 

import requirements.  Grays Harbor shows a significant increase in losses from manufacturing 

because of its high multiplier in the quarter and high dependence on external markets.66 

 

4.7. Conclusions 

Although stock damages are well understood, flow impacts taking place in the post-

disaster period tend to be overlooked (Koks et al., 2015; Meyer et al., 2013).  As a result, 

mitigation strategies for future events are myopically applied to the affected economies, as if 

                                                           
66 WSDOT (2008) provides an estimate of the flow losses impacts of this disruption based on a Leontief model 

using annual data from IMPLAN.  Our results are not comparable to WSDOT’s since we are considering the 

cumulative effect of the local inoperability in the region compounded with the highways closure, while WSDOT 

accounts only for the impact of the trucking industry on the other sectors in the state. 
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they had no spatial and temporal linkages.  This partial account of impacts ignores the 

interconnectivity of modern production chains and may lead to significant negative effects to 

non-affected regions. 

The disaster literature has several models to assess flow losses and most of them are 

rooted in the IO framework.  However, there is no consensus on a preferred methodology.  

Therefore, researchers are often faced with a model selection issue based on the characteristics of 

the disaster, of the affected region(s), and on their assumptions on the mechanics of the local 

economy. 

Until the criticism of Dietzenbacher and Miller (2015) and Oosterhaven (2017), several 

disaster applications were based on the static IIM.  Besides this model, Cochrane’s rebalancing 

algorithm has also been widely used because of its practicality, minimum data requirement and, 

more especially, availability in HAZUS’s Indirect Economic Model.  As this feature has been 

deactivated in the most recent versions of the software, we anticipate that future analyses will 

rely even more on the traditional Leontief Model, that is quite popular due to software solutions 

like IMPLAN, which require no specialized knowledge.  However, our results indicate that the 

benefits of such practicality come at the expense of a loss of accuracy due to problematic 

assumptions of the traditional Leontief model when used in disaster situations.  While for small 

regions with minimal damages and low seasonality the trade-off between practicality and 

accuracy might be small, these errors tend to increase with the size of the stock damages, 

complexity of economic linkages and whether locally important industries are impacted. 

In this Chapter, we use fine-scale characteristics of a single event, the 2007 Chehalis 

flood (WA), to calculate the flow losses that are generated by seven models in the disaster 

literature.  The results highlight their bias under different economic structures, level of industrial 

interdependency in affected sectors and amount of inoperability.  We also show that the common 

practice of ignoring intra-year fluctuations in the economic structure can have significant impacts 

in the results depending on the characteristics of the local economy. 

Since every disaster event and affected region is unique, the more often practitioners and 

stakeholders use their knowledge of the local economy to calibrate these models, the more 

accessible they appear to future users.  For instance, the impact on regions dependent on non-

seasonal industries might be fairly well estimated using annual datasets.  However, in cases 
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where data is very limited to perform an analysis, we recommend using at least a rebalancing 

method such as Cochrane’s, instead of the traditional Leontief model.  Compared to the latter, 

capacity constraints in the former are better captured, and the effects of forward impacts are 

partially introduced at no additional data cost to the user.  At optimum, a model as the GDIO 

would be preferred, since its theoretical foundations more closely capture the local economic 

dynamic post-disaster. 

This Chapter also highlighted the importance of spatio-temporal aspects of disasters, 

showing how different regional structures and timing of the event can significantly alter the 

extent and scope of impacts.  Since local sectoral linkages and external trade patterns change 

throughout the year, they also affect input substitution availability, inventories and capacity 

constraints which create different feasible recovery options.  Hence, including these data when 

estimating flow losses is paramount. 

Due to its flexibility, easy implementation and interpretation, the IO framework should be 

in the toolbox of practitioners in the disaster field, who should also be aware of the assumptions 

and limitations of the different models.  As shown in this Chapter, to provide a more 

comprehensive solution to practitioners, it is feasible to develop an integrated framework linking 

HAZUS and the GDIO model with quarterly data of different counties in the US, which would 

account for time and spatial characteristics of the region and the disruptive event.  While the 

additional complexity of such extensions seems to conflict with the short timeframe emergency 

and disaster relief efforts operate under, the more accurate and detailed analysis they generate, 

the better such analysis can informs us of the current vulnerability of our economic system, and 

allow us to adapt more suitably to future events (Okuyama, 2007). 

 

  



 

132 

 

REFERENCES 

 

Abowd, J., Stephens, B., Vilhuber, L., Andersson, F., McKinney, K., Roemer, M., & Woodcock, 

S. (2005). The LEHD Infrastructure Files and the Creation of the Quarterly Workforce 

Indicators. U.S. Census Bureau, Technical Paper No. TP-2006-01. Available from 

https://lehd.ces.census.gov/doc/technical_paper/tp-2006-01.pdf 

Albertson, K., & Aylen, J. (1996). Modelling the Great Lakes Freeze: Forecasting and 

Seasonality in the Market for Ferrous Scrap. International Journal of Forecasting, 12(3), 

345-359. 

Aulin-Ahmavaara, P. (1990). Dynamic Input-Output and Time. Economic Systems Research, 

2(4), 329-344. 

Bacharach, M. (1970). Biproportional Matrices and Input-Output Change. Cambridge: 

Cambridge University Press. 

Banks, J., Camp, J., & Abkowitz, M. (2014). Adaptation Planning for Floods: a Review of 

Available Tools. Natural Hazards, 70(2), 1327-1337. 

Barker, K., & Santos, J. (2010). Measuring the Efficacy of Inventory with a Dynamic Input-

Output Model. International Journal of Production Economics, 126, 130-143. 

Baroud, H., Barker, K., Ramirez-Marquez, J., & Rocco, C. (2015). Inherent Costs and 

Interdependent Impacts of Infrastructure Network Resilience. Risk Analysis, 35(4), 642-662. 

Batey, P. (2018). What Can Demographic-Economic Modeling Tell Us About the Consequences 

of Regional Decline? International Regional Science Review, 41(2), 256-281. 

Batey, P., & Weeks, M. (1989). The Effects of Household Disaggregation in Extended Input-

Output Models. In R. Miller, K. Polenske and A. Rose (Eds.), Frontiers of Input-Output 

Analysis (pp. 119-133). New York: Oxford University Press. 

Batey, P., Bazzazan, F., & Madden, M. (2001). Dynamic Extended Input-Output Models: Some 

Initial Thoughts. In D. Felsentein, R. Mcquaid, P. McCann and D. Shefer (Eds.), Public 

Investment and Regional Development (pp. 26-39). Northampton: Edward Elgar. 

Batten, B. (1981). Entropy, Information Theory and Spatial Input-Output Analysis (Doctoral 

dissertation). Retrieved from Umeå University Library. (URN No. urn:nbn:se:umu:diva-

73612) 

Bénassy, J. (2002). The Macroeconomics of Imperfect Competition and Nonclearing Markets. 

Cambridge: MIT Press. 

Bernadini, R. (2008). A Composite Generalized Cross-Entropy Formulation in Small Samples 

Estimation. Econometric Reviews, 27(4-6), 596-609. 

https://lehd.ces.census.gov/doc/technical_paper/tp-2006-01.pdf


 

133 

 

Beutel, J. (2002). The Economic Impact of Objective 1 Interventions for the Period 2000-2006, 

Report to the Directorate-General for Regional Policies, Konstanz. Retrieved from 

http://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/objective1/final_report.pdf 

Beyers, W. (1978). Estimating Constraint Values for the Bi-proportional Method of Constructing 

Regional Input-Output Tables. Mimeographed paper, University of Washington, Seattle. 

Bočkarjova, M. (2007). Major Disasters in Modern Economies: An Input-Output Based 

Approach at Modelling Imbalances and Disproportions (Unpublished doctoral dissertation).  

University of Twente, Enschede, Netherlands. 

Bureau of Labor Statistics. (2018a). Handbook of Methods – Quarterly Census of Employment 

and Wages. Available from https://www.bls.gov/opub/hom/cew/home.htm 

Bureau of Labor Statistics. (2018b). Quarterly Census of Employment and Wages [Data file]. 

Available from https://www.bls.gov/cew/datatoc.htm 

Bureau of Economic Analysis. (2017). Concepts and Methods of the U.S. National Income and 

Product Accounts. Retrieved from 

https://www.bea.gov/methodologies/index.htm#national_meth 

Bureau of Economic Analysis. (2018a). Input-Output Accounts Data [Data file]. Available from 

https://www.bea.gov/industry/io_annual.htm 

Bureau of Economic Analysis. (2018b). International Economic Accounts [Data file]. Available 

from https://www.bea.gov/international/index.htm 

Bureau of Economic Analysis. (2018c). National Economic Accounts [Data file]. Available from 

https://www.bea.gov/national/index.htm 

Butterfield, M., & Mules, T. (1980). A Testing Routine for Evaluating Cell-by-Cell Accuracy in 

Short-cut Regional Input-Output Tables. Journal of Regional Science, 20, 293-310. 

Carter, A. (1970). Structural Change in the American Economy. Cambridge: Harvard University 

Press. 

Census Bureau. (2018a). Construction Spending Survey [Data file]. Available from 

https://www.census.gov/construction/c30/c30index.html 

Census Bureau. (2018b). Manufacturers’ Shipments, Inventories, & Orders [Data file]. Available 

from https://www.census.gov/manufacturing/m3/historical_data/index.html 

Census Bureau. (2018c). Manufacturing & Trade Inventories & Sales [Data file]. Available from 

https://www.census.gov/mtis/historic_releases.html 

Census Bureau. (2018d). Quarterly Workforce Indicators [Data file]. Available from 

https://ledextract.ces.census.gov/static/data.html 

http://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/objective1/final_report.pdf
https://www.bls.gov/opub/hom/cew/home.htm
https://www.bls.gov/cew/datatoc.htm
https://www.bea.gov/methodologies/index.htm#national_meth
https://www.bea.gov/industry/io_annual.htm
https://www.bea.gov/international/index.htm
https://www.bea.gov/national/index.htm
https://www.census.gov/construction/c30/c30index.html
https://www.census.gov/manufacturing/m3/historical_data/index.html
https://www.census.gov/mtis/historic_releases.html
https://ledextract.ces.census.gov/static/data.html


 

134 

 

Chehalis River Basin Flood Authority. (2010). Chehalis River Basin Comprehensive Flood 

Hazard Management Plan. Retrieved from 

http://lewiscountywa.gov/attachment/3009/JuneFloodPlan 6.10.pdf 

Cochrane, H. (1997). Forecasting the Economic Impact of a Midwest Earthquake. In B. Jones 

(Ed.), Economic Consequences of Earthquakes: Preparing for the Unexpected (pp. 223-247). 

Buffalo: NCEER. 

Cole, S. (1988). The Delayed Impacts of Plant Closures in a Reformulated Leontief Model. 

Papers of the Regional Science Association, 65, 135-149. 

Cole, S. (1989). Expenditure Lags in Impact Analysis. Regional Studies, 23(2), 105-116. 

Crosson, P. (1960). Further Comment on Economic Base Theory. Land Economics, 36(2), 197-

201. 

The Data Center. (2015). Facts for Features: Katrina Recovery. Retrieved from 

https://www.datacenterresearch.org/data-resources/katrina/facts-for-features-katrina-

recovery/ 

Debreu, G. (1959). Theory of Value. New Haven: Yale University Press. 

Dietzenbacher, E., & Miller, R. (2009). RAS-ing the Transactions or the Coefficients: It Makes 

no Difference. Journal of Regional Science, 49, 555-566. 

Dietzenbacher, E., & Miller, R. (2015). Reflections on the Inoperability Input-Output Model. 

Economic Systems Research, 27(4), 478-486. 

Ding, A., White, J., Ullman, P., & Fashokun, A. (2008). Evaluation of HAZUS-MH Flood 

Model with Local Data and Other Program. Natural Hazards Review, 9(1), 20-28. 

Donaghy, K., Balta-Ozkan, N., & Hewings, G. (2007). Modeling Unexpected Events in 

Temporally Disaggregated Econometric Input-Output Models of Regional Economies. 

Economic Systems Research, 19, 125-145. 

Duchin, F., & Levine, S.  (2011). Sectors May Use Multiple Technologies Simultaneously: The 

Rectangular Choice-of-Technology Model with Binding Factor Constraints. Economic 

Systems Research, 23(3), 281-302. 

Eurostat. (2008). Eurostat Manual of Supply, Use and Input-Output Tables. Luxembourg: Office 

for Official Publications of the European Communities. 

Federal Reserve Bank of St. Louis. (2016). Manufacturers: Inventories to Sales Ratio [Data file]. 

Available from https://research.stlouisfed.org/fred2 

Federal Emergency Management Agency. (2015). Multi-Hazard Loss Estimation Methodology, 

Flood Model, HAZUS-MH Technical Manual. Department of Homeland Security, 

Emergency Preparedness and Response Directorate, FEMA, Mitigation Division, 

Washington, D.C. 

http://lewiscountywa.gov/attachment/3009/JuneFloodPlan%206.10.pdf
https://www.datacenterresearch.org/data-resources/katrina/facts-for-features-katrina-recovery/
https://www.datacenterresearch.org/data-resources/katrina/facts-for-features-katrina-recovery/
https://research.stlouisfed.org/fred2


 

135 

 

Federal Emergency Management Agency. (2017). FEMA Disaster Declarations Dataset [Data 

file]. Available from https://www.fema.gov/media-library/assets/documents/28318 

Fernández-Vázquez, E. (2010). Recovering Matrices of Economic Flows from Incomplete Data 

and a Composite Prior. Entropy, 12, 516-527. 

Fernández-Vázquez, E. (2015). Empirical Estimation of Non-Linear Input-Output Models: An 

Entropy Econometrics Approach. Economic Systems Research, 27(4), 508-524. 

Fernández-Vázquez, E., Hewings, G., & Ramos, C. (2015). Adjustment of Input-Output Tables 

from Two Initial Matrices. Economic Systems Research, 27(3), 345-361. 

Gall, M., Borden, K., & Cutter, S. (2009). When do Losses Count? Bulletin of the American 

Meteorological Society, 90(6), 799-809. 

Gilchrist, D., & St. Louis, L. (1999). Completing Input-Output Tables using Partial Information, 

with an Application to Canadian Data. Economic Systems Research, 11, 185-194. 

Golan, A. (2001). A Simultaneous Estimation and Variable Selection Rule. Journal of 

Econometrics, 101, 165-193. 

Golan, A., Judge, G., & Miller, D. (1996). Maximum Entropy Econometrics: Robust Estimation 

with Limited Data. New York: Wiley. 

Golan, A., Judge, G., & Robinson, S. (1994). Recovering Information from Incomplete or Partial 

Multisectoral Economic Data. Review of Economics and Statistics, 76(3), 541-549. 

Green, R., Miles, S., Gulacsik, G., & Levy, J. (2008). Business Recovery Related to High-

Frequency Natural Hazard Events. Quick Response Report, 197. Retrieved from 

http://hermes.cde.state.co.us/drupal/islandora/object/co%3A9432/datastream/OBJ/view 

Greenberg, M., Lahr, M., & Mantell, N. (2007). Understanding the Economic Costs and Benefits 

of Catastrophes and their Aftermath: a Review and Suggestions for the U.S. Federal 

Government. Risk Analysis, 27(1), 83-96. 

Guilhoto, J., & Sesso Filho, U. (2005). Estimação da Matriz Insumo-Produto a Partir de Dados 

Preliminares das Contas Nacionais. Economia Aplicada, 9, 277-299. 

Haimes, Y., & Jiang, P. (2001). Leontief-Based Model of Risk in Complex Interconnected 

Infrastructures. Journal of Infrastructure Systems, 7(1), 1-12. 

Hallegatte, S. (2008). An Adaptive Regional Input-Output Model and its Application to the 

Assessment of the Economic Cost of Katrina. Risk Analysis, 28(3), 779-799. 

Hallegatte, S. (2014). Modeling the Role of Inventories and Heterogeneity in the Assessment of 

the Economic Costs of Natural Disasters. Risk Analysis, 34(1), 152-167. 

Hallegatte, S., & Ghil, M. (2008). Natural Disasters Impacting a Macroeconomic Model with 

Endogenous Dynamics. Ecological Economics, 68, 582-592. 

https://www.fema.gov/media-library/assets/documents/28318
http://hermes.cde.state.co.us/drupal/islandora/object/co%3A9432/datastream/OBJ/view


 

136 

 

Hendricks, K., & Singhal, V. (2005). An Empirical Analysis of the Effect of Supply Chain 

Disruptions on Long-Run Stock Price Performance and Equity Risk of the Firm. Production 

and Operations Management, 14(1), 35-52. 

Hewings, G. (1977). Evaluating the Possibilities for Exchanging Regional Input-Output 

Coefficients. Environment and Planning A, 9, 927-944. 

Hewings, G., Changnon, S., & Dridi, C. (2000). Testing for the Significance of Extreme Weather 

and Climate Events on State Economies. REAL Discussion Papers, 00-T-06. Retrieved from 

http://www.real.illinois.edu/d-paper/00/00-t-6.pdf 

Hewings, G., & Mahidhara, R. (1996). Economic Impacts: Lost Income, Ripple Effects, and 

Recovery. In S. Changnon (Ed.), The Great Flood of 1993: Causes, Impacts, and Responses 

(pp. 205-217). Boulder: Westview Press. 

IMPLAN. (2015). 2008 Washington State Input-Output Tables [Data file]. Available from 

http://www.implan.com/data/ 

IMPLAN. (2018). 2015 Illinois State Input-Output Tables [Data file]. Available from 

http://www.implan.com/data/ 

Instituto Brasileiro de Geografia e Estatística. (2014). Sistema de Contas Nacionais - Brasil 

2005-2009 [Data file]. Available from 

https://ww2.ibge.gov.br/home/estatistica/economia/contasnacionais/2009/default.shtm 

Isard, W. (1951). Interregional and Regional Input-Output Analysis: A Model of a Space 

Economy. Review of Economics and Statistics, 33, 318-328. 

Israilevich, P., Hewings, G., Sonis, M., & Schindler, G. (1997). Forecasting Structural Change 

with a Regional Econometric Input-Output Model. Journal of Regional Science, 37, 565-590. 

Isserman, A. (1977). The Location Quotient Approach to Estimating Regional Economic 

Impacts. Journal of the American Institute of Planners, 43, 33-41. 

Jackson, R., Madden, M., & Bowman, H. (1997). Closure in Cole’s Reformulated Leontief 

Model. Papers in Regional Science, 76(1), 21-28. 

Jackson, R., & Madden, M. (1999). Closing the Case on Closure in Cole’s Model. Papers in 

Regional Science, 78(4), 423-427. 

Jackson, R., & Murray, A. (2004). Alternative Input-Output Matrix Updating Formulations. 

Economic Systems Research, 16, 135-148. 

Jalili, A. (2000). Evaluating Relative Performances of Four non-Survey Techniques of Updating 

Input-Output Coefficients. Economics of Planning, 33, 221-237. 

Jaynes, E. (1957). Information Theory and Statistical Mechanics. Physics Review, 106, 620-630. 

Junius, T., & Oosterhaven, J. (2003). The Solution of Updating or Regionalizing a Matrix with 

both Positive and Negative Entries. Economic Systems Research, 15, 87-96. 

http://www.real.illinois.edu/d-paper/00/00-t-6.pdf
http://www.implan.com/data/
http://www.implan.com/data/
https://ww2.ibge.gov.br/home/estatistica/economia/contasnacionais/2009/default.shtm


 

137 

 

Kim, K., Kratena, K., & Hewings, G. (2014). The Extended Econometric Input-Output Model 

with Heterogeneous Household Demand System. Economic Systems Research, 27(2), 257-

285. 

Kim, K., & Hewings, G. (2018). Bayesian Estimation of Labor Demand by Age: Theoretical 

Consistency and an Application to an Input-Output Model. Economic Systems Research. 

Advance online publication. 

Knudsen, D., & Fotheringham, A. (1986). Matrix Comparison, Goodness-of-fit and Spatial 

Interaction Modeling. International Regional Science Review, 10, 127-147. 

Koks, E., Bočkarjova, M., de Moel, H., & Aerts, J. (2015). Integrated Direct and Indirect Flood 

Risk Modeling: Development and Sensitivity Analysis. Risk Analysis, 35(5), 882-900. 

Koks, E., & Thissen, M. (2016). A Multiregional Impact Assessment Model for Disaster 

Analysis. Economic Systems Research, 29(4), 429-449. 

Kratena, K., Streicher, G., Temurshoev, U., Amores, A., Arto, I., Mongelli, I., … Andreoni, V. 

(2013). FIDELIO 1: Fully Interregional Dynamic Econometric Long-term Input-Output 

Model for the EU27. Luxembourg: Publications Office of the European Union. 

Kronenberg, T. (2009). Construction of Regional Input-Output Tables Using Nonsurvey 

Methods: The Role of Cross-Hauling. International Regional Science Review, 32, 40-64.  

Kullback, S., & Leibler, R. (1951). On Information and Sufficiency. Annals of Mathematical 

Statistics, 4, 99-111. 

Lahr, M. (2001). A Strategy for Producing Hybrid Regional Input-Output Tables. In M. Lahr & 

E. Dietzenbacher (Eds.), Input-Output Analysis: Frontiers and Extensions (pp. 211-242). 

New York: Palgrave. 

Lemelin, A. (2009). A GRAS Variant Solving for Minimum Information Loss. Economic 

Systems Research, 21(4), 399-408. 

Lenzen, M., Moura, C., Geschke, A., Kanemoto, K., & Moran, D. (2012). A Cycling Method for 

Constructing Input-Output Table Time Series from Incomplete Data. Economic Systems 

Research, 24, 413-432. 

Lenzen, M., Gallego, B., & Wood, R. (2009). Matrix Balancing under Conflicting Information. 

Economic Systems Research, 21, 23-44. 

Lenzen, M., Moran, D., Geschke, A., & Kanemoto, K. (2014). A Non-Sign-Preserving RAS 

Variant. Economic Systems Research, 26, 197-208. 

Lenzen, M., Wood, R., & Gallego, B. (2007). Some Comments on the GRAS Method. Economic 

Systems Research, 19(4), 461-465. 

Leontief, W. (1970). The Dynamic Inverse. In A. Carter and A. Bródy (Eds.), Contributions to 

Input-Output Analysis I (pp. 17-46). London, UK: North-Holland. 



 

138 

 

Lewis County. (2009). Lewis County 2007 Flood Disaster Recovery Strategy. Retrieved from 

https://www.ezview.wa.gov/Portals/_1492/images/default/April%202009%20Lewis%20Co

%20Recovery%20Strategy.pdf 

Li, J., Crawford-Brown, D., Syddall, M., & Guan, D. (2013). Modeling Imbalanced Economic 

Recovery Following a Natural Disaster Using Input-Output Analysis. Risk Analysis, 33(10), 

1908-1923. 

Lian, C., & Haimes, Y. (2006). Managing the Risk of Terrorism to Interdependent Infrastructure 

Systems through the Dynamic Inoperability Input-Output Model. Systems Engineering, 9(3), 

241-258. 

López, X., & Cantuche, J. (2013) Métodos de Actualización Global de Tablas Input-Output con 

Información Limitada: su Importancia para el Análisis Regional. Retrieved from 

https://old.reunionesdeestudiosregionales.org/Oviedo2013/htdocs/pdf/p728.pdf 

Lunsford, K. (2017). Lingering Residual Seasonality in GDP Growth. Federal Reserve Bank of 

Cleveland, Economic Commentary, March 2017. 

Madden, M. (1993). Welfare Payments and Migration in a Nonlinear, Extended Input-Output 

Model with an Application to Scotland. Papers in Regional Science, 72(2), 177-199. 

Matuszewski, T., Pitts, P., & Sawyer, J. (1964). Linear programming estimates of changes in 

input-output coefficients. Canadian Journal of Economics and Political Science, 30, 203-

211. 

Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van Den Bergh, J., Bouwer, L., … 

Viavattene, C. (2013). Review article: Assessing the costs of natural hazards-state of the art 

and knowledge gaps. Natural Hazards and Earth System Science, 13(5), 1351-1373. 

Miller, R., & Blair, P. (2009) Input-Output Analysis: Foundations and Extensions. New York: 

Cambridge University Press. 

Mínguez, R., Oosterhaven, J., & Escobedo, F. (2009). Cell-Corrected RAS Method (CRAS) for 

Updating or Regionalizing an Input-Output Matrix. Journal of Regional Science, 49, 329-

348. 

Mules, T. (1983). Some Simulations with a Sequential Input-Output Model. Papers of the 

Regional Science Association, 51, 197-204. 

National Oceanic and Atmospheric Administration. (2007). Storm Data Preparation. National 

Weather Service Instruction 10-1605, 97. Retrieved from 

http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf 

National Weather Service. (2008). Pacific Northwest Storms of December 1-3, 2007. Retrieved 

from https://www.weather.gov/media/publications/assessments/pac_nw08.pdf. 

Norcliffe, G. (1983). Using Location Quotients to Estimate the Economic Base and Trade Flows. 

Regional Studies, 17, 161-168. 

https://www.ezview.wa.gov/Portals/_1492/images/default/April%202009%20Lewis%20Co%20Recovery%20Strategy.pdf
https://www.ezview.wa.gov/Portals/_1492/images/default/April%202009%20Lewis%20Co%20Recovery%20Strategy.pdf
https://old.reunionesdeestudiosregionales.org/Oviedo2013/htdocs/pdf/p728.pdf
http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf
https://www.weather.gov/media/publications/assessments/pac_nw08.pdf


 

139 

 

Okuyama, Y. (2007). Economic Modeling for Disaster Impact Analysis: Past, Present, and 

Future. Economic Systems Research, 19(2), 115-124. 

Okuyama, Y. (2009). Critical Review of Methodologies on Disaster Impact Estimation. 

Available at https://www.gfdrr.org/sites/gfdrr/files/Okuyama_Critical_Review.pdf 

Okuyama, Y., Hewings, G., Kim, T., Boyce, D., Ham, H., & Sohn, J. (1999). Economic Impacts 

of an Earthquake in the New Madrid Seismic Zone: A Multiregional Analysis. In W. Elliot 

and P. McDonough (Eds.), Optimizing Post-Earthquake Lifeline System Reliability: 

Proceedings of the 5th U.S. Conference on Lifeline Earthquake Engineering August 12-14, 

1999 (pp. 592-601). Reston: American Society of Civil Engineers. 

Okuyama, Y., Hewings, G., & Sonis, M. (2002) Economic Impacts of Unscheduled Events: 

Sequential Interindustry Model (SIM) Approach. REAL Discussion Papers, 02-T-11. 

(Unpublished). 

Okuyama, Y., Hewings, G., & Sonis, M. (2004). Measuring Economic Impacts of Disasters: 

Interregional Input-Output Analysis Using Sequential Interindustry Model. In Y. Okuyama 

and S. Chang (Eds.), Modeling Spatial and Economic Impacts of Disasters (pp. 77-102). 

Berlin, Germany: Springer. 

Okuyama, Y., & Lim, H. (2002). Linking Economic Model and Engineering Model: Application 

of Sequential Interindustry Model (SIM). REAL Discussion Papers, 02-T-12. (Unpublished). 

Okuyama, Y., & Santos, J. (2014). Disaster Impact and Input-Output Analysis. Economic 

Systems Research, 26(1), 1-12. 

Olshansky, R., Hopkins, L., & Johnson, L. (2012). Disaster and Recovery: Processes 

Compressed in Time. Natural Hazards Review, 13, 173-178. 

Oosterhaven, J. (2000). Lessons from the Debate on Cole’s Model Closure. Papers in Regional 

Science, 79(2), 233-242. 

Oosterhaven, J. (2017). On the Limited Usability of the Inoperability IO Model. Economic 

Systems Research, 29(3), 452-461. 

Oosterhaven, J., & Bouwmeester, M. (2016). A New Approach to Modelling the Impacts of 

Disruptive Events. Journal of Regional Science, 56(4), 583-595. 

Oosterhaven, J., & Többen, J. (2017). Wider Economic Impacts of Heavy Flooding in Germany: 

a Non-linear Programming Approach. Spatial Economic Analysis, 12(4), 404-428. 

Pan, Q., & Richardson, H. (2015). Theory and Methodologies: Input-Output, SCPM and CGE. In 

H. Richardson, Q. Pan, J. Park and J. Moore II (Eds.), Regional Economic Impacts of 

Terrorist Attacks, Natural Disasters and Metropolitan Policies (pp. 21-45). New York: 

Springer. 

https://www.gfdrr.org/sites/gfdrr/files/Okuyama_Critical_Review.pdf


 

140 

 

Pant, R., Barker, K., Grant, F., & Landers, T. (2011). Interdependent Impacts of Inoperability at 

Multi-modal Transportation Container Terminals. Transportation Research Part E: Logistics 

and Transportation Review, 47(5), 722-737. 

Park, J., & Richardson, H. (2014). National Interstate Economic Model (NIEMO). In H. 

Richardson, J. Park, J. Moore II, and Q. Pan (Eds.), National Economic Impact Analysis of 

Terrorist Attacks and Natural Disasters (pp. 4-23). Cheltenham: Edward Elgar. 

Przyluski, V., & Hallegatte, S. (2011). Indirect Costs of Natural Hazards (No. WP2 Final 

Report). SMASH-CIRED. Retrieved from 

https://www.ufz.de/export/data/2/122162_CONHAZ%20REPORT%20WP02_2.pdf 

Ptak, C., & Smith, C. (2011). Orlicky's Material Requirements Planning, Third Edition. New 

York: McGraw-Hill. 

Richardson, H. (1985). Input-Output and Economic Base Multipliers: Looking Backward and 

Forward. Journal of Regional Science, 25, 607-661. 

Robinson, S., Cattaneo, A., & El-Said, M. (2001). Updating and Estimating a Social Accounting 

Matrix Using Cross Entropy Methods. Economic Systems Research, 13(1), 47-64. 

Romanoff, E., & Levine, S. (1977). Interregional Sequential Interindustry Model: A Preliminary 

Analysis of Regional Growth and Decline in a Two Region Case. Northeast Regional 

Science Review, 7, 87-101. 

Romanoff, E., & Levine, S. (1981). Anticipatory and Responsive Sequential Interindustry 

Models. IEE Transactions on Systems, Man, and Cybernetics, 11(3), 181-186. 

Romanoff, E., & Levine, S. (1986). Capacity Limitations, Inventory and Time-Phased 

Production in the Sequential Interindustry Model. Papers of the Regional Science 

Association, 59, 73-91. 

Romanoff, E., & Levine, S. (1990). Technical Change in Production Processes of the Sequential 

Interindustry Model. Metroeconomica, 41(1), 1-18. 

Rose, A. (2004). Economic Principles, Issues, and Research Priorities in Hazard Loss 

Estimation. In Y. Okuyama and S. Chang (Eds.), Modeling Spatial and Economic Impacts of 

Disasters (pp. 13-36). Berlin, Germany: Springer. 

Rose, A., & Benavides, J. (1998). Regional Economic Impacts. In M. Shinozuka, A. Rose and R. 

Eguchi (Eds.), Engineering and Socioeconomic Impacts of Earthquakes: An Analysis of 

Electricity Lifeline Disruptions in the New Madrid Area (pp. 95-124). Buffalo: MCEER. 

Rose, A., & Wei, D. (2013). Estimating the Economic Consequences of a Port Shutdown: The 

Special Role of Resilience. Economic Systems Research, 25(2), 212-232. 

Rudebusch, G., Wilson, D., & Mahedy T. (2015). The Puzzle of Weak First-Quarter GDP 

Growth. Federal Reserve Bank of San Francisco, Economic Letter, 2015-16. 

https://www.ufz.de/export/data/2/122162_CONHAZ%20REPORT%20WP02_2.pdf


 

141 

 

Ryaboshlyk, V. (2006). A Dynamic Input-Output Model with Explicit New and Old 

Technologies: an Application to the UK. Economic Systems Research, 18, 183-203. 

Santos, J. (2003). Interdependency Analysis: extensions to demand reduction inoperability input-

output modeling and portfolio selection (Unpublished doctoral dissertation). University of 

Virginia, Charlottesville, Virginia. 

Santos, J., & Haimes, Y. (2004). Modeling the Demand Reduction Input-Output (I-O) 

Inoperability Due to Terrorism of Interconnected Infrastructures. Risk Analysis, 24(6), 1437-

1451. 

Sargento, A. (2009). Introducing Input-Output Analysis at the Regional Level: Basic Notions 

and Specific Issues. REAL Discussion Papers, 09-T-4. Retrieved from 

http://www.real.illinois.edu/d-paper/09/09-T-4.pdf 

Schnitkey, G., & Coppess, J. (2018). Pre-Harvest Hedging and Revenue Protection. farmdoc 

daily (8):88, Department of Agricultural and Consumer Economics, University of Illinois at 

Urbana-Champaign. Retrieved from http://farmdocdaily.illinois.edu/2018/05/pre-harvest-

hedging-revenue-protection.html 

Sevaldson, P. (1970). The Stability of Input-Output Coefficients. In A. Carter & A. Bródy (Eds.), 

Applications of Input-Output Analysis Vol. 2 (pp. 207-237). Amsterdam, Netherlands: North-

Holland.  

Shannon, C. (1948). A Mathematical Theory of Communication. The Bell System Technical 

Journal, 27, 379-423. 

Snower, D. (1990). New Methods of Updating Input-Output Matrices. Economic Systems 

Research, 2, 27-37. 

Sohn, J., Hewings, G., Kim, T., Lee, J., & Jang, S. (2004). Analysis of Economic Impacts of an 

Earthquake on Transportation Network. In Y. Okuyama and S. Chang (Eds.), Modeling 

Spatial and Economic Impacts of Disasters (pp. 233-256). Berlin, Germany: Springer. 

Sonis, M., & Hewings, G. (1989). Error and Sensitivity Input-Output Analysis: a New Approach. 

In R. Miller, K. Polenske, and A. Rose (Eds.), Frontiers of Input-Output Analysis (pp. 232-

244). New York: Oxford University Press. 

Sonis, M., & Hewings, G. (1999). Economic Landscapes: Multiplier Product Matrix Analysis for 

Multiregional Input-Output Systems. Hitotsubashi Journal of Economics, 40, 59-74. 

Stark, T. (2015). First Quarters in the National Income and Product Accounts. Federal Reserve 

Bank of Philadelphia, Research Rap Special Report, May 14. 

Stone, R., & Brown, A. (1962). A Computable Model of Economic Growth. London, UK: 

Chapman and Hall. 

http://www.real.illinois.edu/d-paper/09/09-T-4.pdf
http://farmdocdaily.illinois.edu/2018/05/pre-harvest-hedging-revenue-protection.html
http://farmdocdaily.illinois.edu/2018/05/pre-harvest-hedging-revenue-protection.html


 

142 

 

Tarancón, M., & Río, P. (2005). Projection of Input-Output Tables by Means of Mathematical 

Programming Based on the Hypothesis of Stable Structural Evolution. Economic Systems 

Research, 17, 1-23. 

Tate, E., Muñoz, C., & Suchan, J. (2014). Uncertainty and Sensitivity Analysis of the HAZUS-

MH Flood Model. Natural Hazards Review, 16(2010), 4014030. 

Temurshoev, U., Miller, R., & Bouwmeester, M. (2013). A Note on the GRAS Method. 

Economic Systems Research, 25(3), 361-367. 

Temurshoev, U., Webb, C., & Yamano, N. (2011). Projection of Supply and Use Table: Methods 

and their Empirical Assessment. Economic Systems Research, 23, 91-123. 

ten Raa, T. (1986). Dynamic Input-Output Analysis with Distributed Activities. Review of 

Economics and Statistics, 68(2), 300-310. 

Theil, H. (1967). Economics and Information Theory. Amsterdam, Netherlands: North-Holland. 

Thomas, D., & Kandaswamy, A. (2017). An Examination of National Supply-Chain Flow Time. 

Economic Systems Research. Advance online publication. 

Tierney, K. (1997). Business Impacts of the Northridge Earthquake. Journal of Contingencies 

and Crisis Management, 5(2), 87-97. 

Tilanus, C. (1968). Input-Output Experiments, The Netherlands 1948-1961. Rotterdam, 

Netherlands: Rotterdam University Press. 

Tilanus, C., & Theil, H. (1965). The Information Approach to the Evaluation of Input-Output 

Forecasts. Econometrica, 33(4), 847-862. 

Töben, J., & Kronenberg, T. (2015). Construction of Multi-Regional Input-Output Tables using 

the CHARM Method. Economic Systems Research, 27, 487-507. 

Tohmo, T. (2004). New Developments in the Use of Location Quotients to Estimate Regional 

Input-Output Coefficients and Multipliers. Regional Studies, 38, 43-54. 

United Nations. (2009). System of National Accounts 2008. New York: United Nations. 

United States Department of Agriculture. (2010). Field Crops Usual Planting and Harvesting 

Dates (October 2010). Retrieved from 

http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf 

University of Tennessee. (2014). Managing Risk in the Global Supply Chain. Knoxville: Global 

Supply Chain Institute. Available from https://haslam.utk.edu/whitepapers/global-supply-

chain-institute/managing-risk-global-supply-chain 

U.S. Army Corps of Engineers. (2010). HEC-RAS River Analysis System: User’s Manual. 

Retrieved from http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-

RAS_4.1_Users_Manual.pdf. 

http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf
https://haslam.utk.edu/whitepapers/global-supply-chain-institute/managing-risk-global-supply-chain
https://haslam.utk.edu/whitepapers/global-supply-chain-institute/managing-risk-global-supply-chain
http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Users_Manual.pdf
http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Users_Manual.pdf


 

143 

 

U.S. Department of Commerce. (2013). Economic Impact of Hurricane Sandy: Potential 

Economic Activity Lost and Gained in New Jersey and New York. Retrieved from 

http://www.esa.doc.gov/sites/default/files/sandyfinal101713.pdf 

Vaccara, B. (1970). Changes over Time in Input-Output Coefficients for the United States. In A. 

Carter and A. Bródy (Eds.), Applications of Input-Output Analysis Vol. 2 (238-260). 

Amsterdam, Netherlands: North-Holland. 

van Dijk, J., & Oosterhaven, J. (1986). Regional Impacts of Migrants’ Expenditures: An Input-

Output/Vacancy-Chain Approach. In P. Batey and M. Madden (Eds.), Integrated Analysis of 

Regional Systems (pp. 122-147). London, UK: Pion. 

Washington State Department of Transportation. (2008). Storm-Related Closures of I-5 and I-90: 

Freight Transportation Economic Impact Assessment Report Winter 2007-2008. Retrieved 

from https://www.wsdot.wa.gov/research/reports/fullreports/708.1.pdf 

Washington State Employment Security Department. (2018). Labor Market County Profiles 

[Data file]. Available from https://esd.wa.gov/labormarketinfo/county-profiles 

Wilson, A. (1970a). Interregional Commodity Flows: Entropy Maximizing Approaches. 

Geographical Analysis, 2, pp 255-282. 

Wilson, A. (1970b). Entropy in Urban and Regional Modelling. London, UK: Pion. 

Wolsky, A. (1984). Disaggregating Input-Output Models. Review of Economics and Statistics, 

66, 283-291. 

 

 

  

http://www.esa.doc.gov/sites/default/files/sandyfinal101713.pdf
https://www.wsdot.wa.gov/research/reports/fullreports/708.1.pdf
https://esd.wa.gov/labormarketinfo/county-profiles


 

144 

 

APPENDIX A: CHAPTER ONE 

 

 
 

 
Notes: VA: value added by sector; Y: total final demand; X: total exports; M: total imports. 

 

Figure A.1: EURO and T-EURO methods 

 

 



 

145 

 

 

 

 

 

 

Table A.1: Results of temporal disaggregation via T-EURO and RAS, 2002 

 

  

Technical Coefficient Matrix Leontief Inverse Matrix 

  

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

M
A

D
 

T-EURO 

(Q)S 0.002 0.004 

T-EURO 

(Q)H 0.002 0.004 

RAS 0.001 0.001 0.002 0.003 0.001 0.002 0.004 0.006 

M
A

P
E

 

T-EURO 

(Q)S 17.379 6.015 

T-EURO 

(Q)H 17.322 6.003 

RAS 7.236 8.353 9.677 13.085 2.217 3.307 6.617 9.803 

W
A

P
E

 

T-EURO 

(Q)S 7.082 2.587 

T-EURO 

(Q)H 7.074 2.584 

RAS 2.563 3.542 5.971 9.076 0.778 1.372 2.839 4.297 

S
W

A
D

 

T-EURO 

(Q)S 0.066 0.014 

T-EURO 

(Q)H 0.066 0.014 

RAS 0.019 0.031 0.063 0.093 0.002 0.006 0.014 0.023 

P
S

I 

T-EURO 

(Q)S 0.071 0.026 

T-EURO 

(Q)H 0.071 0.026 

RAS 0.026 0.035 0.060 0.091 0.008 0.014 0.028 0.043 

Notes: T-EURO (Q)S: 2002 table derived from the 2002-2005 “annual table” via simultaneous disaggregation 

T-EURO (Q)H: 2002 table derived from the 2002-2005 “annual table” via hierarchical disaggregation 

RAS: 2002 table derived from the 2002-2005 “annual table” 

 

 

  



 

146 

 

 

 

 

 

 

Table A.2: Results of temporal disaggregation via T-EURO and RAS, 2003 
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(Q)S 0.052 0.016 

T-EURO 

(Q)H 0.052 0.016 

RAS 0.022 0.028 0.056 0.088 0.007 0.010 0.021 0.038 

Notes: T-EURO (Q)S: 2003 table derived from the 2002-2005 “annual table” via simultaneous disaggregation 

T-EURO (Q)H: 2003 table derived from the 2002-2005 “annual table” via hierarchical disaggregation 

RAS: 2003 table derived from the 2002-2005 “annual table” 
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Table A.3: Results of temporal disaggregation via T-EURO and RAS, 2005 

 

  

Technical Coefficient Matrix Leontief Inverse Matrix 

  

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

No 

Error 

2% 

Error 

5% 

Error 

10% 

Error 

M
A

D
 

T-EURO 

(Q)S 0.002 0.003 

T-EURO 

(Q)H 0.002 0.003 

RAS 0.001 0.001 0.002 0.003 0.001 0.002 0.004 0.006 

M
A

P
E

 

T-EURO 

(Q)S 11.064 4.898 

T-EURO 

(Q)H 11.073 4.924 

RAS 5.451 6.069 8.192 11.384 2.484 3.862 7.491 8.971 

W
A

P
E

 

T-EURO 

(Q)S 5.732 2.062 

T-EURO 

(Q)H 5.747 2.078 

RAS 2.793 3.311 5.793 9.384 0.778 1.270 3.015 4.425 

S
W

A
D

 

T-EURO 

(Q)S 0.048 0.012 

T-EURO 

(Q)H 0.048 0.012 

RAS 0.018 0.021 0.054 0.099 0.003 0.005 0.015 0.027 

P
S

I 

T-EURO 

(Q)S 0.057 0.021 

T-EURO 

(Q)H 0.057 0.021 

RAS 0.028 0.033 0.058 0.094 0.008 0.013 0.030 0.044 

Notes: T-EURO (Q)S: 2005 table derived from the 2002-2005 “annual table” via simultaneous disaggregation 

T-EURO (Q)H: 2005 table derived from the 2002-2005 “annual table” via hierarchical disaggregation 

RAS: 2005 table derived from the 2002-2005 “annual table” 
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Table A.4: Industrial disaggregation 

 

Code Sector 

1 Agriculture 

2 Mining 

3 Manufacturing 

4 Utilities and Waste 

5 Construction 

6 Wholesale Trade 

7 Transportation and Warehousing 

8 Information Services 

9 Financial Services 

10 Real Estate 

11 Other Services 

12 Government, Public Education and Health 
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Figure A.2: Estimated IO table, 1st quarter 2004 
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 Figure A.3: Estimated IO table, 2nd quarter 2004 
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Figure A.4: Estimated IO table, 3rd quarter 2004 

 

1
2

3
4

5
6

7
8

9
10

11
12

Fi
n

al
 D

e
m

an
d

Ex
p

o
rt

s
To

ta
l O

u
tp

u
t

1
3,

84
0

   
   

   
 

5
   

   
   

   
   

   
23

,6
68

   
   

   
 

1
   

   
   

   
   

   
4

   
   

   
   

   
   

3
   

   
   

   
   

   
1

   
   

   
   

   
   

0
   

   
   

   
   

   
1

   
   

   
   

   
   

0
   

   
   

   
   

   
53

5
   

   
   

   
   

 
93

   
   

   
   

   
 

11
,0

79
   

   
   

   
  

5,
69

7
   

   
   

 
44

,9
26

   
   

   
   

  

2
23

3
   

   
   

   
 

1,
15

9
   

   
   

 
14

,6
45

   
   

   
 

73
8

   
   

   
   

 
27

3
   

   
   

   
 

5
   

   
   

   
   

   
36

   
   

   
   

   
 

2
   

   
   

   
   

   
1

   
   

   
   

   
   

1
   

   
   

   
   

   
12

   
   

   
   

   
   

9
   

   
   

   
   

   
24

7
   

   
   

   
   

   
  

6,
30

0
   

   
   

 
23

,6
61

   
   

   
   

  

3
9,

48
1

   
   

   
 

3,
19

5
   

   
   

 
10

3,
31

6
   

   
 

1,
63

3
   

   
   

 
11

,0
56

   
   

 
3,

72
9

   
   

   
 

7,
44

6
   

   
   

 
1,

88
0

   
   

   
 

1,
58

4
   

   
   

 
34

4
   

   
   

   
 

14
,2

87
   

   
   

 
4,

41
7

   
   

   
 

10
6,

61
3

   
   

   
  

53
,0

32
   

   
 

32
2,

01
4

   
   

   
  

4
26

5
   

   
   

   
 

1,
12

5
   

   
   

 
7,

37
1

   
   

   
   

6,
44

8
   

   
   

 
10

7
   

   
   

   
 

1,
39

8
   

   
   

 
41

9
   

   
   

   
 

37
8

   
   

   
   

 
32

0
   

   
   

   
 

38
   

   
   

   
   

 
2,

22
6

   
   

   
   

1,
57

3
   

   
   

 
9,

14
2

   
   

   
   

   
 

4
   

   
   

   
   

   
30

,8
13

   
   

   
   

  

5
0

   
   

   
   

   
   

30
7

   
   

   
   

 
44

6
   

   
   

   
   

 
5

   
   

   
   

   
   

1,
14

7
   

   
   

 
54

   
   

   
   

   
 

11
   

   
   

   
   

 
63

   
   

   
   

   
 

36
0

   
   

   
   

 
1,

01
1

   
   

   
 

75
4

   
   

   
   

   
 

2,
24

7
   

   
   

 
35

,2
58

   
   

   
   

  
28

4
   

   
   

   
 

41
,9

48
   

   
   

   
  

6
1,

77
9

   
   

   
 

56
3

   
   

   
   

 
16

,6
50

   
   

   
 

39
0

   
   

   
   

 
2,

03
3

   
   

   
 

1,
78

7
   

   
   

 
1,

56
2

   
   

   
 

44
6

   
   

   
   

 
47

4
   

   
   

   
 

81
   

   
   

   
   

 
3,

61
5

   
   

   
   

1,
66

7
   

   
   

 
29

,8
26

   
   

   
   

  
7,

77
5

   
   

   
 

68
,6

49
   

   
   

   
  

7
71

5
   

   
   

   
 

2,
11

0
   

   
   

 
8,

92
7

   
   

   
   

51
6

   
   

   
   

 
47

7
   

   
   

   
 

3,
17

2
   

   
   

 
3,

30
2

   
   

   
 

71
6

   
   

   
   

 
51

7
   

   
   

   
 

44
   

   
   

   
   

 
1,

95
2

   
   

   
   

65
8

   
   

   
   

 
15

,1
40

   
   

   
   

  
2,

29
3

   
   

   
 

40
,5

38
   

   
   

   
  

8
85

   
   

   
   

   
 

55
4

   
   

   
   

 
2,

60
9

   
   

   
   

29
8

   
   

   
   

 
72

   
   

   
   

   
 

90
8

   
   

   
   

 
39

1
   

   
   

   
 

4,
67

5
   

   
   

 
2,

22
2

   
   

   
 

78
   

   
   

   
   

 
5,

71
3

   
   

   
   

3,
73

9
   

   
   

 
9,

35
2

   
   

   
   

   
 

17
2

   
   

   
   

 
30

,8
66

   
   

   
   

  

9
55

9
   

   
   

   
 

38
5

   
   

   
   

 
5,

94
7

   
   

   
   

34
7

   
   

   
   

 
28

9
   

   
   

   
 

86
0

   
   

   
   

 
67

3
   

   
   

   
 

45
8

   
   

   
   

 
6,

78
0

   
   

   
 

67
   

   
   

   
   

 
66

3
   

   
   

   
   

 
6,

83
6

   
   

   
 

19
,1

31
   

   
   

   
  

42
4

   
   

   
   

 
43

,4
18

   
   

   
   

  

10
19

   
   

   
   

   
 

52
9

   
   

   
   

 
66

3
   

   
   

   
   

 
62

   
   

   
   

   
 

15
0

   
   

   
   

 
92

6
   

   
   

   
 

36
0

   
   

   
   

 
62

9
   

   
   

   
 

21
0

   
   

   
   

 
60

   
   

   
   

   
 

93
9

   
   

   
   

   
 

1,
03

5
   

   
   

 
34

,0
77

   
   

   
   

  
34

4
   

   
   

   
 

40
,0

04
   

   
   

   
  

11
82

   
   

   
   

   
 

1,
41

1
   

   
   

 
6,

56
4

   
   

   
   

1,
20

5
   

   
   

 
70

1
   

   
   

   
 

4,
08

9
   

   
   

 
2,

50
4

   
   

   
 

2,
82

1
   

   
   

 
3,

29
8

   
   

   
 

35
1

   
   

   
   

 
6,

28
7

   
   

   
   

6,
17

9
   

   
   

 
60

,9
55

   
   

   
   

  
6,

55
1

   
   

   
 

10
3,

00
0

   
   

   
  

12
23

   
   

   
   

   
 

84
   

   
   

   
   

 
52

8
   

   
   

   
   

 
16

8
   

   
   

   
 

28
   

   
   

   
   

 
18

1
   

   
   

   
 

93
   

   
   

   
   

 
10

9
   

   
   

   
 

11
6

   
   

   
   

 
12

   
   

   
   

   
 

26
9

   
   

   
   

   
 

20
2

   
   

   
   

 
89

,6
28

   
   

   
   

  
17

3
   

   
   

   
 

91
,6

14
   

   
   

   
  

Im
p

o
rt

s
2,

21
0

   
   

   
 

1,
42

3
   

   
   

 
28

,8
87

   
   

   
 

1,
01

0
   

   
   

 
1,

32
1

   
   

   
 

1,
40

6
   

   
   

 
1,

52
4

   
   

   
 

96
0

   
   

   
   

 
70

6
   

   
   

   
 

92
   

   
   

   
   

 
2,

73
3

   
   

   
   

1,
72

7
   

   
   

 
21

,6
82

   
   

   
   

  
-

   
   

   
   

  
65

,6
83

   
   

   
   

  

Ta
xe

s
1,

80
1

   
   

   
 

1,
16

6
   

   
   

 
16

,4
32

   
   

   
 

1,
80

2
   

   
   

 
1,

38
6

   
   

   
 

1,
53

5
   

   
   

 
2,

08
8

   
   

   
 

1,
64

3
   

   
   

 
1,

43
2

   
   

   
 

12
8

   
   

   
   

 
5,

08
7

   
   

   
   

2,
93

4
   

   
   

 
30

,1
59

   
   

   
   

  
5,

73
1

   
   

   
 

73
,3

23
   

   
   

   
  

V
al

u
e

 A
d

d
e

d
23

,8
33

   
   

 
9,

64
6

   
   

   
 

85
,3

62
   

   
   

 
16

,1
90

   
   

 
22

,9
02

   
   

 
48

,5
96

   
   

 
20

,1
28

   
   

 
16

,0
86

   
   

 
25

,3
97

   
   

 
37

,6
98

   
   

 
57

,9
27

   
   

   
 

58
,2

98
   

   
 

42
2,

06
4

   
   

   
  

To
ta

l O
u

tp
u

t
44

,9
26

   
   

 
23

,6
61

   
   

 
32

2,
01

4
   

   
 

30
,8

13
   

   
 

41
,9

48
   

   
 

68
,6

49
   

   
 

40
,5

38
   

   
 

30
,8

66
   

   
 

43
,4

18
   

   
 

40
,0

04
   

   
 

10
3,

00
0

   
   

 
91

,6
14

   
   

 
47

2,
29

0
   

   
   

  
88

,7
80

   
   

 
1,

44
2,

52
1

   
   

  



 

152 

 

 

 

Figure A.5: Estimated IO table, 4th quarter 2004 
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Table A.5: Output multipliers 

 

Sector 

2004 

Q1 

2004 

Q2 

2004 

Q3 

2004 

Q4 

2005 

Q1 

2005 

Q2 

2005 

Q3 

2005 

Q4 

2006 

Q1 

2006 

Q2 

2006 

Q3 

2006 

Q4 

Agriculture 1.62 1.61 1.73 1.80 1.75 1.73 1.77 1.81 1.69 1.69 1.71 1.75 

Mining 1.94 1.90 1.87 1.90 1.91 1.89 1.86 1.84 1.77 1.80 1.78 1.81 

Manufacturing 2.17 2.17 2.15 2.15 2.20 2.22 2.21 2.21 2.18 2.19 2.18 2.17 

Utilities and 

Waste 
1.65 1.67 1.66 1.67 1.65 1.67 1.67 1.68 1.64 1.65 1.65 1.65 

Construction 1.78 1.80 1.77 1.79 1.80 1.82 1.80 1.80 1.80 1.83 1.80 1.81 

Wholesale Trade 1.44 1.44 1.43 1.44 1.45 1.45 1.45 1.44 1.44 1.45 1.44 1.43 

Transp. and 

Warehousing 
1.76 1.78 1.77 1.77 1.80 1.81 1.79 1.78 1.76 1.79 1.79 1.79 

Information 

Services 
1.67 1.69 1.67 1.66 1.67 1.68 1.67 1.68 1.69 1.70 1.69 1.69 

Financial 

Services 
1.62 1.65 1.62 1.61 1.54 1.53 1.49 1.49 1.51 1.52 1.52 1.50 

Real Estate 1.09 1.09 1.09 1.09 1.09 1.10 1.09 1.09 1.10 1.10 1.10 1.10 

Other Services 1.65 1.66 1.66 1.66 1.65 1.67 1.67 1.66 1.64 1.66 1.65 1.64 

Gov., Pub. Edu. 

and Health 
1.53 1.53 1.53 1.49 1.53 1.54 1.55 1.49 1.52 1.53 1.52 1.48 
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Figure A.6: Economic landscapes by quarter, 2004 
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APPENDIX B: T-EURO EXAMPLE 

 

Assume the annual IO table ( 𝐈𝐎𝐓0E ) is given by Table B.1 and the available GDP 

information for each semester of the same year by Table B.2 (hence, 𝑛 = 3, 𝑓 = 1, 𝑡 = 2). 

 

Table B.1: Three sectors example economy’s IO Table 

 Agriculture Industry Services HH Export Output 

Agriculture 31 61 13 30 68 203 

Industry 22 252 66 160 209 709 

Services 19 115 44 145 230 553 

Imports 22 43 66    

Taxes 3 9 3    

Value Added 106 229 361    

Output 203 709 553    

 

Table B.2: GDP information by semester 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡E
 

Industry 

𝐯2
𝑡E
 

Services 

𝐯3
𝑡E
 

HH 

𝐲1
𝑡E
 

Exports 

𝑒E 𝑡
 

Imports 

𝑚𝑡E
 

Taxes 

𝑡E 𝑡
 

1st Semester 

(𝑡 = 1) 
50 142 130 150 238 59 7 

2nd Semester 

(𝑡 = 2) 
56 87 231 185 269 72 8 

 

• Iteration k = 1 

 

Following the T-EURO procedure, the first step begins with the calculation of each 

semester’ share according to Equations 1.6-1.10 (Table B.3). 

 

Table B.3: Shares by semester (k = 1) 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡,1S

 

Industry 

𝐯2
𝑡,1S

 

Services 

𝐯3
𝑡,1S

 

HH 

𝐲1
𝑡,1S

 

Exports 

𝑒𝑡,1S
 

Imports 

𝑚𝑡,1S
 

Taxes 

𝑡𝑡,1S
 

1st Semester 

(𝑡 = 1) 
0.472 0.620 0.360 0.448 0.469 0.450 0.467 

2nd Semester 

(𝑡 = 2) 
0.528 0.380 0.640 0.552 0.531 0.550 0.533 
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The initial flow adjustment is performed by the set of equations presented in Equations 

1.11-1.16.  This set generates an internally inconsistent IO table (see Tables B.4 and B.5).  The 

results for each period follow: 

 

𝐙1,1 = 0.5 × [( �̂�1,1S × 𝐙E 0) + ( 𝐙E 0 × �̂�1,1S )] = [
14.62 33.30 5.41
12.01 156.26 32.35
7.90 56.36 15.84

] 

𝐦1,1 = 0.5 × [( 𝑚1,1S × 𝐦E 0) + ( 𝐦E 0 × �̂�1,1S )] = [10.14 23.02 26.75] 

𝐭1,1 = 0.5 × [( 𝑡1,1S × 𝐭E 0) + ( 𝐭E 0 × �̂�1,1S )] = [1.41 4.89 1.24] 

𝐯1,1 = 𝐯E 0 × �̂�1,1S = [50 142 130] 

𝐘1,1 = 0.5 × [( �̂�1,1S × 𝐘E 0) + ( 𝐘E 0 × �̂�1,1S )] = [
13.79
85.43
58.57

] 

𝐞1,1 = 0.5 × [( �̂�1,1S × 𝐞E 0) + ( 𝐞E 0 × 𝑒1,1S )] = [
32.00
113.85
95.40

] 

𝐙2,1 = [
16.38 27.70 7.59
9.99 95.74 33.65
11.10 58.64 28.16

] 

𝐦2,1 = [11.86 19.98 39.25] 

𝐭2,1 = [1.59 4.11 1.76] 

𝐯2,1 = [56 87 231] 

𝐘2,1 = [
16.21
74.57
86.43

] 

𝐞2,1 = [
36.00
95.15
134.60

] 
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Table B.4: Internally inconsistent, temporally inconsistent IO Table (k = 1, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.62 33.30 5.41 13.79 32.00 99.12 

Industry 12.01 156.26 32.35 85.43 113.85 399.90 

Services 7.90 56.36 15.84 58.57 95.40 234.07 

Imports 10.14 23.02 26.75    

Taxes 1.41 4.89 1.24    

Value Added 50.00 142.00 130.00    

Output 96.08 415.83 211.59    

 

 

Table B.5: Internally inconsistent, temporally inconsistent IO Table (k = 1, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.38 27.70 7.59 16.21 36.00 103.88 

Industry 9.99 95.74 33.65 74.57 95.15 309.10 

Services 11.10 58.64 28.16 86.43 134.60 318.93 

Imports 11.86 19.98 39.25    

Taxes 1.59 4.11 1.76    

Value Added 56.00 87.00 231.00    

Output 106.92 293.17 341.41    

 

 

The second step converts these adjusted flows into an internally consistent table. From 

𝐪𝑗
𝑡,1

’s definition, we have the first approximation of the total output, that will be used in 

calculating the new input requirement structures: 

 

𝐪1,1 = [96.08 415.83 211.58] 

𝐪2,1 = [106.92 293.17 341.42] 

 

These define the following Leontief Model (Equation 1.18) that produces the updated 

total outputs 𝐱𝑡,1: 
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𝐱1,1  = ([
1 0 0
0 1 0
0 0 1

] − ([
14.62 33.30 5.41
12.01 156.26 32.35
7.90 56.36 15.84

] × [
1 96.08⁄ 0 0
0 1 415.83⁄ 0
0 0 1 211.58⁄

]))

−1

× ([
13.79
85.43
58.57

] + [
32.00
113.85
95.40

]) = [
98.45
396.08
233.21

] 

𝐱2,1  = [
105.08
313.60
321.15

] 

 

Now, applying the quantity model (Equations 1.19-1.22), we recover internally consistent 

IO tables: 

 

𝐙1,1 = [
14.62 33.30 5.41
12.01 156.26 32.35
7.90 56.36 15.84

] × [
1 96.08⁄ 0 0
0 1 415.83⁄ 0
0 0 1 211.58⁄

]

× [
98.45 0 0
0 396.08 0
0 0 233.21

] =  [
14.98 31.72 5.96
12.31 148.84 35.65
8.10 53.69 17.46

] 

𝐦1,1 = [10.14 23.02 26.75] × [
1 96.08⁄ 0 0
0 1 415.83⁄ 0
0 0 1 211.58⁄

]

× [
98.45 0 0
0 396.08 0
0 0 233.21

] = [10.39 21.92 29.48] 

𝐭1,1 = [1.41 4.89 1.24] × [
1 96.08⁄ 0 0
0 1 415.83⁄ 0
0 0 1 211.58⁄

] × [
98.45 0 0
0 396.08 0
0 0 233.21

]

= [1.44 4.66 1.37] 

𝐯1,1 = [50 142 130] × [
1 96.08⁄ 0 0
0 1 415.83⁄ 0
0 0 1 211.58⁄

] × [
98.45 0 0
0 396.08 0
0 0 233.21

]

= [51.23 135.26 143.29] 

𝐙2,1 = [
16.10 29.63 7.14
9.82 102.41 31.66
10.91 62.72 26.48

] 

𝐦2,1 = [11.65 21.38 36.92] 

𝐭2,1 = [1.57 4.40 1.66] 

𝐯2,1 = [55.04 93.06 217.29] 
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Which yields the internally consistent tables 𝐎𝐈𝐓1,1 (Table B.6) and 𝐎𝐈𝐓2,1 (Table B.7): 

 

Table B.6: Internally consistent, temporally inconsistent IO Table (k = 1, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.98 31.72 5.96 13.79 32.00 98.45 

Industry 12.31 148.84 35.65 85.43 113.85 396.08 

Services 8.10 53.69 17.46 58.57 95.40 233.21 

Imports 10.39 21.92 29.48    

Taxes 1.44 4.66 1.37    

Value Added 51.23 135.26 143.29    

Output 98.45 396.08 233.21    

 

Table B.7: Internally consistent, temporally inconsistent IO Table (k = 1, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.10 29.63 7.14 16.21 36.00 105.08 

Industry 9.82 102.41 31.66 74.57 95.15 313.60 

Services 10.91 62.72 26.48 86.43 134.60 321.15 

Imports 11.65 21.38 36.92    

Taxes 1.57 4.40 1.66    

Value Added 55.04 93.06 217.29    

Output 105.08 313.60 321.15    

 

 

Temporal consistency is achieved via Equation 1.24, that distributes each individual 

annual flow according to 𝐎𝐈𝐓1,1 and 𝐎𝐈𝐓2,1.  This results in the temporally consistent but 

internally inconsistent Tables B.8 and B.9. 

 

Table B.8: Internally inconsistent, temporally consistent IO Table (k = 1, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.94 31.54 5.91 13.79 32.00 98.19 

Industry 12.24 149.29 34.96 85.43 113.85 395.76 

Services 8.10 53.03 17.49 58.57 95.40 232.58 

Imports 10.37 21.77 29.30    

Taxes 1.44 4.63 1.36    

Value Added 51.10 135.66 143.46    

Output 98.19 395.92 232.47    
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Table B.9: Internally inconsistent, temporally consistent IO Table (k = 1, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.06 29.46 7.09 16.21 36.00 104.81 

Industry 9.76 102.71 31.04 74.57 95.15 313.24 

Services 10.90 61.97 26.51 86.43 134.60 320.42 

Imports 11.63 21.23 36.70    

Taxes 1.56 4.37 1.64    

Value Added 54.90 93.34 217.54    

Output 104.81 313.08 320.53    

 

By repeating step two, these tables are corrected for internal consistency: 

𝐪1,1 = [98.19 395.92 232.47] 

𝐪2,1 = [104.81 313.08 320.53] 

𝐱1,1  = [
98.17
395.69
232.56

] 

𝐱2,1  = [
104.84
313.31
320.46

] 

 

After the quantity model (Equations 1.19-1.22), we recover the internally consistent IO 

tables: 

 

𝐙1,1 = [
14.94 31.52 5.92
12.23 149.20 34.97
8.09 53.00 17.49

] 

𝐦1,1 = [10.37 21.76 29.31] 

𝐭1,1 = [1.44 4.63 1.36] 

𝐯1,1 = [51.09 135.58 143.51] 

𝐙2,1 = [
16.06 29.48 7.09
9.77 102.79 31.03
10.91 62.01 26.51

] 

𝐦2,1 = [11.63 21.24 36.69] 

𝐭2,1 = [1.56 4.37 1.64] 
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𝐯2,1 = [54.91 93.41 217.50] 

 

Which yields the internally consistent tables 𝐎𝐈𝐓1,1 and 𝐎𝐈𝐓2,1: 

 

Table B.10: Internally consistent, temporally consistent IO Table (k = 1, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.94 31.52 5.92 13.79 32.00 98.17 

Industry 12.23 149.20 34.97 85.43 113.85 395.69 

Services 8.09 53.00 17.49 58.57 95.40 232.56 

Imports 10.37 21.76 29.31    

Taxes 1.44 4.63 1.36    

Value Added 51.09 135.58 143.51    

Output 98.17 395.69 232.56    

 

 

Table B.11: Internally consistent, temporally consistent IO Table (k = 1, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.06 29.48 7.09 16.21 36.00 104.84 

Industry 9.77 102.79 31.03 74.57 95.15 313.31 

Services 10.91 62.01 26.51 86.43 134.60 320.46 

Imports 11.63 21.24 36.69    

Taxes 1.56 4.37 1.64    

Value Added 54.91 93.41 217.50    

Output 104.84 313.31 320.46    

 

 

The temporal adjustment is performed a second time on Tables B.10 and B.11 as the 

mean absolute percentage error (MAPE, as defined by Equation 1.43) between the 𝐎𝐈𝐓1,1 +

𝐎𝐈𝐓2,1 and 𝐈𝐎𝐓0E  (0.003%) is larger than the set threshold of 0.001%.  After applying Equation 

9 and correcting the internal consistency via step two, we have: 
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Table B.12: Internally consistent, temporally consistent IO Table (k = 1, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.94 31.52 5.91 13.79 32.00 98.16 

Industry 12.23 149.20 34.97 85.43 113.85 395.69 

Services 8.09 53.00 17.49 58.57 95.40 232.55 

Imports 10.37 21.76 29.31    

Taxes 1.44 4.63 1.36    

Value Added 51.09 135.59 143.51    

Output 98.16 395.69 232.55    

 

Table B.13: Internally consistent, temporally consistent IO Table (k = 1, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.06 29.48 7.09 16.21 36.00 104.84 

Industry 9.77 102.80 31.03 74.57 95.15 313.31 

Services 10.91 62.00 26.51 86.43 134.60 320.45 

Imports 11.63 21.24 36.69    

Taxes 1.56 4.37 1.64    

Value Added 54.91 93.41 217.49    

Output 104.84 313.31 320.45    

 

 

With MAPE = 0.00003%, the current iteration ends. Hence, we recalculate shares using 

Equationa 1.25-1.29: 

 

Table B.14: Shares by semester (k = 2) 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡,2S

 

Industry 

𝐯2
𝑡,2S

 

Services 

𝐯3
𝑡,2S

 

HH 

𝐲1
𝑡,2S

 

Exports 

𝑒𝑡,2S
 

Imports 

𝑚𝑡,2S
 

Taxes 

𝑡𝑡,2S
 

1st Semester 

(𝑡 = 1) 
0.482 0.592 0.398 0.471 0.476 0.469 0.495 

2nd Semester 

(𝑡 = 2) 
0.518 0.408 0.603 0.529 0.524 0.531 0.505 

 

 

And the respective deviations from the true shares: 
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Table B.15: Deviations from true shares (k = 2) 

 Value Added Totals 

 Agriculture 

𝑑𝐯1
𝑡   

Industry 

𝑑𝐯2
𝑡  

Services 

𝑑𝐯3
𝑡  

HH 

𝑑𝐲1
𝑡  

Exports 

𝑑𝑒
𝑡  

Imports 

𝑑𝑚
𝑡  

Taxes 

𝑑𝑡
𝑡 

1st Semester 

(𝑡 = 1) 
0.979 1.047 0.906 0.951 0.987 0.960 0.943 

2nd Semester 

(𝑡 = 2) 
1.020 0.931 1.062 1.044 1.012 1.035 1.056 

 

Assuming an adjustment elasticity of 0.9, and a maximum absolute deviation threshold 

level of 0.5% error, the correction factors are calculated using Equation 1.30. 

 

Table B.16: Correction factors (k = 2) 

 Value Added Totals 

 Agriculture 

𝑐𝐯1
𝑡,2

  

Industry 

𝑐𝐯2
𝑡,2

 

Services 

𝑐𝐯3
𝑡,2

 

HH 

𝑐𝐲1
𝑡,2

 

Exports 

𝑐𝑒
𝑡,2

 

Imports 

𝑐𝑚
𝑡,2

 

Taxes 

𝑐𝑡
𝑡,2

 

1st Semester 

(𝑡 = 1) 
0.980 1.041 0.925 0.958 0.987 0.966 0.952 

2nd Semester 

(𝑡 = 2) 
1.019 0.943 1.052 1.044 1.012 1.031 1.047 

 

 

• Iteration k = 2 

 

The new “corrected” shares are calculated by multiplying the correction factors (𝑐r
𝑡,2

) 

with their respective true shares, yielding: 

 

Table B.17: Corrected shares by semester (k = 2) 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡,2SC

 

Industry 

𝐯2
𝑡,2SC

 

Services 

𝐯3
𝑡,2SC

 

HH 

𝐲1
𝑡,2SC

 

Exports 

𝑒𝑡,2SC
 

Imports 

𝑚𝑡,2SC
 

Taxes 

𝑡𝑡,2SC
 

1st Semester 

(𝑡 = 1) 
0.462 0.645 0.333 0.429 0.463 0.435 0.452 

2nd Semester 

(𝑡 = 2) 
0.538 0.358 0.673 0.573 0.537 0.567 0.558 
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The first adjustment is made using Equations 1.31-1.36, that generates an internally 

inconsistent IO table (Tables B.18 and B.19).  The results for each period follows: 

 

𝐙1,2 = 0.5 × [( �̂�1,2SC × 𝐙E 0) + ( 𝐙E 0 × �̂�1,2SC )] = [
14.33 33.78 5.17
12.18 162.59 32.28
7.56 56.25 14.65

] 

𝐦1,2 = 0.5 × [( 𝑚1,2SC × 𝐦E 0) + ( 𝐦E 0 × �̂�1,2SC )] = [9.87 23.22 25.34] 

𝐭1,2 = 0.5 × [( 𝑡1,2SC × 𝐭E 0) + ( 𝐭E 0 × �̂�1,2SC )] = [1.36 4.90 1.17] 

𝐯1,2 = 𝐯E 0 × �̂�1,2SC = [49.01 147.75 120.22] 

𝐘1,2 = 0.5 × [( �̂�1,2SC × 𝐘E 0) + ( 𝐘E 0 × �̂�1,2SC )] = [
13.37
85.93
55.24

] 

𝐞1,2 = 0.5 × [( �̂�1,2SC × 𝐞E 0) + ( 𝐞E 0 × 𝑒1,2SC )] = [
31.47
115.84
91.58

] 

𝐙2,2 = [
16.68 27.34 7.87
9.86 90.32 34.04
11.51 59.31 29.61

] 

𝐦2,2 = [12.15 19.89 40.91] 

𝐭2,2 = [1.64 4.13 1.85] 

𝐯2,2 = [57.04 82.07 242.95] 

𝐘2,2 = [
16.67
74.53
90.35

] 

𝐞2,2 = [
36.55
93.56
139.14

] 
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Table B.18: Internally inconsistent, temporally inconsistent IO Table (k = 2, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.33 33.78 5.17 13.37 31.47 98.12 

Industry 12.18 162.59 32.28 85.93 115.84 408.82 

Services 7.56 56.25 14.65 55.24 91.58 225.28 

Imports 9.87 23.22 25.34    

Taxes 1.36 4.90 1.17    

Value Added 49.01 147.75 120.22    

Output 94.31 428.49 198.83    

 

 

Table B.19: Internally inconsistent, temporally inconsistent IO Table (k = 2, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.68 27.34 7.87 16.67 36.55 105.11 

Industry 9.86 90.32 34.04 74.53 93.56 302.31 

Services 11.51 59.31 29.61 90.35 139.14 329.92 

Imports 12.15 19.89 40.91    

Taxes 1.64 4.13 1.85    

Value Added 57.04 82.07 242.95    

Output 108.88 283.06 357.23    

 

 

The algorithm repeats the same steps presented above. At the end of this iteration, we 

have the new 𝐎𝐈𝐓1,2 (Table B.20) and 𝐎𝐈𝐓2,2 (Table B.21): 

 

Table B.20: Internally consistent, temporally consistent IO Table (k = 2, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.73 31.52 5.76 13.35 31.46 96.82 

Industry 12.44 153.49 35.28 85.69 115.62 402.51 

Services 7.77 51.84 16.49 55.02 91.29 222.41 

Imports 10.14 21.61 28.29    

Taxes 1.40 4.56 1.30    

Value Added 50.35 139.48 135.29    

Output 96.82 402.51 222.41    
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Table B.21: Internally consistent, temporally consistent IO Table (k = 2, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.27 29.48 7.24 16.65 36.54 106.18 

Industry 9.56 98.51 30.72 74.31 93.38 306.48 

Services 11.23 63.16 27.51 89.98 138.71 330.59 

Imports 11.86 21.39 37.71    

Taxes 1.60 4.44 1.70    

Value Added 55.65 89.52 225.71    

Output 106.18 306.48 330.59    

 

 

The recalculated shares are: 

Table B.22: Shares by semester (k = 3) 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡,3S

 

Industry 

𝐯2
𝑡,3S

 

Services 

𝐯3
𝑡,3S

 

HH 

𝐲1
𝑡,3S

 

Exports 

𝑒𝑡,3S
 

Imports 

𝑚𝑡,3S
 

Taxes 

𝑡𝑡,3S
 

1st Semester 

(𝑡 = 1) 
0.475 0.609 0.375 0.460 0.470 0.458 0.484 

2nd Semester 

(𝑡 = 2) 
0.525 0.391 0.625 0.540 0.530 0.542 0.516 

 

 

And the new deviations from the true shares: 

 

Table B.23: Deviations from true shares (k = 3) 

 Value Added Totals 

 Agriculture 

𝑑𝐯1
𝑡   

Industry 

𝑑𝐯2
𝑡  

Services 

𝑑𝐯3
𝑡  

HH 

𝑑𝐲1
𝑡  

Exports 

𝑑𝑒
𝑡  

Imports 

𝑑𝑚
𝑡  

Taxes 

𝑑𝑡
𝑡 

1st Semester 

(𝑡 = 1) 
0.993 1.018 0.961 0.974 0.998 0.983 0.964 

2nd Semester 

(𝑡 = 2) 
1.006 0.972 1.023 1.022 1.001 1.015 1.034 

 

 

Assuming an adjustment elasticity of 0.9, and threshold level of 0.5% error, the 

accumulated correction factors are calculated using Equations 1.37-1.41 and ∏ 𝑐r
𝑡,𝑘3

𝑘=2 . 
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Table B.24: Correction factors (k = 3) 

 Value Added Totals 

 Agriculture 

𝑐𝐯1
𝑡,3

  

Industry 

𝑐𝐯2
𝑡,3

 

Services 

𝑐𝐯3
𝑡,3

 

HH 

𝑐𝐲1
𝑡,3

 

Exports 

𝑐𝑒
𝑡,3

 

Imports 

𝑐𝑚
𝑡,3

 

Taxes 

𝑐𝑡
𝑡,3

 

1st Semester 

(𝑡 = 1) 
0.973 1.058 0.893 0.935 0.985 0.950 0.922 

2nd Semester 

(𝑡 = 2) 
1.025 0.919 1.074 1.059 1.012 1.046 1.078 

 

 

• Iteration k = 3 

 

The new “corrected” shares are calculated by multiplying the correction factors with their 

respective true shares, yielding: 

 

Table B.25: Corrected shares by semester (k = 3) 

 Value Added Totals 

 Agriculture 

𝐯1
𝑡,3SC

 

Industry 

𝐯2
𝑡,3SC

 

Services 

𝐯3
𝑡,3SC

 

HH 

𝐲1
𝑡,3SC

 

Exports 

𝑒𝑡,3SC
 

Imports 

𝑚𝑡,3SC
 

Taxes 

𝑡𝑡,3SC
 

1st Semester 

(𝑡 = 1) 
0.459 0.656 0.322 0.419 0.462 0.428 0.430 

2nd Semester 

(𝑡 = 2) 
0.542 0.349 0.688 0.585 0.538 0.575 0.575 

 

 

The algorithm converges after 6 iterations, when the absolute deviation become less than 

0.5% (Table B.26). 

 

Table B.26: Deviations from true shares (k = 7) 

 Value Added Totals 

 Agriculture 

𝑑𝐯1
𝑡   

Industry 

𝑑𝐯2
𝑡  

Services 

𝑑𝐯3
𝑡  

HH 

𝑑𝐲1
𝑡  

Exports 

𝑑𝑒
𝑡  

Imports 

𝑑𝑚
𝑡  

Taxes 

𝑑𝑡
𝑡 

1st Semester 

(𝑡 = 1) 
1.000 1.000 1.000 0.999 1.001 1.000 0.997 

2nd Semester 

(𝑡 = 2) 
1.000 1.000 1.000 1.001 1.000 1.000 1.003 
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The final semester tables are then 𝐎𝐈𝐓1,6 (Table B.27) and 𝐎𝐈𝐓2,6 (Table B.28): 

 

Table B.27: Internally consistent, temporally consistent IO Table (k = 6, t = 1) 

 Agriculture Industry Services HH Export Output 

Agriculture 14.62 31.55 5.67 12.95 31.33 96.12 

Industry 12.59 156.26 35.51 85.13 117.31 406.80 

Services 7.57 51.09 15.85 52.10 89.24 215.84 

Imports 9.99 21.47 27.57    

Taxes 1.34 4.44 1.24    

Value Added 50.01 142.00 130.01    

Output 96.12 406.80 215.84    

 

 

Table B.28: Internally consistent, temporally consistent IO Table (k = 6, t = 2) 

 Agriculture Industry Services HH Export Output 

Agriculture 16.38 29.45 7.33 17.05 36.67 106.88 

Industry 9.41 95.74 30.49 74.87 91.69 302.20 

Services 11.43 63.91 28.15 92.90 140.76 337.16 

Imports 12.01 21.54 38.43    

Taxes 1.66 4.56 1.76    

Value Added 55.99 87.00 230.99    

Output 106.88 302.20 337.16    
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APPENDIX C: CHAPTER TWO 

 

 

Figure C.1: Pearson correlation between BEA and BLS labor compensation series by industry 

(NAICS 2-digit aggregation) 
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Figure C.1: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 2-digit aggregation) 
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Figure C.1: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 2-digit aggregation) 
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Figure C.1: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 2-digit aggregation) 
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Figure C.2: Pearson correlation between BEA and BLS labor compensation series by industry 

(NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Figure C.2: (cont.) Pearson correlation between BEA and BLS labor compensation series by 

industry (NAICS 3-digit aggregation) 
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Table C.1: 60-sector disaggregation detail for the US quarterly IO tables 

 

Code NAICS Description 

111CA 111, 112 Farms 

113FF 113, 114, 115 Forestry, fishing, and related activities 

21 21 Mining, Quarrying, and Oil and Gas Extraction 

22 22 Utilities 

23 23 Construction 

321 321 Wood products 

327 327 Nonmetallic mineral products 

331MT 331, 332 Primary metals and fabricated metal products 

333 333 Machinery 

334 334 Computer and electronic products 

335 335 Electrical equipment, appliances, and components 

336 336 Transportation Equipment Manufacturing 

337 337 Furniture and related products 

339 339 Miscellaneous manufacturing 

311FT 311, 312 Food and beverage and tobacco products 

313TT 313, 314 Textile mills and textile product mills 

315AL 315, 316 Apparel and leather and allied products 

322 322 Paper products 

323 323 Printing and related support activities 

324 324 Petroleum and coal products 

325 325 Chemical products 

326 326 Plastics and rubber products 

42 42 Wholesale trade 

441 441 Motor vehicle and parts dealers 

445 445 Food and beverage stores 

452 452 General merchandise stores 

4A0 
442, 443, 444, 446, 447, 448, 

451, 453, 454 
Other retail 

481 481 Air transportation 

482 482 Rail transportation 

483 483 Water transportation 

484 484 Truck transportation 

485 485 Transit and ground passenger transportation 

486 486 Pipeline transportation 

487OS 487, 488, 492 Other transportation and support activities 

493 493 Warehousing and storage 

511 511 Publishing industries, except internet (includes software) 

512 512 Motion picture and sound recording industries 

513 515, 517 Broadcasting and telecommunications 

514 516, 518, 519 
Data processing, internet publishing, and other information 

services 
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Table C.1: (cont.) 60-sector disaggregation detail for the US quarterly IO tables (cont.) 

 

Code NAICS Description 

521CI 521, 522 
Federal Reserve banks, credit intermediation, and related 

activities 

523 523 Securities, commodity contracts, and investments 

525IA 524, 525 
Insurance carriers and related activities, funds, trusts, and 

other financial vehicles 

531 531 Real estate 

532RL 532, 533 Rental and leasing services and lessors of intangible assets 

541 541 Legal services 

55 55 Management of companies and enterprises 

56 56 
Administrative and Support and Waste Management and 

Remediation Services 

61 61 Educational services 

621 621 Ambulatory health care services 

622 622 Hospitals 

623 623 Nursing and residential care facilities 

624 624 Social assistance 

711AS 711, 712 
Performing arts, spectator sports, museums, and related 

activities 

713 713 Amusements, gambling, and recreation industries 

721 721 Accommodation 

722 722 Food services and drinking places 

81 81 Other services, except government 

GFGD 928 Federal general government (defense) 

GFGN 92, -928 Federal general government (nondefense) and enterprises 

GSLG 92 State and local general government and enterprises 

IMP 
 

Total Imports 

V002 
 

Other value added and adjustments 

V001 
 

Compensation of employees 

F010 
 

Personal consumption expenditures 

F02S 
 

Nonresidential private fixed investment in structures 

F02E 
 

Nonresidential private fixed investment in equipment and IP 

F02R 
 

Residential private fixed investment 

F030 
 

Change in private inventories 

F06C 
 

Federal: Consumption expenditures 

F06S 
 

Federal: Total gross investment 

F10C 
 

State and local: Consumption expenditures 

F10S 
 

State and local: Total gross investment 

F040 
 

Exports of goods and services 
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Notes: Calculated via Equation 2.18. Darker colors indicate larger uncertainty. 

 

Figure C.3: Normalized uncertainty measure, interindustrial flows, IL 
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Notes: Calculated via Equation 2.18. Darker colors indicate larger uncertainty. 

 

Figure C.4: Normalized uncertainty measure, interindustrial flows, Cook County 
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Notes: Calculated via Equation 2.18. Darker colors indicate larger uncertainty. 

 

Figure C.5: Normalized uncertainty measure, interindustrial flows, Iroquois County 
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APPENDIX D: CHAPTER THREE 

 

Equation D.1: Simplified extended IO model IV 

 

(

𝐈 − �̃� −𝐡c
E −𝑠 × 𝐡c

U

−𝐡r
E 𝟏 𝟎

𝐚L × �̂� 𝟎 𝟏

)(
𝐱A

𝑥H
E

𝑢

) = (
𝐟A

𝑓𝐻
𝑙T
) (D.1) 

 

where: 

�̃�: is a matrix (𝑛 × 𝑛) of local direct input requirements 

𝐱A: is a column vector (𝑛 × 1) of total output by industry 

𝐟A: is a column vector (𝑛 × 1) of total final demand by industry 

𝐡c
E: is a column vector (𝑛 × 1) of employed households’ expenditure pattern 

𝐡c
U: is a column vector (𝑛 × 1) of unemployed households’ expenditure pattern 

𝐡r
E: is a row vector (1 × 𝑛) of wage income from employment coefficients 

𝐚L: is a row vector (1 × 𝑛) of employment/output ratios 

𝛒: is a column vector (𝑛 × 1) of probabilities indicating the likelihood of previously 

unemployed indigenous workers filling opened vacancies 

𝑠: unemployment benefits 

𝑥𝐻
𝐸 : total employed household income 

𝑓𝐻: income from exogenous sources to employed households 

𝑢: unemployment level 

𝑙T: total labor supply 
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Table D.1: Additional models’ specifications 

 

Model Assumptions 

Static Leontief 

Demand-Driven 

Model 

 

Supply constraints converted into demand constraints via:  

𝐟A(𝑡) = (𝐈 − 𝚪(𝑡)) ∗ 𝐟A(0) 

Where 𝐈 − 𝚪(𝑡) represents the amount of inoperability by sector at time 

𝑡. 

 

Cochrane’s Model 

 

No trade restrictions. 

Rebalance estimated using: 

𝐱A(𝑡) = (𝐈 − (𝐈 − 𝚪(𝑡))�̃�)
−1
∗ 𝐟A 

 

Inventory-DIIM 

 

Resilience coefficients (𝑙) assumed 0.55 (Agriculture) and 0.16 

(Services). ⸶ 

Manufacture’s resilience coefficient estimated following Barker and 

Santos (2010) at 0.54. ⸶ 

Repair coefficients (𝑘) estimated following Barker and Santos (2010). ⸶ 

No initial inventories. 

 

Inventory-ARIO 

(version 4.1) 

 

Same parametrization from Hallegatte (2014), except: 

• Maximum overproducing capacity⸶⸶: 𝛼𝑚𝑎𝑥 = 1 

• Number of days of stock: 𝑛𝑗
𝑖 = 60 

• Size of direct losses: 1 

• Reconstruction timescale: 5 years 

• Production reduction parameter⸶⸶: 𝜓 = 1 

 

Notes:  ⸶ The Inv-DIIM is very sensitive to these parameters, as they inform the speed with which the supply-

demand gap closes in each period. 

⸶⸶ The Inv-ARIO model is very sensitive to these parameters, see complete discussion on Hallegatte 

(2014). 
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APPENDIX E: CHAPTER FOUR 

 

Table E.1: Main features of alternative input-output methodologies 

 

LM RM SIM DIIM Inv-DIIM Inv-ARIO GDIO 

Type static static quasi-dynamic dynamic dynamic dynamic dynamic 

Causality demand-driven demand-driven demand-driven demand-driven demand-driven demand-driven demand-driven 

Constraints demand 

demand 

supply 

trade 

demand demand 
demand 

supply 

demand 

supply 

demand 

supply 

trade/labor 

Inventories no no no no yes yes yes 

Production simultaneous simultaneous time dependent simultaneous simultaneous simultaneous time dependent 

Market 

Clearing 
implicit implicit implicit implicit implicit explicit explicit 

Prices constant constant constant constant constant varying1 constant 

Behavior 
perfect 

foresight 

perfect 

foresight 

perfect 

foresight 

backward 

looking 

backward 

looking 

backward 

looking 

backward/forwa

rd looking 

Regional 

Purchase 

Coefficients 

fixed varying fixed/varying fixed fixed varying2 time varying 

Induced 

Effects 
traditional traditional traditional traditional traditional traditional demo-economic 

Recovery exogenous exogenous exogenous endogenous endogenous endogenous exogenous 

Additional 

Minimum 

Data 

Requirements 

from LM 

- - 
production 

timing 

resilience coeff. 

final demand* 

resilience coeff. 

repair coeff. 

inventory level 

final demand* 

inventory level 

elasticities 

recovery pace 

production 

timing 

inventory level 

trade 

restrictions 

demographics 

Notes: Traditional induced effects refer to the simple endogenization of households in the IO table as an additional sector. 

*Assumptions about what is included in the “potential final demand” in each period post-disaster; 1price changes do not affect production, only demand 

behavior; 2in the ARIO model version only. 
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Notes: Colors capture for each cell the impact of a 1% change in the value of that cell in the direct input 

requirement matrix (𝐀P) on the average change across all the cells of the Leontief Inverse matrix. 

 

Figure E.1: Average fields of influence by county, annual IO table 


