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Abstract  

Reproductive ecology has long examined the flexibility of women’s reproductive 

function in the face of variable environments. The timing of a woman’s first menses, or age at 

menarche, is both used as a proxy of childhood stressors and correlated with adolescent and adult 

reproductive function. This research seeks to understand the connections between childhood 

environments, pubertal timing, and adult reproductive function, and I specifically 1) identify a 

need for including social support measures in studies of pubertal timing through empirical 

evidence that positive parental-child interactions affect age at menarche, 2) demonstrate that 

psychosocial and energetic stressors experienced during childhood correlate with pubertal timing 

and adult reproductive function, 3) compare timing of menarche and variation in reproductive 

hormones between two populations with similar geographic origins but different subsistence 

environments, and 4) investigate gene methylation as a potential mechanism mediating the 

relationship between key stressors and reproductive function. 

I first investigated relationships between parent-adolescent communication and age at 

menarche in a diverse sample of 128 post-menarcheal, American girls aged 12-17. I found that 

measures of close family relationships, specifically open communication with parents, were 

correlated with age at menarche in this sample. I further found that mother-adolescent and father-

adolescent open communication scores had opposing directional effects on menarcheal timing. 

These findings suggest that maternal and paternal communication may signal different things 

about the developmental and reproductive environment. This research underscores the 

importance of including measures of family support in future studies of adolescent reproductive 

trait timing, as well as the consideration that positive psychosocial factors, rather than only 

negative psychosocial factors, may be associated with accelerated menarcheal development. 
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 I further investigated the secular trend of declining ages at menarche in in the rural 

Beskid Wyspowy region of southern Poland and investigated relationships between childhood 

stressors, age at menarche, and adult reproductive function. I found that age at menarche has 

declined over time in rural Poland. Helping on farms and with farm animals as a child were 

associated with later ages at menarche. Women with a higher number of adverse childhood 

experiences tended to have earlier age at menarche, although this difference was not statistically 

significant. Despite different effects on age at menarche, all types of childhood stressors were 

associated with lower adult E1G concentrations.  The results of this study support a model under 

which developmental conditions affect adult reproductive function, but challenge the use of age 

at menarche alone as a proxy for childhood stressors.  

 I compared differences in reproductive traits between women in rural Poland and Polish 

American women in urban areas of the United States. We found that ages at menarche are earlier 

in Polish American women. Further, there is a generational effect where Polish American 

women whose parents were born in Poland did not have significant difference in average ages at 

menarche compared to women in Poland, but Polish American women whose grandparents were 

born in Poland had earlier ages at menarche compared to women in Poland. Additionally, we 

found that the Polish American sample had a significantly longer average luteal phase length 

compared to the Polish sample. These differences may indicate that, while rural Poland is 

undergoing many transitions, there are still environmental stressors affecting reproductive 

function.  

Finally, I investigated gene methylation as a potential mechanism mediating the 

relationship between stress and reproductive function. Epigenetic traits, like gene methylation, 

are modified by early environmental variables, and, thus, gene methylation is a likely mediator 
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connecting early life environments with timing of menarche and adult reproductive hormones. I 

found that methylation at a promoter of the gene coding for aromatase (CYP19A1) along with 

farming during childhood significantly predicted age at menarche in a rural Polish population. 

We further identified a potential pathway by which increased cortisol concentrations increases 

CYP19A1 promoter I.4 methylation, which likely decreases aromatase activity and downstream 

estrogen and estrone concentrations. This pathway adds another potential pathway helping to 

explain inter-individual differences in estrogen concentrations. Overall, the results of this 

research underscore that epigenetic factors like gene methylation play a role in reproductive 

ecology and may provide a piece of the lacking intermediate structure between early 

environmental experiences and reproductive traits. 
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Chapter 1 

Introduction 

Research Objectives  

 I research variation in women’s reproductive physiology, and I seek to understand the 

connection between childhood environments, pubertal timing, and adult reproductive function. 

My projects combine classic anthropological and cutting-edge epigenetic techniques to explore 

variation in pubertal timing. I integrate life history survey-based data, degree of methylation at a 

candidate gene, and reproductive hormone concentration data. My research advances the breadth 

of knowledge on if, how, and which early environmental variables affect adult reproductive 

function. I conduct this research in a diverse sample of U.S. adolescents and a comparative 

sample of women living in Poland and Polish American women living in the United States. 

The major contributions of my work are to: 1) identify a need for including social support 

measures in studies of pubertal timing through empirical evidence that positive parental-child 

interactions affect age at menarche, 2) demonstrate that psychosocial and energetic stressors 

experienced during childhood correlate with pubertal timing and adult reproductive function, 3) 

compare timing of menarche and variation in reproductive hormones between two populations 

with similar geographic origins but different subsistence environments, and 4) investigate gene 

methylation as a potential mechanism mediating the relationship between key stressors and 

reproductive function. In this introduction, I discuss why age at menarche is important, the 

variables influencing timing of menarche, the effects of timing of menarche, and epigenetic 

modifications as a potential mechanism linking the environment to reproductive outcomes.  
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Why is age at menarche important?   

Ages at menarche have been declining globally since 1850 (Tanner, 1981). This global 

secular trend of earlier ages at menarche has been largely attributed to environmental influences, 

including childhood nutrition and healthcare and lowered energetic and immune stress (Ellison, 

2001; Walvoord, 2010). The trend attracted attention in public health due to the association of 

early menarche with risk of health and reproductive outcomes, including an increased risk of 

breast cancer (Helmrich et al., 1983; Jasienska, 2001), endometriosis (Nnoaham et al., 2012), and 

cardiovascular disease (Remsberg et al., 2005). Earlier ages at menarche are also associated with 

an earlier age at first coitus and first pregnancy (Urdry and Cliquet, 1982; Belsky et al., 1991; 

Boothroyd et al., 2013), as well as risk for adolescent depression (although see Angold et al., 

1999; Allison and Hyde, 2013). The risks of a later age at menarche are less well-studied, but a 

later age at menarche is associated with increased risk for osteoporosis (Chevalley et al., 2008; 

Devlin et al., 2010), social anxiety (Siegel et al., 1999), and depression (Stice et al., 2001). Social 

reactions to female puberty vary globally; however, girls at this age are often subjected to 

menstrual taboos, dress codes, activity limitations, and increased supervision, any of which 

might contribute to the associations between age at menarche and risks for depression and 

anxiety (Siegel et al., 1999; Allison and Hyde, 2013).   

In addition to health and social consequences, the timing of menarche is also associated 

with reproductive function. Adolescent menstrual cycles are quite variable and often anovulatory 

(ACOG, 2006). A younger age at menarche is associated with reaching a greater frequency of 

ovulatory cycles faster than girls with older ages at menarche (Apter and Vihko, 1983). Adult 

estradiol concentrations are also higher for girls with early menarche (Kirchengast and 

Hartmann, 1994; Emaus et al., 2008). In some populations, age at menarche is also associated 
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with measures of fertility. Borgerhoff Mulder (1989) found that Kenyan Kipsigis women with a 

menarcheal onset at ages 12-14 had approximately three more children than those with an age of 

menarche at 16 or later. Finally, early menarche is also associated with adverse reproductive 

outcomes including higher offspring mortality among Pumé women in Venezuela (Kramer, 

2008) and higher rates of preterm delivery among women in Wuhan, China (Li and Zhou, 1990). 

The consequences of both earlier and later than average ages at menarche suggest that this age is 

important and potential useful health marker (ACOG, 2016).  

 However, there are a few issues with using age at menarche as a health marker. For 

example, age at menarche varies within and between populations. Average age at menarche is 

typically deemed normal, with two standard deviations away from the mean indicating either 

precocious (early) puberty or delayed puberty (Palmert and Boepple, 2001). Table 1.1 displays 

average ages at menarche in four select countries: The U.S., Poland, Bangladesh, and Great 

Britain. There are differences between average ages at menarche within and between these 

populations (Rogers, 2016). The within and between population variation makes it difficult to 

use age at menarche as a simple reproductive health indicator. This would be especially 

important in areas with high levels of migration.  
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Country Population 
Average 
Age at 

Menarche 

Study 
Year Source 

USA non-Hispanic White 12.52 1999-2002 Anderson and Must, 2005 
 

non-Hispanic Black 12.06 1999-2002 Anderson and Must, 2005 
 

Mexican 12.09 1999-2002 Anderson and Must, 2005 
Poland Urban 12.56 2000 Popławska et al. 2013  

 
Rural Poland: Higher SES 12.98 2001 Łaska-Mierzejewska and Olszewska, 

2004  
Rural Poland: Lower SES 13.45 2001 Łaska-Mierzejewska and Olszewska, 

2004 
Bangladesh Rural 12.8 2005 Rah et al. 2009 

 
Urban 12.5 2011 Houghton et al. 2014 

Great Britain British-Bangladesh 12.1 2010 Houghton et al. 2014 
 

White 12.6 2010 Houghton et al. 2014 

 
Table 1.1: Average ages at menarche in different populations living within four select countries: 
United States, Poland, Bangladesh, and Great Britain. There is considerable variation within and 
between populations.  
 

Variation in age at menarche: a life history perspective 

From a life history perspective the decrease in average ages at menarche has been 

attributed to tradeoffs in growth and reproduction (Ellison, 2001; Forman and Mangini, 2013). 

This alternative perspective recognizes the social and biological consequences of variation in 

pubertal timing, but also argues that both earlier and later maturation can be adaptive in different 

contexts. A life history framework seeks to understand how evolutionary forces have shaped 

organisms to use limited resources to optimize survival and reproductive success (Stearns, 1989; 

Charnov, 1993). Life history theory posits that there are trade-offs between somatic investments 

in growth, reproduction, and survival (Stearns, 1989). Menarche is one visible, memorable 

marker of the transition from somatic investment in growth to reproduction and as such is a 

highly studied life history trait (Ellis, 2004; Ellison et al., 2012). Within this framework, normal 

variation in age at menarche can be viewed as an adaptive response to varying developmental 

environments. Two commonly studied sources of this variation include energetic and 
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psychosocial stressors, which tend to delay and accelerate age at menarche respectively (Ellison, 

2001; Ellis, 2004).  

The energetics hypothesis posits that menarcheal age should be delayed in environments 

with low energy status, negative energy balance, or high energy flux, where extending the period 

of growth might be beneficial in the face of high energetic constraint (Ellison, 2001; Reiches et 

al., 2013). For example, girls who experienced food deprivation during childhood in France and 

girls who experienced food insecurity during adolescence in Ethiopia had later ages at menarche 

(Belachew et al., 2011; Dossus et al., 2012). Girls who participate in intensive sports resulting in 

negative energy balance have later ages at menarche (Georgopoulos et al., 2010). The energetics 

hypothesis has been supported in a wide variety of contexts; energetic constraints seem to pull 

investment away from reproductive effort and towards growth, maintenance, and/or survival.  

On the other hand, psychosocial stressors may also pull resources away from 

reproduction. According to the psychosocial acceleration hypothesis, which also draws on life 

history theory, age at menarche should be accelerated in risky or uncertain psychological, social, 

or physical environments where a long lifespan is not assured (Belsky et al., 1991; Ellis, 2004). 

Experiences like conflict in the home (Jorm et al., 2004) and sexual abuse (Wise et al., 2009; 

Boynton-Jarrett and Harville, 2012) are associated with earlier ages at menarche. Father absence 

is also correlated with earlier menarche (Ellis and Garber, 2000; Boothroyd et al., 2013; Jones, 

1972) and is particularly well-studied (see Webster et al., 2014). For example, a greater number 

of years without a father was associated with earlier ages at menarche in a sample of Canadian 

girls (Surbey, 1990).  

Energetic stressors are typically associated with later ages at menarche, and psychosocial 

stressors are typically associated with earlier ages at menarche. A lack of energetic stress, or 
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greater energetic availability, would then likely allow for faster growth, larger body size, and 

earlier ages at menarche (Huss-Ashmore and Johnston, 1985). However, both rich and poor 

environments and both high socio-economic status and increased social stress can lead to a 

decreased age at menarche. For example, one might expect poor environmental conditions to be 

associated with later ages at menarche; however, these conditions alongside high mortality risk is 

associated with accelerated growth rates and decreased ages at menarche (Walker et al. 2006). 

Further, a high socio-economic status is associated with a lowered age at menarche in 

populations where there are disparities between social classes (Adair, 2001), but father absence 

and low socio-economic status is also associated with earlier ages at menarche (Ellis et al. 2005). 

Disparate influences can affect the age at menarche in a similar way, which complicates a 

potential use of age at menarche alone. Figure 1.1 displays energetic and psychosocial variables 

associated with age at menarche.  
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Figure 1.1: Traits associated with earlier and/or later ages at menarche (Figure reproduced from 
Rogers, 2016). Variables associated with earlier and/or later ages at menarche are color coded as 
follows: red for psychosocial variables, blue for energetic variables, white for variables that 
could be considered either psychosocial or energetic.   

 

While the relationship between energetic variables and age at menarche is typically 

consistent, the relationship between psychosocial variables and age at menarche is less 

consistent. For example, women who report experiencing a happy childhood had earlier ages at 

menarche in one study (Jorm et al., 2004), but parental approval and warmth correlated with later 

ages at menarche in a different study (Graber et al., 1995). As previously mentioned, the 

relationship between father absence and earlier ages at menarche is particularly well-studied. 

Most studies use this relationship to provide support for the psychosocial acceleration 
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hypothesis. I contend that this relationship, and the relationship between psychosocial variables 

and age at menarche, is likely context-dependent.  

Critique of the psychosocial acceleration hypothesis 

The relationship between psychosocial variables and age at menarche is less consistent 

compared to the relationship between energetic variables and pubertal timing, meaning that a 

psychosocial variable that is associated with age at menarche in one population may not be 

associated with age at menarche in another group. Overall, there are a few key limitations in 

studies that provide key evidence supporting the psychosocial acceleration hypothesis. Common 

issues oft-recognized by study authors is non-random sampling and small sample sizes, as well 

as other limitations in project design (Sohn, 2017). For example, many studies do not, or cannot, 

include maternal age at menarche. This is important due to the high heritability estimates of 

menarcheal timing (Towne et al., 2005). One study investigating the relationship between 

psychosocial stressors and age at menarche found that controlling for maternal age at menarche 

resulted in a null relationship between psychosocial stressors and age at menarche (Campbell and 

Udry, 1995). Another example of an issue affecting key evidence for the psychosocial 

acceleration hypothesis is the overwhelming focus on father absence in the literature. Such a 

reliance on father absence as a main piece of evidence for the psychosocial acceleration 

hypothesis is insufficient as father absence is often ill-defined and there are inconsistent results 

globally, indicating that father absence is likely a proximate variable for other types of stressors.  

First, father absence is often ill-defined, left undefined, or defined differently from study 

to study (Anderson, 2015). There are many types of father absence and father presence does not 

necessarily indicate a socially supportive environment. There may be many reasons for father 

absence including death, divorce, or migrant work. A recent study concluded that different types 
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of father absence have different relationships with age at menarche; specifically, girls whose 

fathers were absent due to divorce had earlier ages at menarche, while girls whose fathers were 

absent due to death or migrant work had later ages at menarche (Shenk et al., 2013). By not 

defining types of father absence, we may neglect variation in the proximate stressor that father 

absence indicates.  

Second, father absence does not predict age at menarche in developing countries 

including South Africa, Malaysia, and Indonesia (Sheppard et al., 2014; Anderson, 2015; Sohn, 

2017). The majority of studies demonstrating a relationship between father absence and early 

menarche, come from industrialized nations. High-income countries represent a “WEIRD” group 

- Western, educated, industrialized, rich, and democratic; these WEIRD countries are over-

represented in the literature and not necessarily representative of global trends (Henrich et al. 

2010). As an example, no relationship has been found between father absence and reproductive 

traits in Malaysia (Sheppard et al., 2014). Sheppard et al. (2014) suggest that the culturally-

specific role of fathers needs to be taken into account in these types of studies. Further, father 

absence also did not associate with age at menarche in a representative sample of women in 

South Africa (Anderson, 2015), and there was no relationship between age at menarche and 

father absence or mother absence in a large study of 11,138 women in Indonesia (Sohn, 2017).  

Thus, age at menarche may only be responsive to father absence in some social contexts 

in which father absence is actually a proxy for another type of stress. Multiple hypotheses have 

been put forward to test this idea. Specifically, Romans et al. (2003) found a correlation between 

father absence and childhood abuse, and they proposed that this association better explains 

accelerated ages at menarche than paternal absence. Ellis and Garber (2000) found that family 

interpersonal stress and father absence mediated the relationship between maternal mood 
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disorders and earlier ages at menarche, proposing instead that parental psychopathology may be 

driving earlier ages at menarche.  

The first studies describing a relationship between father absence and reproductive traits 

started in the early 1970s (i.e. Jones et al. 1972), coinciding with growing societal concern at the 

time with the effects of divorce and fatherlessness (Lamb, 2000). Contemporary family studies 

research moves beyond categorizing fathers as moral guides, primary breadwinners, and 

masculine role models, and rather recognizes the interactions among the multiple roles a parent 

can play (Lamb, 2000). Additionally, mother absence does not predict earlier ages at menarche 

(Bogaert, 2005; Sheppard et al., 2014), and the childcare and social support provided to single 

fathers differs from the social stigma surrounding single motherhood (Sheppard et al., 2014). The 

interest in father absence in particular may be one example of subjectivity and personal bias 

affecting the research process (subjectivity in science discussed in Finlay and Gough, 2000). 

While some early studies, and now more recent studies (see chapter 2), included positive 

measures of family warmth, happiness, and social support, the main emphasis of this field has 

been on social stressors. I contend that it is time to move beyond a simple father absence model, 

seek what father absence may represent in industrialized societies, and include measures of 

social support in studies evaluating or engaging with the psychosocial acceleration hypothesis.   

Adverse childhood experiences as a measure of psychosocial stress  

A growing body of literature focuses on the association between adverse childhood 

experiences (ACEs) and a variety of outcomes including risk for autoimmune diseases (Dube et 

al., 2009), ischemic heart disease, and multiple types of cancer (Anda et al., 2010). However, the 

application of research of ACEs to studies on fertility has been quite limited. A higher number of 

ACEs indicates a higher psychosocial stress experienced during childhood, and ACEs have been 
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used in multiple different populations. The ACE questionnaire includes a question about one 

type of father absence (divorce), but it also includes additional types of stress a child may 

encounter, making ACEs a more encompassing and standardized questionnaire compared to 

father presence/absence.  

Individual ACEs, specifically sexual and physical abuse, are associated with ages at 

menarche (Romans et al., 2003; Zabin et al., 2005; Wise et al., 2009; Boynton-Jarrett et al., 

2013; Harville and Boynton-Jarrett, 2013) and self-reported infertility (Jacobs et al., 2015). 

Interestingly physical abuse and sexual abuse might not have the same effect on fertility: while 

sexual abuse is associated with earlier ages at menarche, physical abuse is associated with both 

earlier and later ages at menarche (Boynton-Jarrett et al., 2013). This seemingly dichotomous 

results might return to the likely unnecessary divide between the psychosocial acceleration 

hypothesis and the energetics hypothesis. It is unlikely that one would only encounter energetic 

or psychosocial stressors. Indeed, Chisholm et al. (2005) proposed merging the energetics and 

psychosocial stress hypotheses by hypothesizing that age at menarche is first dependent on 

energetics. In the absence of extreme energetic constraint, then psychosocial stress may play a 

larger role (Chisholm et al., 2005). Further research is needed on the relationships between both 

psychosocial and energetic stressors on age at menarche.  

Finally, there is a dearth of research on the physiological mechanisms by which either 

psychosocial or energetic stressors may affect age at menarche and adult reproductive function. 

While reproductive ecology has long examined the adaptive flexibility of women’s reproduction 

in the face of variable environments (Wasser and Barash, 1983; Vitzthum, 2008), we have also 

suffered as a field from not always being able to measure the mechanisms to empirically support 

assertions of developmental effects, “set points,” and other hypothesized links. Epigenetic 
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mechanisms can be responsive to environmental traits and can modify gene expression (Portela 

and Esteller, 2010). I propose that epigenetics, or how the environment can interact with the 

genome to alter gene expression, is poised to explore the mechanism of how life history tradeoffs 

become embodied.  

Epigenetics and life history traits 

Age at menarche is highly heritable, but it is also responsive to the environment (Towne 

et al., 2005). Epigenetics mechanisms change gene function without modifying the nucleotide 

sequence (Russo et al., 1996) and epigenetic mechanisms may provide an additional layer of 

control over pubertal timing (Demetriou et al., 2013; Lomniczi et al., 2013; Almstrup et al., 

2016). Epigenetic traits could also serve as one mechanism by which environmental cues may be 

embodied (Gluckman and Hanson, 2006; Feinberg and Irizarry, 2010). Epigenetic traits include 

histone modification, gene methylation, and non-coding RNAs, and, of these, gene methylation 

is likely the most studied (reviewed by: Portela and Esteller, 2010). Methylation is the addition 

of a methyl group to a cytosine, typically located in a cytosine-guanine dinucleotide (CpG). CpG 

dinucleotides tend to cluster in regions called CpG islands, regions often found in gene 

promoters. Gene methylation is associated with changes in gene transcription, and methylation at 

CpG islands is typically associated with gene silencing.  

Epigenetic modifications may be one mechanism by which both early life energetic and 

psychosocial stressors affect timing of menarche or adult reproductive function. Methylation is 

both heritable and modifiable over the lifespan. For example, Heijmans et al. (2008) found an 

association between prenatal famine exposure and adult DNA methylation of the IGF2 gene. 

Bryan et al. (2013) showed a decrease in methylation across 45 CpG sites after a year-long 

exercise intervention study in women. Mulligan et al. (2012) linked maternal stress to newborn 
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birth weight via methylation changes to the NR3C1 promoter. Epigenetic mechanisms are 

environmentally responsive and have effects on gene expression. Thus, epigenetics may provide 

a link between environmental variables and life history traits.  

However, few studies to date have investigated the relationship between environmental 

variables, gene methylation, and timing of menarche. Women with later ages at menarche had 

higher global DNA methylation as adults in one study assessing methylation of blood leukocytes 

via the [3H]-methyl acceptance assay (Terry et al., 2008), but the opposite relationship was found 

with age at menarche in another study assessing methylation of blood lymphocytes using the 

LUminometric Methylation Assay (Demetriou et al., 2013). In a candidate gene study, a higher 

degree of methylation at a promoter of the gene CYP19A1 was associated with earlier breast 

development in urban American girls who were overweight (Stueve et al. 2014). Another recent 

study identified changes in DNA methylation that coincide with pubertal development (Almstrup 

et al., 2016). Prepubertal children had lower gene methylation in open sea and in CpG island 

shores and selves (Almstrup et al., 2016). The authors found significant overlap in CpG sites 

associated with pubertal timing and hormone concentrations in boys (Almstrup et al., 2016). 

Broadly speaking, these studies provide evidence that gene methylation may affect, or be 

affected by, pubertal timing. They further indicate that there may be interactions between 

variables such as body weight with gene methylation and pubertal timing and indicate that gene 

methylation can be associated with both pubertal timing and hormone concentrations.  

Thesis Overview  

This thesis uses a life history framework to investigate variation in pubertal timing and 

adult reproductive function. As discussed, the energetics and psychosocial acceleration 

hypotheses provide explanations for why age at menarche varies within and between 
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populations. In Chapter 2, I address one limitation of the psychosocial hypothesis: a need to 

include social support variables. In Chapter 3, I test how the energetics and psychosocial 

acceleration hypotheses work together to affect age at menarche and adult reproductive function. 

In Chapter 4, I investigate gene methylation as a potential mechanism connecting childhood 

environments and age at menarche, as well as adult reproductive function.  

In Chapter 2, I investigate if social support is associated with age at menarche. I have 

worked with adolescent girls since 2013 using an integrated research-educational approach that 

aims to increase diversity in the sciences (Clancy and Hunter, 2015). On the educational side of 

this project, Dr. Clancy’s lab leads a social science module in a bioengineering science camp for 

high school girls. We discuss issues related to race and gender, and we challenge the girls to 

critically evaluate their camp projects from a social science lens. Girls are further invited to join 

our research project and learn more about their own bodies. We conduct demography and health 

surveys, multiple psychometric surveys (Barnes and Olson, 1985; Berscheid et al., 1989; 

Radloff, 1991), anthropometric measurements (Antón et al., 2009), and a subset of girls collect 

saliva for one menstrual cycle in order to measure hormonal variation. My research focuses on 

the relationship between parental-adolescent open communication and problem communication, 

kin social networks, and timing of menarche.  

I found that measures of close family relationships, specifically open communication 

with parents, were associated with age at menarche. This research underscores that psychosocial 

support variables, rather than simply psychosocial stress, may be associated with pubertal 

development. I further demonstrated that father-daughter and mother-daughter open 

communication have opposing effect directions, where father-daughter open communication 

delays age at menarche and mother-daughter open communication accelerates age at menarche. 
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Many studies in the U.S. focus on a relationship between father absence and earlier puberty (e.g. 

Ellis and Garber, 2000; Ellis et al., 2011; Webster et al., 2014). My results provide an alternative 

explanation that focuses on mother-daughter bonds accelerating age at menarche, rather that 

father absence alone driving the relationship. These results further add to the growing number of 

studies challenging conventional explanations on why father absence correlates with life history 

traits like age at menarche (e.g. Winking et al., 2011; Sheppard et al., 2014b; Sohn, 2017).  

In Chapter 3, I seek to further understand the connection between childhood exposures 

and reproductive function. I conduct this research in the rural, mountainous Beskid Wyspowy 

region of southern Poland where I found that age at menarche has been decreasing over time 

since the early 1900’s. This transitioning region of Poland, transitioning from an agricultural to 

market economy, makes it an especially interesting area to research variables affecting age at 

menarche and further investigate if age at menarche associates with adult reproductive function. 

Katharine Lee and I recruited women to participate in our research project during the 2014, 

2015, and 2017 Mogielica Human Ecology Study Site field seasons. Few studies in reproductive 

ecology include measures of psychosocial stress and rather focus on immunological and 

energetic stressors. Women in our study completed the Adverse Childhood Experiences (ACE) 

questionnaire (Felitti et al., 1998) as a measure of psychosocial stress. I found that ACEs and 

helping on a farm as a child best predicted age at menarche. Higher ACE correlated with earlier 

ages at menarche, and farming experiences correlated with later ages at menarche. This finding 

provides support for the hypothesis that energetic stress delays timing of puberty and 

psychosocial stress accelerates timing of puberty (reviewed in Chisholm et al., 2005). I further 

found that farming experiences and ACEs were more predictive than simply age at menarche of 

differences in average adult urinary estradiol metabolite estrone-3-glucuronide (E1G) during the 
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follicular, periovulatory, and luteal menstrual cycle phases. These results provide empirical 

evidence supporting a model by which exposures during childhood affect adult reproductive 

function (Ellison, 1990; Núñez-de la Mora et al., 2007). This research demonstrates the 

importance of psychosocial stress on both age at menarche and adult reproductive function.  

In Chapter 4, I test an epigenetic mechanism, gene methylation, as a mechanistic link 

between childhood stress and timing of puberty. Current anthropological models relating 

childhood environment to adult reproductive traits still lack physiological mechanisms by which 

to test hypotheses of developmental effects. Gene methylation, one epigenetic process, changes 

in response to early life experiences, including physical activity (Rönn et al., 2013; White et al., 

2013), social stress and support (Weaver, 2011; Gudsnuk and Champagne, 2012; Essex et al., 

2013), and nutrition (Delage and Dashwood, 2008; Zhang et al., 2011). These experiences are 

also implicated as modifiers of menarcheal age (e.g. Ellison, 2003; Anderson and Must, 2005; 

Boynton-Jarrett and Harville, 2012). Thus, I hypothesized that epigenetic factors both play a role 

in reproductive ecology and also provide a piece of the lacking intermediate structure between 

early environmental experiences and reproductive trait timing.  

I conducted this research in the same Polish population. I investigated the relationship 

between childhood farming experiences, promoter methylation of a candidate gene CYP19A1 

(aromatase), and age at menarche. CYP19A1 was chosen as a candidate gene because promoter 

methylation of CYP19A1 is responsive to energetics (Stueve et al., 2014) and could affect 

estrogen production (Hosseini et al., 2016). I found an interactive relationship between farm 

work during childhood and CYP19A1 promoter methylation on timing of menarche where 

CYP19A1 promoter methylation was negatively correlated with age at menarche. In other words, 

women who farmed children and had lower promoter methylation had the highest ages at 
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menarche. We further investigate the relationship between life history traits, gene methylation, 

and adult reproductive hormone variation. I identified a potential pathway by which increased 

cortisol concentrations increases CYP19A1 promoter I.4 methylation, which likely decreases 

aromatase activity and downstream estrogen and estrone concentrations. This pathway may help 

explain differences in estrogen concentrations between individuals. Overall, the results of this 

research underscore that epigenetic factors like gene methylation play a role in reproductive 

ecology and may provide a piece of the lacking intermediate structure between early 

environmental experiences and reproductive traits.  
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Chapter 2 

Relationship between parent-adolescent open communication  
and age at menarche in the United States 

 
Abstract 
 

The timing of a woman’s first menses, or age at menarche, is one visible, memorable 

marker of the transition from somatic investment in growth to reproduction. Age at menarche is 

responsive to childhood environments. Most studies to date focus on the relationship between 

different types of stress and variation in age at menarche. However, our understanding of the 

variation in pubertal timing would benefit from a greater understanding of how social support 

from family and friends may affect age at menarche by either buffering psychosocial or energetic 

stressors or directly affecting age at menarche. This study investigates relationships between 

parent-adolescent communication and age at menarche in a diverse sample of 128 post-

menarcheal, American girls aged 12-17. We found that measures of close family relationships, 

specifically open communication with parents, were the strongest predictors of menarcheal 

timing in this sample. We further found that mother-adolescent and father-adolescent open 

communication scores had opposing directional effects on menarcheal timing. These findings 

suggest that maternal and paternal communication signal different things about developmental 

and reproductive environment. This research underscores the importance of including measures 

of family support in future studies of adolescent reproductive trait timing, as well as the 

consideration that positive psychosocial factors, rather than only negative psychosocial factors, 

may be associated with accelerated menarcheal development. 

Introduction  

A younger age at first menses, or menarche, is associated with an increased risk for breast 

cancer, endometriosis, and depression (Valaoras et al., 1969; Helmrich et al., 1983; Nnoaham et 
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al., 2012; Allison and Hyde, 2013). An older age at menarche is associated with a longer period 

of adolescent subfecundity and an increased risk for osteoporosis (Apter and Vihko, 1983; 

Chevalley et al., 2008). Both earlier and later than average ages at first menses are associated 

with adverse health outcomes, which leads to an understandable medicalizing of the timing of 

menarche where earlier or later than average ages at menarche are often deemed pathological.  

A life history framework offers instead that both earlier and later maturation can be 

adaptive in different contexts. A life history framework makes it possible to understand how 

evolutionary forces have shaped organisms to use limited resources to optimize survival and 

reproductive success (Stearns, 1989; Charnov, 1993; Roff and Fairbairn, 2007). Life history 

theory posits that there are trade-offs between somatic investments in growth, reproduction, and 

survival (Stearns, 1989). Menarche is one visible, memorable marker of the transition from 

somatic investment in growth to reproduction and as such is a highly studied life history trait 

(Ellis, 2004; Ellison et al., 2012) Within this framework, normal variation in age at menarche can 

be viewed as an adaptive response to varying developmental environments. Two commonly 

studied sources of this variation include energetic and psychosocial stressors, which tend to 

respectively delay and accelerate age at menarche (Ellison, 2001; Ellis, 2004).  

However, our understanding of the variation in pubertal timing would benefit from a 

greater understanding of how and whether social support from family and friends affects age at 

menarche. Research addressing the relationship between social support and age at menarche is 

currently quite limited. One study demonstrated a relationship between familial approval and 

warmth and pubertal timing (Graber et al., 1995), while another found that women who reported 

experiencing a happy childhood tended to have earlier ages at menarche, though this result was 

not significant (Jorm et al., 2004). In a third longitudinal study, timing of menarche was 
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associated with paternal support rather than measures of family conflict (Ellis et al., 1999). 

Research indicates that many women’s health topics tend to focus on negative aspects rather than 

positive experiences, although there is a growing call to assess the effect of positive experiences 

and outlook on health outcomes (Seligman, 2008). These examples highlight a need to include 

measures of social support in overarching hypotheses for variation in age at menarche. Measures 

of familial social support are one such important area of investigation.  

Social support affects many physiological responses in endocrine, cardiovascular, and 

immune systems, and may serve as a buffer between stress and downstream responses (Uchino et 

al., 1996; Gunnar, 2017). For example, parental social support decreases stress reactivity for 

children (Hostinar et al., 2015), and social support buffers the relationship between stress and 

risk for preterm birth (McDonald et al., 2014). Here we focus on social support specifically 

within the family unit as recent work indicates that effects of stress on reproductive traits can be 

buffered by parental-child relationships (Sung et al., 2016).  

We focus on kin social networks and parental communication in order to gain insight into 

the extent to which psychosocial support factors into an adolescent’s reproductive life history. In 

our sample, kin closeness and parent-adolescent communication reflect familial social support. 

We hypothesize that 1) greater familial social support corresponds to a later age at menarche, and 

2) greater social support corresponds to a later age at menarche.  

Methods  

Participants and Survey Measurements:  

Participants included 128 adolescent girls between the ages of 12 and 17 recruited at 

summer science camps in Champaign County, IL between 2013 and 2017. Recruitment practices 

are on-going in this integrated research and education project (Clancy and Hunter, 2015b). 
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Almost all participants who reported family income were at or above the United States median 

household 2013 income of $51,759, where 73 out of 83 respondents reported family income 

range of $50,000-$59,000 or more. The educational success of the girls was exceptionally high, 

with all reported grade point averages being above a 3.0 on a 4.0 scale.  

All participants completed a demographic and health survey that included questions 

about reproductive trait timing. Participants reported both age as well as month and year of 

menarche. Recall of age at menarche is quite good for adolescent girls (Koprowski et al., 2001). 

Most girls (n=120/128) reported reaching menarche by the time of the camp, and no girls 

reported ever being pregnant. Girls who did not report reaching menarche at the time of the camp 

(n=8) were excluded. Some participants (n=36/120) only reported age and not month at 

menarche.  

Participants reported racial and ethnic backgrounds by selecting one or more from the 

following categories: Asian, Black, White, or Other and selecting: Hispanic or non-Hispanic. 

Participants were Asian non-Hispanic (n=28), Asian and White non-Hispanic (n=5), Black non-

Hispanic (n=6), White Hispanic (n=5), White non-Hispanic (n=70), other Hispanic (n=5), and 

other Non-Hispanic (n=1, excluded for low sample size). Some participants (n=7) chose not to 

report race and/or ethnicity. Participants also reported birth country. Ten participants were born 

outside of the United States but migrated to the United States at or before the age of 9 years 

(mean 3.84, SD 3.24, range 6 months – 9 years). Participants born outside of the United States 

were included as there was not a significant difference in mean ages at menarche for participants 

born within and outside of the United States.  

Participants (n=114/128) completed the Parent-Adolescent Communication survey, 

which measures openness and problems in communication between adolescents and their parents 
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via a 20-item, 4-point Likert scale (Barnes and Olson, 1985). Both openness and problems in 

communication contain 10 questions. Communication problem questions are reverse scored so 

that a higher score indicates a lack of communication problems. Scores range from 10 (low open 

communication or problems communicating with caregiver) to 40 (high open communication or 

lack of problems in communication). Examples of open communication questions include: “I can 

discuss my beliefs with my caregiver without feeling restrained or embarrassed,” and “My 

caregiver tries to understand my point of view.” Examples of communication problem questions 

include: “I don’t think I can tell my caregiver how I really feel about some things,” and 

“Sometimes I have trouble believing everything my caregiver tells me.” High scores indicate 

more open communication or a lack of perceived communication problems.  

Participants completed Parent-Adolescent Communication surveys for their two primary 

caregivers and reported the caregiver relationship (e.g., mother, father, step-parent, grandparent). 

Based on their responses, we scored mother-adolescent “open” and “lack of problem” 

communication and father-adolescent “open” and “lack of problem” communication. Responses 

were excluded if participants reported two same-sex parents (n=1), participants did not report 

caregiver title or reported a caregiver title other than “Mother” or “Father”, or caregivers were 

not reported as married and cohabitating (divorced: n=5, separated: n=2, other: n=3, not 

reported: n=4).   

Finally, participants (n=108/128) recorded their personal kin and friend social networks 

on a survey based on the Relationship Closeness Inventory (Berscheid et al., 1989b). Participants 

first recorded everyone in their social network on worksheets. Space was provided for twenty 

responses, and girls were told they could write additional names if desired. Participants then 

recorded their relationship to that person, which we coded as kin, friend, or mentor. Seventeen 
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participants also chose to list pets. Participants recorded how close they felt to that individual on 

a 3-point scale from (1) not close, (2) close, and (3) very close. Participants also recorded their 

frequency of communication with that person or pet on a 3-point scale from (1) not often, (2) 

often, and (3) all the time. Average kin closeness scores and average overall social network 

closeness scores were used in this analysis.  

Statistics  

Parent-adolescent communication scales are stable over adolescence (Lerner and 

Steinberg, 2009). However, the perception of these communication measures may change over 

time (Steinberg, 1988). Therefore, we first analyzed the relationship between age and parent-

adolescent communication scales and kin social network variables each independently using 

bivariate linear regression.  

In the United States, there are often differences in average ages at menarche for girls of 

different racial and ethnic backgrounds (Posner, 2006; Braithwaite et al., 2009). We thus also 

investigated if there were differences in mean ages at menarche for girls of different racial and 

ethnic backgrounds using one-way analysis of variance (ANOVA). Some groups has small 

sample sizes, so we thus also compared average ages at menarche between the two largest groups 

(White non-Hispanic and Asian non-Hispanic girls) using a t-test.  

We investigated potential predictors of age at menarche in this sample using the all 

possible subsets regression procedure. The all possible subsets regression procedure compares 

linear and multiple regression models that use each predictor term and combination of predictor 

terms in order to select the best model for a given dataset and selection criteria (Draper and 

Smith, 1998). This type of model selection is appropriate given the number of included 

predictors. The following variables were included as original predictors in the model: mother-
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adolescent open communication, mother-adolescent lack of problems in communication, father-

adolescent open communication, mother-adolescent lack of problems in communication, kin 

social network average closeness score, and overall social network average closeness scores. The 

final model was selected using Mallow’s Cp Criterion, when Cp was close to the number of 

included parameters (Mallows, 1973; Draper and Smith, 1998). We controlled for race and 

ethnicity in the final model. We additionally ran post-hoc power analyses on the variables 

included in the final models. Statistical analyses were conducted using the R package leaps and 

JMP Pro 12.0 (SAS Corporation, Cary, NC). A p-value of £0.05 was considered statistically 

significant in all analyses. 

Results  

All girls reported normal ages at menarche (range 9 – 15.67 years), and the average age at 

menarche was 12.65 (SD 1.25) years. Girls were within seven years of menarche (mean 2.79, SD 

1.42, range 0.08-6.45 years). Table 2.1 displays additional descriptive statistics. 

 

Measure Mean (SD) n 
Age at Menarche (years) 12.65 (1.25) 120 

Age of adolescent at camp (years) 15.39 (0.98) 122 
Gynecological Age (years) 2.79 (1.42) 120 

BMI 21.61 (3.22) 114 
Parent-Adolescent Communication Scores: 

  

Mother-adolescent open communication 31.93 (6.14) 114 
Mother-adolescent lack of problem communication 27.21 (6.64) 114 

Father-adolescent open communication 30.02 (7.23) 110 
Father-adolescent lack of problem communication 27.30 (6.77) 110 

Social Networks: 
  

Average of overall social network closeness scores 2.29 (0.34) 108 
Average of kin closeness scores 2.47 (0.42) 107 

 
Table 2.1: Descriptive statistics of mean and standard deviation for select variables in the whole 
sample. 
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Age at menarche varies for girls of different race and ethnic backgrounds:  

In this sample, girls with different race and ethnic backgrounds had significantly different 

average ages at menarche (one-way ANOVA, p=0.0175). We also found significant differences 

in average ages at menarche between Asian and White girls, the two categories with the highest 

sample sizes (p=0.0359). The distribution of ages at menarche for each race and ethnic 

background is displayed in Figure 2.1, and the averages and sample sizes for each group are 

displayed in Table 2.2.  

 

 
 

Figure 2.1: Boxplots representing the distribution of ages at menarche for each reported race and 
ethnicity. Each light grey data point represents an individual. 
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Group n Mean Std Dev 
White, non-Hispanic 67 12.86 1.05 
Asian, non-Hispanic 28 12.28 1.28 
Black, non-Hispanic 6 12.54 1.33 
White, Hispanic 5 11.57 1.00 
Asian & White, non-Hispanic 5 13.63 1.63 
Other, Hispanic 4 11.69 2.56 

 

Table 2.2: Means and standard deviation of ages at menarche for girls of different race and 
ethnic backgrounds. 
 
 
 

Current age does not predict measures of social support:  

We analyzed the relationships between current age and parent-adolescent communication 

scores and kin social network measures in order to determine if any measure of social support 

varied by participant age. Age did not significantly predict any measure of kin social support and 

age within this sample (all p>0.05). For example, age did not significantly predict mother-

adolescent open communication (β = 0.32, SE = 0.63, p=0.6172), nor did age significantly 

predict father-adolescent lack of problem communication (β = -0.26, SE = 0.69, p=0.7054). Age 

also did not significantly predict average kin closeness score (β = 0.01, SE = 0.05, p=0.8993).  

Parent-adolescent open communication predicts age at menarche:  

All caregiver-adolescent communication scores (mother-adolescent open communication, 

mother-adolescent lack of problem communication, father-adolescent open communication, and 

father-adolescent lack of problem communication) and social network closeness scores (average 

of social network closeness scores and average of kin closeness scores) were included in an all 

possible subsets regression model in order to select variables that best predicted age at menarche. 

In this sample, mother-adolescent open communication and father-adolescent open 
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communication were selected, where mother-adolescent open communication and father-

adolescent open communication significantly predicted age at menarche (Table 2.3, regression 

model p=0.0023, R2=0.22, adjusted R2=0.15). Father-adolescent and mother-adolescent open 

communication had opposing effects on age at menarche in the final linear model (Fig. 2.2). 

Higher father-adolescent open communication scores predicted a later age at menarche (β = 

0.0517, SE = 0.02, p = 0.0333, power = 0.57) and higher mother-adolescent open communication 

scores predicted an earlier age at menarche (β = -0.0766, SE = 0.03, p = 0.0077, power = 0.77). 

Figure 2.2 shows leverage plots displaying the different effects that father and mother – 

adolescent open communication have on age at menarche.  

 

Dependent Variable:  Age at menarche   
Term Estimate Std Error t Ratio Prob>|t|  
Intercept 13.3742 0.6382 20.96 <0.0001 *** 

Mother-Adolescent Open Communication -0.0766 0.0281 -2.73 0.0077 ** 

Father-Adolescent Open Communication 0.0517 0.0239 2.16 0.0333 * 

Asian & White, non-Hispanic 1.2730 0.4681 2.72 0.0079 ** 

Asian, non-Hispanic -0.2122 0.2694 -0.79 0.4330  

Black, non-Hispanic 0.4675 0.5630 0.83 0.4086  

Other, Hispanic -1.0075 0.6057 -1.66 0.0998  

White, Hispanic -1.0038 0.5137 -1.95 0.0538  

 

Table 2.3: The parameter estimates describing the relationship between parent-adolescent 
communication, race/ethnic background, and age at menarche. (***) indicates a significance 
level of <0.001, (**) indicates a significance level of <0.01 and (*) indicates significance level of 
<0.05.  
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Figure 2.2: Leverage plots displaying the opposite effect directions of parental-adolescent open 
communication on age at menarche. Mother-adolescent open communication (β = -0.0766, SE = 
0.03, p = 0.0077, power = 0.77) and father-adolescent open communication (β = 0.0517, SE = 
0.02, p = 0.0333, power = 0.57) were both included as significant predictors of age at menarche 
in the final regression model (p=0.0023, R2=0.22, adjusted R2=0.15).  
 

Discussion  

We hypothesized that 1) greater familial social support corresponds with a later age at 

menarche, and 2) measures of social support correspond to a later age at menarche. Both 

hypotheses receive partial support. In this sample we found that mother-adolescent open 

communication and father-adolescent open communication significantly predicted age at 

menarche. The direction of the effects in the linear model were opposed, where higher mother-

adolescent open communication corresponded to an earlier age at menarche, and higher father-

adolescent open communication corresponded to a later age at menarche.  

We focused on social support specifically within the family unit as recent work indicates 

that effects of stress on reproductive traits can be buffered by kin social support (Sung et al., 

2016). While many studies focus on the relationship between different types of stress and age at 

menarche, few studies to date have incorporated measures of familial support when investigating 

the relationship between childhood exposures and age at menarche. Even fewer studies separate 
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maternal and paternal relationships, except in studies where father absence is used as a proximate 

measure of childhood psychosocial stress.  

Some previous studies also found that social support affects age at menarche. For 

example, in a sample of mostly white middle- to upper-middle-class adolescent girls, a greater 

sense of parental approval and less conflict in the home predicted later ages at menarche (Graber 

et al., 1995). Contrary to these findings, in a sample of white adult Australian women, women 

who reported having a happy childhood had slightly earlier ages at menarche, but this effect was 

not significant (Jorm et al., 2004). These studies demonstrate that familial support may affect age 

at menarche, but the directionality of this relationship may be context-dependent.  

While one measure of kin social support, parent-adolescent open communication, 

predicted age at menarche in this sample, the ages at menarche of participants were still well 

within the normal range of ages at menarche. There are social and biological consequences for 

earlier and later ages at menarche (Arim et al., 2011; Allison and Hyde, 2013). For example, in 

the United States, girls who mature both earlier and later than their peers are at greater risk for 

bullying from peers and depression (Stice et al., 2001; Herva et al., 2004; Swift, 2017). Further, 

girls with earlier ages at menarche tend to achieve regular ovulatory cycles far earlier than those 

with later ages at menarche (Apter and Vihko, 1983).  

Life history theory and age at menarche: 

A life history perspective recognizes the social and biological consequences of 

menarcheal timing, but also argues that both earlier and later maturation can be adaptive in 

different contexts. Menarche is one visible, memorable marker of the transition from somatic 

investment in growth to reproduction and as such is a highly studied life history trait (Ellis, 2004; 

Ellison et al., 2012) Within this framework, normal variation in age at menarche can be viewed 
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as an adaptive response to varying developmental environments. Two commonly studied sources 

of this variation include energetic and psychosocial stressors, which tend to respectively delay 

and accelerate age at menarche (Ellison, 2001; Ellis, 2004). Chisholm (1993, 2005) framed the 

relationship between psychosocial stress and menarcheal age through the lens of life history 

theory by arguing that measures of family conflict provide a signal of a risky environment. 

Indicators of risky environments lead to pubertal acceleration in order to maximize reproductive 

potential when life expectancy is decreased (Chisholm et al., 1993). In this framework, early 

pubertal timing may be an adaptive response to psychosocially stressful environments. 

Much of the work on variables affecting pubertal timing focuses on psychosocial 

stressors rather than measures of close parent-adolescent relationships. Belsky, Steinberg and 

Draper (1991) were among the first to propose that psychosocial stress during childhood affects 

pubertal timing. This idea became known as the psychosocial acceleration hypothesis and is 

supported mainly in Western, educated, industrialized, rich and democratic (WEIRD) societies, 

where stressors such as father absence, family conflict, and adverse childhood experiences tend 

to accelerate age at menarche (e.g. Ellis and Essex, 2007; Pesonen et al., 2008; Wise et al., 2009; 

Boynton-Jarrett et al., 2013). The absence of a father figure is especially well studied (for a 

review see Webster et al., 2014). For example, in a sample of Canadian girls, Surbey (1990) 

demonstrated that not only is early menarche associated with father absence, but also with the 

number of years of father absence.  

Contrary to these findings, father absence does not predict earlier ages at menarche in 

lower income nations (Sheppard et al., 2014b; Anderson, 2015) and type of father absence (e.g. 

death, divorce, or migrant work) changes the direction of the association between father absence 

and age at menarche (Shenk et al., 2013). Moreover, there are alternative explanations for why 
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father absence may affect age at menarche in some higher income nations or contexts. 

Specifically, Romans et al. (2003) found a correlation between father absence and childhood 

abuse, and they proposed that this association better explains accelerated ages at menarche than 

paternal absence. Alternatively, Ellis and Garber (2000) found that family interpersonal stress 

and father absence mediated the relationship between maternal mood disorders and earlier ages 

at menarche, proposing instead that parental psychopathology may be driving earlier ages at 

menarche. Finally, mother absence does not predict earlier ages at menarche (Bogaert, 2005; 

Sheppard et al., 2014). The childcare and social support provided to single fathers potentially 

differs drastically from the social stigma surrounding single motherhood (Sheppard et al., 2014).  

These examples and alternative explanations highlight why the social, economic, and 

cultural context matters for whether and when psychosocial variables affect age at menarche, and 

more specifically highlight the need to contextualize father absence models. Indeed, Ellis et al. 

(2011) argued that both stressful and supportive family environments can affect age at menarche 

and proposed a model of biological sensitivity to context. In Ellis et al’s (2011) model, girls take 

in cues about both the stressful and supportive variables in their environment and respond to both 

according to their particular context. For example, in a majority white American sample, higher 

maternal support correlated with later ages at menarche, and socioeconomic status (SES) further 

separated participants in that girls with higher SES and higher increased maternal support had the 

latest ages at menarche (Ellis and Essex, 2007). Our study supports such a model by indicating 

that girls respond to cues of social support variables, although we were limited by a lack of 

information on social stressors.  

Opposing effects of mother-adolescent and father-adolescent open communication on age at 

menarche:  
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Our study further indicates that in this sample, different caregivers have opposing effects 

on adolescent maturational timing where mother-adolescent open communication accelerated 

age at menarche and father-adolescent open communication delayed age at menarche.  

Mother-adolescent open communication predicted earlier ages at menarche in our final 

regression model, indicating that better mother-daughter relationships corresponded to an earlier 

age at menarche. From a life history perspective, greater maternal emotional support might 

indicate future reproductive support. Thus, an earlier transition to reproduction among 

maternally-supported girls might correspond to greater grandmaternal support, as earlier ages at 

menarche correlate with earlier ages at first birth in many natural fertility populations (Kramer, 

2008). In this sample, open maternal communication may decrease age at menarche by 

indicating a supportive environment in which to accelerate age at first birth.    

In contrast, father-adolescent open communication predicted later ages at menarche in 

our final regression model. The direction of the relationship we found between father-adolescent 

open communication and age at menarche is in accordance with the literature on psychosocial 

stressors. Father absence may accelerate pubertal timing by signaling risky or uncertain 

environments (Chisholm et al., 2005). In line with this argument, perhaps father-adolescent open 

communication indicates a safe environment in which to delay pubertal timing and leave time for 

additional growth.  

To our knowledge, only one other study to date has investigated independent maternal 

and paternal contributions to pubertal timing. In contrast to our study, they found that adolescent 

reports of lower mother-daughter cohesion, fewer calm discussions with mothers, and more 

intense conflicts with mothers all accelerated pubertal timing (Steinberg, 1988). They found no 

relationship between adolescent reports of father-child cohesion or communication on pubertal 



 
 

40 

timing (Steinberg, 1988). Like our study, this was a sample of American adolescents, but 

Steinberg (1988) had greater economic diversity and less racial diversity than our sample. 

Further, pubertal timing was assessed by a home visitor rating facial characteristics, body 

proportion and shape, and coordination (Steinberg, 1988), rather than self-reported age at 

menarche. The differences in the study composition or methodology may have contributed to a 

different result. 

The context of variation in age at menarche in this sample  

In the context of our study, approximately 42% of participants identified as racial or 

ethnic U.S. minorities. In our sample race/ethnicity had a significant effect on age at menarche. 

While our sample was diverse, there were multiple race categories with few participants. In 

studies that include substantially larger number of participants of different racial identities, 

socioeconomic statuses, and home environments, race often pulls out as a significant variable 

(Anderson et al., 2003; Anderson and Must, 2005; Braithwaite et al., 2009). Body fat and body 

mass index has been hypothesized as one reason age at menarche varies between girls of 

different backgrounds, but in a large dataset, Anderson and Must (2005) did not find an 

interactive effect between race/ethnicity and BMI on age at menarche. In our sample, there was 

large homogeneity in household income (>87% of participants were at or above a median income 

of $50,000) and caregiver status (all included participants’ parents were heterosexual and 

cohabiting).  

In our sample, the two groups with the largest sample sizes were Asian non-Hispanic 

girls (n=28/128) and white non-Hispanic girls (n=70/128). Asian non-Hispanic girls had earlier 

ages at menarche compared to white girls, where the average age at menarche for Asian girls was 

12.28 years, and the average age at menarche for white girls was 12.86 years. These differences 
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are quite similar to some former studies. For example, Koprowski et al (1999) reported a median 

age at menarche of 12.2 years for Asian and Pacific Island girls and 12.8 years for non-Hispanic 

white girls. Wu et al. (1999) also reported an average age at menarche of 12.2 years for Asian 

American women born in the U.S. This average age was a little more than one year earlier 

compared to matched samples born in Asia (Wu et al. 1999). In contrast to these studies, Adair 

and Gordon-Larsen (2001) found that Asian girls were 1.65 times more likely to have a later age 

at menarche after controlling for maternal education, family income, age, and residence, while 

Black and Hispanic girls were 1.55 and 1.76 times more likely to have an earlier age at menarche 

compared to white girls. Similarly, Nomura et al. (1984) found that Japanese women living in 

Hawaii had slightly later ages at menarche compared to white women living in Hawaii, although 

this study did not control for birthplace.  

While many studies have investigated differences in average ages at menarche for girls of 

different race and ethnic backgrounds, few contemporary studies have reported on age at 

menarche for Asian American girls. In a study that grouped other Hispanics, Asians, Native 

Americans, Native Hawaiians, and Pacific Islanders together, this group had the largest decline 

in average ages at menarche from 1988-1994 to 1999-2002 (Anderson and Must, 2005). 

However, this type of aggregation used in this current study and in many other studies may 

actually mask variation between Asian American subgroups (Holland and Palaniappan, 2012). 

Future studies are needed to investigate the secular trend of age at menarche for Asian American 

girls and general variation between ages at menarche for girls of different race and ethnic 

backgrounds. 
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Limitations:  

This study is a post-menarcheal sample, and thus it is conceivable that our measures of 

kin social networks or parent-adolescent communication may change with participant’s age. 

However in our sample, age did not significantly associate with any measure of kin social 

networks or parent-adolescent communication. Further, parent-adolescent communication tends 

to be continuous across adolescence, although the content and perceived meaning of these 

communications may change over time (Lerner and Steinberg, 2009). This evidence suggests 

that it is appropriate to investigate the parental-adolescent communication scores in relationship 

to age at menarche in this sample.  

A limitation of our study is that we confined our analyses to participants reporting two-

parent heterosexual households given the small number of two parent same-sex or one-parent 

households in the sample, and thus parent absence and other types of childhood stressors were 

not investigated here. We do not have data to discern maternal age at menarche, nor other 

childhood energetic and psychosocial measures, which might offer additional explanations and 

sources of variation. This study is also not a longitudinal study, so we cannot indicate causality. 

Future work on this sample will include if age at menarche is associated with health or 

reproductive outcomes.  

Conclusion  

We found that measures of close family relationships, specifically open communication 

with parents, were the strongest predictors of menarcheal timing in this diverse sample of 

adolescents from two-parent households largely at or above the 2013 median U.S. income. We 

further found that mother-adolescent and father-adolescent open communication scores had 

opposing directional effects on menarcheal timing. These findings suggest that maternal and 
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paternal communication signal different messages about developmental and reproductive 

environment. This research underscores the importance of including measures of family support 

in future studies of adolescent reproductive trait timing, as well as the consideration that positive 

psychosocial factors, rather than only negative psychosocial factors, may be associated with 

accelerated menarcheal development.  
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Chapter 3 

Childhood stress affects age at menarche and adult  

reproductive function in a rural Polish sample 

Abstract  

Age at first menses, or menarche, is used as a proxy of childhood stressors and is also 

correlated with adolescent and adult reproductive function. Many studies have investigated either 

the effects of childhood variables on age at menarche, or the effects of age at menarche on 

reproductive function. However, few studies have investigated the combined effects of childhood 

environment and age at menarche on adult reproductive function, particularly in transitioning 

environments like rural Poland where one might expect to see a secular trend in age at menarche 

alongside changes in economic growth (Colleran 2014).  

Here we investigate if menarcheal age is declining in the rural Polish Beskid Wyspowy 

region. We investigate relationships between menarcheal age and proximate measures of 

energetic and immune stressors (childhood farming and animal exposures) and psychosocial 

stressors (adverse childhood experiences, or ACE). We further examine whether childhood 

stressors are correlated with adult reproductive function (urinary estrone-3-glucuronide (E1G) 

concentrations). 

We find that age at menarche has declined over time in rural Poland. Helping on farms 

and with farm animals as a child were associated with later ages at menarche. Women with a 

higher number of adverse childhood experiences tended to have earlier age at menarche, 

although this difference was not statistically significant. Despite different effects on age at 

menarche, all types of childhood stressors were associated with lower adult E1G concentrations.  

The results of this study support a model under which developmental conditions affect adult 
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reproductive function, but challenge the use of age at menarche alone as a proxy for childhood 

stressors.  

Introduction 

The timing of a woman’s first menses, or menarche, has declined globally in both rural 

and urban regions and lower and higher income countries (Tanner, 1981b; Wyshak and Frisch, 

1982; Anderson and Must, 2005). This decline in age at menarche, a marker of sexual 

maturation, has partly been attributed to increases in nutritional and healthcare access and 

decreases in energetic and immune challenges. Timing of menarche is important as this age is 

associated with adult health and reproductive outcomes, including breast cancer risk (Helmrich 

et al., 1983; Kotsopoulos et al., 2005) and reproductive hormone concentrations (Windham et al., 

2002; Núñez-de la Mora et al., 2007; Emaus et al., 2008; Clancy et al., 2013). Many studies have 

investigated either the effects of childhood variables on age at menarche (Graber et al., 1995; 

Khan et al., 1996; Ellis and Essex, 2007) or the effects of age at menarche on reproductive 

function (Apter and Vihko, 1983; Ellison, 1996; Posner, 2006; Reiches et al., 2013). However, 

few studies have investigated the combined effects of childhood environment and age at 

menarche on adult reproductive function, particularly in subsistence environments transitioning 

towards an increasing market economy.  

The timing of menarche is understood within the context of life history theory, which 

posits that there are trade-offs in the events related to survival and reproduction over the life 

cycle (Stearns, 1992; Hawkes and Paine, 2006). Energy used for one purpose cannot be used for 

another; for example, energy invested in current reproduction cannot be invested in future 

survival and reproduction (Hill, 1993). Life history theory predicts a trade-off between growth 
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and reproduction, which is mediated by survival; the more time and energy invested into growth, 

the greater the risk of not surviving until reproduction (Stearns, 1989).  

Several non-exclusive, life-history based hypotheses help explain the ways energetic, 

immunological, and psychosocial stressors across childhood affect age at menarche (Ellis, 2004). 

The energetics hypothesis posits that menarcheal age should be delayed in environments with 

low energy status, negative energy balance, or high energy flux, extending the period of growth 

in an energetically constrained situation (Ellison, 2001; Reiches et al., 2013). This hypothesis has 

been widely supported in many contexts. For example, girls who experienced food deprivation 

during childhood in France and girls who experienced food insecurity during adolescence in 

Ethiopia had later ages at menarche (Belachew et al., 2011; Dossus et al., 2012). Physical 

activity, and specifically activities like intensive sports that result in negative energy balance, is 

also associated with later ages at menarche (Georgopoulos et al., 2010). Immune stress during 

childhood may similarly delay age at menarche. For example, Tsimane children in Bolivia with 

higher C-reactive protein, an indication of immune stress, had smaller gains in height over a 

three-month study period (McDade 2008). Thus energetic and immune constraints have a clear 

effect on reproductive traits by pulling energy away from reproductive effort and towards 

maintenance and survival.  

However, psychosocial stressors may also pull resources away from reproduction. 

According to the psychosocial acceleration hypothesis, age at menarche should be accelerated in 

risky or uncertain psychological, social, or physical environments where a long lifespan is not 

assured (Belsky et al., 1991; Ellis, 2004). Psychosocial variables associated with earlier ages at 

menarche include physical and sexual abuse (Wise et al., 2009; Boynton-Jarrett and Harville, 

2012), conflict in the home (Jorm et al., 2004), and father absence (Ellis and Garber, 2000; 
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Boothroyd et al., 2013; Webster et al., 2014). The majority of studies demonstrating support for 

the psychosocial acceleration hypothesis, and specifically for a relationship between father 

absence and early menarche, come from industrialized nations and this relationship is often not 

found in lower-income countries including Malaysia (Sheppard et al., 2014b), South Africa 

(Anderson, 2015), and Indonesia (Sohn, 2017). Thus, Chisholm et al. (2005) proposed merging 

the energetics and psychosocial stress hypotheses by hypothesizing that age at menarche is first 

dependent on energetics. In the absence of energetic constraint, then psychosocial stress may 

play a larger role (Chisholm et al., 2005). This merged hypothesis has not yet been tested in 

transitioning environments where energetic constraints have previously been associated with 

reproductive traits, but economic and social changes have resulted in lower dependency on and 

participation in physically demanding subsistence farming practices. In this paper, we test the 

Chisholm et al. (2005) hypothesis in a transitioning region of rural Poland where 68.3% of 

women in our sample helped with farm work as a child, while only 25.2% of our sample 

currently work on a farm. 

Age at menarche has declined in Poland, and between 1966 and 2012 ages at menarche 

varied alongside political and socioeconomic changes in the country (Łaska-Mierzejewska and 

Olszewska, 2007; Gomula and Koziel, 2017). An acceleration in declining ages at menarche was 

seen after the fall of communism in 1989 and after Poland joined the European Union in 2004 

(Gomula and Koziel, 2017). In the rural, mountainous Beskid Wyspowy region of southern 

Poland, women have later ages at menarche than in the United States (Clancy et al., 2009). 

Women in the region tend to grow up living and/or working on family farms, and they continue 

to work on farms and large vegetable gardens into adulthood. Besides farming and gardening, 

women walk to the village centers, tend animals, and complete substantial domestic work over 
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the course of their day. Indeed, women in this region take more than twice as many steps per day 

than the average rural American woman (Lee et al., 2015). Previous work in the region 

demonstrated that reproductive variables are responsive to energetic constraint, specifically the 

moderate energetic constraint coinciding with harvest seasons (Jasienska & Ellison, 1998; 

Jasienska & Ellison, 2004). While much of the previous work in the Beskid Wyspowy region has 

focused on energetic stressors, few studies have investigated the relationship between 

psychosocial stress and reproductive traits.  

In this study, we first investigated changes in age at menarche in the Beskid Wyspowy 

region since 1923 in 198 women across five field seasons. We hypothesized that age at menarche 

has declined over time in this region, in accordance with the global secular trend (Tanner, 1981b; 

Sørensen et al., 2012) and trends in other Polish regions (Łaska-Mierzejewska and Olszewska, 

2007; Wronka and Pawlińska-Chmara, 2009; Woronkowicz et al., 2012; Gomula and Koziel, 

2017). 

Next, we analyzed urinary reproductive hormone concentrations across the menstrual 

cycle in fifty-three adult women in order to test multiple additional hypotheses. We hypothesized 

that an earlier age at menarche is correlated with increased urinary estradiol metabolite estrone-

3-glucuronide (E1G) concentrations. Such a finding would be in accordance with the hypothesis 

that age at menarche is correlated with adult ovarian function (Ellison, 1996), as well as in line  

previous findings in the region (Clancy et al., 2013).  

We investigated if energetic and immune stress is correlated with age at menarche and 

E1G concentrations. We used farming and farm animal exposures during childhood as proximate 

measures of energetic and immune stress. These proximate measures were chosen as the 

traditional farming practices used in rural Poland are also associated with changes in immune 
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responses in other populations (Stein et al., 2016), and previous work in this Polish region has 

also demonstrated that energetic expenditure increases coinciding with seasonal farm work 

decrease ovarian function (Jasienska and Ellison, 2004). In previous studies in other rural Polish 

regions, children of farmers experienced later ages at menarche than children of non-farmers 

(Łaska-Mierzejewska and Olszewska, 2004, 2007). We hypothesized that farming exposures 

during childhood correlate with increased ages at menarche. We further hypothesized that 

farming experiences during childhood affect adult E1G concentrations where children who grew 

up on farms would have lower E1G concentrations during adulthood. Such a finding would be 

consistent with the hypothesis that energetic tradeoffs during childhood have a lasting effect on 

adult ovarian function (Ellison, 1996).  

We also investigated if proximate measures of psychosocial stress (number of adverse 

childhood experiences [ACEs]), are correlated with age at menarche and adult E1G 

concentrations. In this sample, we hypothesized that adverse childhood experiences are 

correlated with earlier ages at menarche in accordance with the psychosocial acceleration 

hypothesis (Belsky, Steinberg, & Draper, 1991; Chisholm, 1999). No study to date examines the 

relationship between ACEs and adult reproductive concentrations over the menstrual cycle. 

Individual ACEs, specifically sexual and physical abuse, are associated with earlier ages at 

menarche (Wise et al., 2009; Boynton-Jarrett et al., 2013) and self-reported infertility (Jacobs et 

al., 2015). Experiencing a higher number of ACEs is associated with a variety of outcomes 

including risk for autoimmune diseases (Dube et al., 2009), ischemic heart disease, and multiple 

types of cancer (Anda et al., 2010). Thus, we specifically hypothesized that higher number of 

ACEs correlate with lower E1G concentrations. This finding would be consistent with the 
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hypothesis that early adverse experiences like child abuse affect adult reproductive function, 

fertility, and fecundity (Allsworth et al., 2001; Jacobs et al., 2015).  

Finally, we investigated interactive effects of childhood environmental variables and age 

at menarche on adult E1G concentrations. We hypothesized that helping on a childhood farm, 

exposure to farm animals during childhood, number of adverse childhood experiences and age at 

menarche together affect E1G concentrations. We suspect that including farming in our model 

will have a stronger effect than age at menarche in accordance with our hypothesis that 

developmental conditions affect both age at menarche and adult reproductive function 

independently. We suggest that age at menarche is good proximate variable for energetic 

environments experienced throughout development, and that measuring environmental exposures 

like farming and adverse experiences will help elucidate which variables and how these 

experiences affect adult reproductive function.  

Overall, our hypotheses can be summarized as follows:  

1. Age at menarche has declined over time in the Beskid Wyspowy region of southern rural 

Poland.  

2. Working on farms and with farm animals during childhood is associated with later ages at 

menarche. A higher number of adverse childhood experiences is associated with earlier 

ages at menarche.  

3. Earlier ages at menarche are associated with higher E1G concentrations. Working on 

farms and with farm animals during childhood is associated with lower E1G 

concentrations. A higher number of adverse childhood experiences is associated with 

lower E1G concentrations.  
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4. Helping on a childhood farm, exposure to farm animals during childhood, number of 

adverse childhood experiences and age at menarche together affect E1G concentrations. 

Methods  

Women (n=123) were recruited at the Mogielica Human Ecology Study Site in the 

Beskid Wyspowy region of southern rural Poland during the summers of 2014, 2015, and 2017. 

Women were recruited who were between the ages of 18 and 46, in general good health, not 

pregnant within the past six months, not breastfeeding within the past three months, not on 

hormonal contraception, and non-smoking. Participants were recruited in multiple ways: 

gynecologists, nurses, and a midwife at two local clinics helped recruit women; an 

announcement was published in the local church bulletin; fliers were left in local businesses 

including hair salons, book stores, and other types of shops; and local student assistants traveled 

door-to-door to invite women to participate in the study. Women from multiple villages in the 

region joined the study. Study protocols were approved by the University of Illinois, Urbana-

Champaign Institutional Review Board (#13856). 

A subset of participants (n=53/total from 2014-2015 and n=46/total in 2017) collected 

first morning void urine samples for one full menstrual cycle, filled out daily physical activity 

and well-being questionnaires (Jasienska et al., 2006b), and recorded their diet five times over 

their cycle. Participants collected one urine sample per day in a 120 mL cup and used vacuum-

sealed tubes (Vacumed ®) to create two 8-10 mL aliquots at home. Participants immediately 

froze urine aliquots in home freezers. Samples were collected at the end of the menstrual cycle, 

transported in coolers, kept at -20°C until the end of each field season, and shipped over dry ice 

back to the University of Illinois, Urbana-Champaign, where samples were stored at -20 or -

80°C until processing.  
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There were two study options, and some women (n=37/total) chose to join a week-long 

abbreviated version of the study. In the week-long abbreviated version, women completed daily 

physical activity and well-being questionnaires and recorded their diet three times over that 

week, but they did not collect any urine samples for hormonal analyses. Sixteen women 

participated in the project during two or three recruitment periods (e.g., participated in both 2015 

and 2017). Of these, ten women enrolled in the full study during two recruitment periods, three 

women enrolled in the week-long version during a first year and full study during a second year, 

and three women enrolled in the week-long version during a first year and full study during a 

second and third year. For women who participated more than once, we used data from study 

year 2015 in order to maximize hormone data and ensure that no participant responses were 

included more than once. In order to ensure clarity for readers, figure 3.1 displays the study 

protocol, and we include the number of participants in our tables and figures.  
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Figure 3.1: The study protocol included two study options: one week-long and one menstrual-
cycle length. This figure displays the surveys, measurements, and collected samples for each 
study option.  

 

Additional age at menarche data from ninety-six women were included in the analyses 

investigating if age of menarche is changing over time. These participants were recruited in 2005 

and 2010, and the recruiting procedures have been described elsewhere (Clancy et al., 2009, 

2013). For these participants, year at birth was calculated from the participant’s reported age and 

year of study recruitment. 
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Surveys and Measurements: All women completed health and demography surveys that included 

questions about reproductive trait timing and childhood environments. Women were asked about 

age at menarche via recall, and most women in the study (n=119/123) reported age at menarche. 

Recall of age at menarche is good for women of ages included in this study (Koprowski et al., 

2001; Must et al., 2002). If a woman reported an age range (i.e. age 13 - 14), then an average of 

those ages was used for analyses. Women were further asked if they lived on a farm during 

childhood, if they helped on that farm, and what types of animals were present while they were 

growing up. Women were asked the same questions about their current living environment. Most 

farming categories were split into yes or no categories by participant response, and these 

categories included: living on a farm, helping on a farm, owning animals, and caring for animals. 

We calculated the number of the types of farming animals, which included chickens, ducks, 

rabbits, sheep, goats, cows, horses, and “other.” Other reported animals were counted as farm 

animals if they did not live inside the home (i.e. pigs or turkeys).  

Participants completed a translated version of the Adverse Childhood Experiences (ACE) 

survey in the privacy of their homes (Felitti et al., 1998). Due to the sensitive nature of these 

questions, participants were reminded that all surveys and survey questions were optional. Some 

women (n=24/123) chose not to, or forgot to, complete the ACE survey. Some women (n=19/99) 

did not answer all ACE survey questions. The majority (n=15/19) of women who partially 

completed the survey skipped one question (range 1-6 questions skipped). To maximize the 

amount of data, ACE scores were only excluded if participants skipped one or more questions 

and had a total score of zero.  

We analyzed several components of the ACE score. First, we calculated the total number 

of reported ACEs, and used the following categories: no reported adverse experiences, one 
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reported experience, and two or more reported experiences. Subdividing ACEs in a cumulative 

manner is common in the literature (Felitti et al., 1998; Dube et al., 2003; Cluver et al., 2015), 

and thus our hypotheses focused on cumulative ACEs. However, studies that did not use the 

ACE survey, but did include questions about individual ACEs, have demonstrated relationships 

between certain types of abuse and age at menarche (Mishra et al., 2009; Wise et al., 2009; 

Boynton-Jarrett and Harville, 2012). Thus, we also examined the relationships between 

individual ACEs and age at menarche, as well as individual ACEs and adult reproductive 

function.  

Anthropometric measurements were taken upon enrollment of all women according the 

to the Bones and Behavior Working Group protocol (Antón et al., 2009). Participant weight and 

body fat percentages were measured using the Tanita© BF-680W body fat monitor. At least two 

trained researchers assisted with anthropometric measurements to increase accuracy.  

Laboratory Protocol: We measured multiple hormones over the course of each participant’s 

menstrual cycle using two types of Quansys multiplex enzyme linked immunosorbent assays 

(ELISA). Hormone data was generated for samples collected in 2014 and 2015 (n=53). The 

measured hormones included: the urinary estradiol metabolite (estrone-3-glucuronide, E1G), C-

Peptide, tumor necrosis-factor alpha (TNFα), human chorionic gonadotropin (beta-hCG), 

interleukin 6 (IL-6), cortisol, interleukin 10 (IL-10), C-reactive protein (CRP), follicle-

stimulating hormone (FSH), and urinary progesterone metabolite (pregnanediol glucuronide, 

PdG). All hormones except PdG were run on a custom Quansys 9-Plex ELISA, and PdG was run 

individually on a 1-plex Quansys ELISA. Sixty-nine total full or half ELISA plates were run for 

the PdG assay, and seventy-five full or half ELISA plates were run for the 9-Plex. The intra- and 

inter- assay variation for each measured hormones was as follows: E1G (9.46%, 32.84%), C-
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Peptide (5.66%, 25.12%), TNFα (17.97%, 0%), beta-hCG (8.08, 0%), IL-6 (6.70%, 0%), cortisol 

(10.27%, 20.00%), IL-10 (26.12%, 0%), CRP (4.75%, 17.55%), FSH (5.06%, 34.78%), and PdG 

(9.46%, 32.19%). While the inter-assay variation is high, it is well within the range typically 

seen in multiplex assays (Chowdhury et al., 2009; Bastarache et al., 2011). All samples were run 

in duplicate; if the coefficient of variation (CV) between duplicates was ≥ 15%, then the samples 

were rerun. E1G was used in this analysis. The final concentration of urinary E1G was corrected 

by specific gravity using the protocol described in Miller et al. (2004). Some cycles were missing 

one or more days of urinary collections. When E1G concentrations were available for the 

previous and following day, then a missing value was estimated by averaging the surrounding 

E1G concentrations. 

Cycles were aligned by mid-cycle drop date according to Lipson and Ellison (1996). 

Using this method, day of ovulation is determined as the maximum decrease in E1G over two 

consecutive days. Day of ovulation is marked as day zero, and the follicular and luteal phases are 

aligned going backwards and forwards, respectively. All cycles were evaluated by two 

individuals independently (MPR and KML), and consensus was reached using a third opinion 

(KBHC) for cycles that were not immediately agreed upon. In the event where two potential drop 

dates were identified, we chose the drop date occurring immediately before a rise in PdG. Four 

cycles were removed from analyses due to missing data (n=2) or anovulation (n=2), leaving 49 

cycles included in the analyses.  

Averages of E1G were calculated by cycle phase as follows: follicular phase (days -10 to 

-1), early follicular phase (days -10 to -6), late follicular phase (days -5 to -1), periovulatory 

phase (days -3 to 3), early luteal phase (days 0 to 2), early/mid luteal phase (days 3 to 5), late 

luteal phase (days 6 to 10), and luteal phase (days 1 to 10). These phase partitions are consistent 
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with the literature (Lipson and Ellison, 1996; Barrett et al., 2013; Clancy et al., 2013). If a 

participant was missing three or more consecutive days for the follicular or luteal phases, then an 

average value was not calculated for that phase for that participant. If a participant was missing 

two or more days for the early follicular, late follicular, periovulatory, early luteal, early/mid 

luteal, or late luteal phases, then an average value was not calculated for that participant’s phase.  

Analyses for each hypothesis:  

Hypothesis 1: Age at menarche has declined in the Beskid Wyspowy region of southern rural 

Poland.  

Test: We conducted a simple linear regression with year at birth as the predictor variable and age 

at menarche as the dependent variable. Because there was a low number of women born between 

1922 and 1960 (n=22/198), we repeated this analysis with and without participants born before 

1960.  

Hypothesis 2: Working on farms and with farm animals during childhood is associated with later 

ages at menarche. A higher number of adverse childhood experiences is associated with earlier 

ages at menarche.  

Tests: We used t-tests to investigate if there are differences in mean ages in menarche for women 

who did and did not live on or participate in farming activities during childhood. We used one-

way analysis of variance (ANOVA) to test if there are differences in mean ages at menarche for 

women who reported zero, one, and two or more ACEs.  

We created a best fit regression model to select predictors of age at menarche using lasso 

regression. There was multicollinearity between farm-related variables (i.e. growing up on a 

farm and helping on a farm) in this sample. We thus used a penalized regression technique 
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(elastic net) that both minimizes the effect of multicollinearity and performs feature selection to 

create a best fit model (Zou and Hastie, 2005). 

Hypothesis 3: Earlier ages at menarche are associated with higher E1G concentrations, working 

on farms and with farm animals during childhood is associated with lower E1G concentrations, 

and a higher number of adverse childhood experiences is associated with lower E1G 

concentrations.  

Tests: Repeated measures ANOVA were used to test for differences between E1G concentrations 

over the menstrual cycle for 1) participants above or below mean age at menarche, 2) childhood 

farming variables, and 3) 0, 1, or ³2 ACE scores. Cycle days -9 to 9 were used in repeated 

measures ANOVA in order to minimize the number of cycles excluded for missing data (Clancy 

et al., 2013). Follicular (days -9 to -1), periovulatory (days -3 to 3), luteal (0 to 9) phases were 

analyzed.  

Hypothesis 4: Helping on a childhood farm, exposure to farm animals during childhood, number 

of adverse childhood experiences and age at menarche together affect E1G concentrations.  

Tests: We created a best fit regression model of variables related to averaged E1G concentrations 

in the luteal, periovulatory, and follicular phases. We used a penalized regression technique 

(elastic net) lasso regression to control for multicollinearity of age at menarche and farm-related 

variables. Variables included in the best fit regression model were: current age, current body fat 

percentage, current waist to height ratio, currently live on a farm, currently work on a farm, 

number of farm animals currently own, age at menarche, lived on a farm during childhood, 

helped work on a farm during childhood, number of farm animals during childhood, helped care 

for animals during childhood, ACE group (0, 1, and 2+ reported experiences), and each 

individual ACE.    
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All analyses were run using JMP® PRO 13 and figures were created using the R package 

ggplot2. Alpha was set at 0.05.   

Results 

Hypothesis 1: Age at menarche has declined over time in the Beskid Wyspowy region of southern 

rural Poland.  

Year at birth was used as the predictor in a simple linear regression to evaluate if age at 

menarche is changing over time in the Beskid Wyspowy region of southern rural Poland. This 

regression resulted in an R2 = 0.08 and coefficient on year at birth of -0.03 with associated p-

value of <0.0001 (Fig. 3.2). This significant, negative coefficient indicates that age of menarche 

decreases as birth year increases in this sample. The regression formula and associated parameter 

estimates are reported in Table 3.1. 
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Figure 3.2: Age at menarche has declined over time in the Beskid Wyspowy region of southern 
rural Poland (n=198, β=-0.03, p<0.0001).  
 
 
 
Regression equation:  Age at menarche = 76.359109 - 0.0316538*Year at birth 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 76.3591 15.4446 4.94 <.0001* 
Year at birth -0.0317 0.0078 -4.05 <.0001* 

 
Table 3.1: The regression formula and associated parameter estimates describing the relationship 
between year at birth and age at menarche.  
  
 

Because there are few women born before 1960 in this sample (n=22/198), we also tested 

age at menarche over time with and without those women. Run with only women born after 

1960, our second regression yielded an R2 = 0.06 and coefficient on year at birth of -0.05 with 



 65 

associated p-value of 0.0012. Thus, both analyses suggest a secular trend in age at menarche in 

this sample.  

Hypotheses 2: Working on farms and with farm animals during childhood is associated with 

later ages at menarche. A higher number of adverse childhood experiences is associated with 

earlier ages at menarche.  

We next considered the potential effects of childhood variables on age at menarche. In 

our sample, 56.9% (n=70/123) women grew up on farms, 68.3% (n=84/123) women helped with 

farm work as a child, and 89.4% (n=110/123) women grew up with animals. In contrast, 18.7% 

(n=23/123) women currently live on farms, 25.2% (n=31/123) women currently help with farm 

work, and 77.2% (n=95/123) women currently own animals. Table 3.2 displays additional 

descriptive statistics for this sample.  

 
 Mean(SD) Range n 
Age (years) 32.30 (8.00) 18 - 46 123 
Age at menarche (years) 13.41 (1.65) 9 – 17.5 119 
BMI 25.41 (5.64) 17.3-49.4 123 
Waist-to-Hip Ratio 0.79 (0.07) 0.66-1.05 123 
Waist-to-Height Ratio 0.49 (0.09) 0.38-0.80 123 
Childhood Farming: number of farm animal types 2.72 (2.26) 0-7 123 
ACE Score 0.86 (1.26) 0-5 99 

 

Table 3.2: Descriptive statistics of variables included in the study.  

 

The majority of women who completed ACE surveys (n=57/99) reported no adverse 

experiences. Twenty women in the sample reported one adverse experience, and the most 

commonly reported adverse experience was substance abuse in the household (Table 3.3). 

Twenty-two women reported two or more adverse experiences.  
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Adverse Childhood Experiences (ACE) Category Yes No Skipped 
Question  

Sexual abuse  1 94 4 
Member of household went to prison 2 96 1 
Parental separation or divorce 3 94 2 
Physical Neglect 4 94 1 
Physical Abuse  5 92 2 
Witnessed abuse of mother or stepmother  9 88 2 
Member of household had mental illness or anxiety disorder 10 88 1 
Emotional Neglect 10 81 8 
Emotional Abuse 14 80 5 
Substance abuse in household  27 70 2 

  
Table 3.3: The ten ACE categories listed in order of least to most frequent with number of 
respondents who answered yes, no, or skipped question.  
 
 

Mean ages at menarche in this sample differed for multiple farming categories, but not 

for increasing numbers of adverse childhood experiences (Table 3.4, Fig. 3.3). For example, 

mean ages at menarche differed for farm animal care where women who cared for farm animals 

during childhood had a mean age of 13.70 (SD ±1.63) years, while women who did not care for 

animals had a mean age of 13.11 (SD ±1.46) years (p=0.05). Mean ages at menarche did not 

differ for ACE scores where women with no reported ACEs had an average age of 13.68 (SD 

±1.46), women with one reported experience had a mean age of 13.38 (SD ±2.21), and women 

with two or more experiences had a mean age of 13.11 (SD ±1.46) years (p=0.41). Post hoc 

power analyses of mean ages at menarche for ACE categories revealed a low power of 0.20, 

while power for all farming categories was above 0.50.  

We further tested for differences in mean ages at menarche between women with 

different ACE scores who did not help on farms during childhood. Mean ages at menarche did 

not differ between ACE score groups in non-farmers where women with no reported ACEs 
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(n=12) had an average age of 12.88 (SD ±1.15) years and women with one or more reported 

experience (n=12) had a mean age of 12.42 (SD ±1.62) years (p=0.43).  

 
  Age at menarche    

 Mean SD n p-value 

Living on a farm  Yes 13.53 1.77 67  

 No 13.27 1.56 52 0.4 

Helping on a farm  Yes 13.66 1.67 81  

 No 12.89 1.5 38 0.02* 

Helping care for animals  Yes 13.57 1.66 99  

 No 12.65 1.42 20 0.02* 

Helping care for farm animals Yes 13.70 1.63 62  

 No 13.11 1.46 57 0.05* 

ACE Score 0 13.68 1.46 45  

 1 13.38 2.21 20  

 2 or more 13.11 1.46 22 0.41 
 
Table 3.4: Differences in mean ages at menarche by childhood farming exposures and adverse 
childhood experiences (ACE).   
 
 
 

 
 

Fig. 3.3: Mean ages at menarche are significantly later for women helped on a farm during 
childhood (p=0.02). Mean ages at menarche do not significantly differ by number of adverse 
childhood experiences (p=0.41).  
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Elastic net regression with AICc validation was performed with all farm and ACE 

variables as the predictor variables and age at menarche as the dependent variable. The final 

model of factors that influence age at menarche included helping on a farm as a child and ACE 

groupings of zero reported ACEs and two or more reported ACEs (Table 3.5).   

 

Dependent Variable: Age at menarche 

AICc 297.06358 

RSquare 0.0885663 

Parameter Estimates for Final Predictor Variables 

Term Estimate Std Error Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 13.4585 0.3301 1662.1953 <.0001* 

ACE Group [0-2+] 0.3163 0.3699 0.7309 0.3926 

Childhood: helped on farm [N-Y] -0.5651 0.3631 2.4224 0.1196 

Scale 1.5381 0.1200 164.3826 <.0001* 
 
Table 3.5: Elastic net regression details (AICc and R2). All predictor variables not listed were 
zeroed, and the estimates for the predictor variables included in the final model are displayed.  
 

 

Hypothesis 3: Earlier ages at menarche are associated with higher E1G concentrations. 

Working on farms and with farm animals during childhood is associated with lower E1G 

concentrations. A higher number of adverse childhood experiences is associated with lower E1G 

concentrations.  

Variables were independently investigated by E1G over the follicular, periovulatory, and 

luteal phases using repeated measures ANOVA, and visual representation of average E1G across 

the menstrual cycle by select variables is displayed in Figure 3.4. E1G concentrations during 
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almost all menstrual cycle phases were significantly different between women who did and did 

not participate in farm-related activates during childhood. More specifically, women with more 

animals and women who helped on farms had lower levels of adult E1G concentrations (helped 

on a farm: p=0.05, p=0.01, p=0.06 and number of farm animal types: p=0.01, p=0.01, and 

p=0.01 for the follicular, periovulatory, and luteal phases respectively). There were no significant 

differences in E1G concentrations for women with earlier and later ages at menarche (p=0.22, 

0.40, and p=0.22 for the follicular, periovulatory, and luteal phases respectively). There were no 

significant differences in E1G concentrations for different ACE categories (scores of 0, 1, or 2 or 

more, p=0.20, 0.77, and p=0.98 for the follicular, periovulatory, and luteal phases respectively).  

 

Figure 3.4 

A. E1G by age at menarche 

 

 

 

Day of menstrual cycle 
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

E1
G

 (n
g/

m
L)

0

50

100

150

200

250

300

350

400

450

500

550
Age at menarche

< mean
> mean



 70 

Figure 3.4 (cont.) 

B. E1G by adverse childhood experiences 

 

C. E1G by childhood farming 

 

 

Fig. 3.4: Mean (standard error) of E1G concentration across the menstrual cycle where Day 0 
indicates ovulation. There were no significant differences in E1G concentrations for different 
ages at menarche (Fig 3A) or different ACE score (Fig 3B) for any phase (follicular, 
periovulatory, or luteal). There were significant differences in E1G concentrations for women 
who helped on a farm during childhood (Fig 3C, p=0.05, p=0.01, p=0.06 for the follicular, 
periovulatory, and luteal phases respectively).  
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Hypothesis 4: Helping on a childhood farm, exposure to farm animals during childhood, number 

of adverse childhood experiences and age at menarche together affect E1G concentrations.  

We then considered the potential effects of childhood variables and age at menarche on 

adult E1G concentrations for all menstrual cycle phases. We used elastic net regression to select 

the subset of predictor variables that should be included in the regression model. The final model 

AICc and R2, as well as the variables that were selected for the final models, are displayed in 

Table 3.6.  

Table 3.6 

Dependent Variable: Follicular Phase (Days -10 to -1) Average E1G 

AICc 277.23643    

RSquare 0.6832991    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 270.4223 62.3306 18.8228 <.0001* 

ACE Group: 0,1,2+ [0-2+] -3.6645 16.1825 0.0513 0.8209 

ACE Group: 0,1,2+ [1-2+] 11.6714 22.1303 0.2781 0.5979 

ACE: Physical Abuse [N-Y] -101.9972 73.2646 1.9381 0.1639 

Childhood: helped on farm [N-Y] 20.5949 25.7171 0.6413 0.4232 

Childhood: helped care for animals [N-Y] 94.3080 53.2728 3.1339 0.0767 

Current waist to height ratio -156.2749 114.7326 1.8553 0.1732 

Scale 37.5544 6.6086 32.2924 <.0001* 
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Table 3.6 (cont.) 

Dependent Variable: Early Follicular Phase (Days -10 to -6) Average E1G 

AICc 244.13226    

RSquare 0.5953829    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 140.43624 25.92897 29.335122 <.0001* 

ACE Group: 0,1,2+ [0-2+] -19.76979 9.7969838 4.0721078 0.0436* 

ACE: Mental illness in household [N-Y] 14.199816 8.2876404 2.9356456 0.0866 

ACE: Physical Abuse [N-Y] -33.11122 29.479719 1.2615477 0.2614 

Childhood: helped care for animals [N-Y] 49.659096 14.12754 12.35562 0.0004* 

Current waist to height ratio -113.6892 67.391957 2.8459152 0.0916 

Scale 21.156391 3.5054379 36.424922 <.0001* 

Dependent Variable: Late Follicular Phase (Days -5 to -1) Average E1G 

AICc 327.20025    

RSquare 0.7893934    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 103.1721 107.5842 0.9197 0.3376 

ACE Group: 0,1,2+ [0-2+] -134.7587 51.4543 6.8591 0.0088* 

ACE: Substance abuse in household [N-Y] 111.5844 46.2947 5.8096 0.0159* 

ACE: Mental illness in household [N-Y] 86.7725 20.7829 17.4322 <.0001* 

ACE: Emotional abuse [N-Y] 39.4535 30.3705 1.6876 0.1939 

ACE: Physical Abuse [N-Y] -90.0095 98.3028 0.8384 0.3599 

ACE: Emotional neglect [N-Y] 56.1798 34.9524 2.5835 0.108 

Childhood: helped on farm [N-Y] 107.1906 21.0100 26.0292 <.0001* 

Childhood: helped care for animals [N-Y] 90.1005 46.9015 3.6905 0.0547 

Current Age -1.6897 1.5915 1.1272 0.2884 

Scale 49.7491 6.9918 50.6284 <.0001* 
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Table 3.6 (cont.) 

Dependent Variable: Periovulatory Phase (Days -3 to 3) Average E1G 

AICc 320.54085    

RSquare 0.6818685    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 252.6358 105.7460 5.7077 0.0169* 

ACE Group: 0,1,2+ [0-2+] -41.7363 42.4291 0.9676 0.3253 

ACE: Substance abuse in household [N-Y] 20.0065 45.9334 0.1897 0.6632 

ACE: Physical Abuse [N-Y] -48.8035 83.0589 0.3452 0.5568 

ACE: Emotional neglect [N-Y] 50.0131 27.9168 3.2095 0.0732 

Childhood: helped on farm [N-Y] 43.4883 20.6545 4.4332 0.0352* 

Childhood: helped care for animals [N-Y] 48.8803 30.8283 2.5140 0.1128 

Current waist to height ratio -24.6632 143.5434 0.0295 0.8636 

Current Age -3.7108 1.2579 8.7030 0.0032* 

Scale 41.1313 5.7953 50.3722 <.0001* 

Dependent Variable: Early Luteal Phase (Days 0 to 2) Average E1G 

AICc 314.53066    

RSquare 0.7670733    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 221.1297 35.6483 38.4784 <.0001* 

ACE Group: 0,1,2+ [0-2+] -108.7377 17.3843 39.1242 <.0001* 

ACE Group: 0,1,2+ [1-2+] -73.6247 15.6607 22.1018 <.0001* 

ACE: Substance abuse in household [N-Y] 55.6163 17.1934 10.4636 0.0012* 

ACE: Mental illness in household [N-Y] -21.69135 22.38601 0.93890 0.3326 

ACE: Emotional neglect [N-Y] 30.2469 17.5910 2.9565 0.0855 

Childhood: helped care for animals [N-Y] 41.8173 16.4751 6.4425 0.0111* 

Currently help work on a farm [N-Y] 44.2673 17.5000 6.3987 0.0114* 

Current number of farm animals 17.1842 5.8020 8.7723 0.0031* 

Current waist to height ratio -70.8237 69.5160 1.0380 0.3083 

Current age -3.8528 1.0331 13.9080 0.0002* 

Scale 25.8938 4.9495 27.3695 <.0001* 
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Table 3.6 (cont.) 

Dependent Variable: Early/Mid Luteal Phase (Days 3 to 5) Average E1G 

AICc 310.77799    

RSquare 0.627562    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 322.0563 121.3867 7.0392 0.0080* 

ACE Group: 0,1,2+ [0-2+] 70.0142 31.6525 4.8928 0.0270* 

ACE: Substance abuse in household [N-Y] -50.4288 29.6758 2.8877 0.0893 

ACE: Mental illness in household [N-Y] -89.8113 42.2759 4.5131 0.0336* 

ACE: Sexual abuse [N-Y] -38.7124 35.4508 1.1925 0.2748 

Age at menarche  -3.5885 5.2317 0.4705 0.4928 

Currently live on a farm [N-Y] 43.5153 19.4291 5.0163 0.0251* 

Current Age -3.7800 1.0591 12.7393 0.0004* 

Scale 31.9962 5.3298 36.0393 <.0001* 

Dependent Variable: Late Luteal Phase (Days 6 to 10) Average E1G 

AICc 271.46977    

RSquare 0.7345425    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 336.5907 155.8043 4.6671 0.0307* 

ACE: Mental illness in household [N-Y] -19.4803 42.7587 0.2076 0.6487 

ACE: Physical Abuse [N-Y] -162.8172 82.3954 3.9048 0.0481* 

Current number of farm animals 2.1109 14.8542 0.0202 0.887 

Current body fat percentage -0.9422 0.5799 2.6395 0.1042 

Current Age -1.6729 1.7487 0.9152 0.3387 

Scale 30.3484 18.3329 2.7404 0.0978 
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Table 3.6 (cont.) 

Dependent Variable: Luteal Phase (Days 1 to 10) Average E1G 

AICc 257.25014    

RSquare 0.5956098    

Term Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept 247.9348 88.5142 7.8460 0.0051* 

ACE: Mental illness in household [N-Y] -28.2383 29.3774 0.9240 0.3364 

ACE: Physical Abuse [N-Y] -42.9302 57.5293 0.5569 0.4555 

Current body fat percentage -1.1081 0.5644 3.8540 0.0496* 

Current Age -2.0879 1.1103 3.5362 0.06 

Scale 29.7471 5.9464 25.0251 <.0001* 
 
Table 3.6: Elastic net regression model details (AICc and R2) for average E1G by each menstrual 
cycle phase. The dependent variables are highlighted in dark grey. All predictor variables that 
were zeroed in the final model are not displayed. An (*) indicates that predictor is significant at 
p<0.05.  

 

Some key patterns are identified in these final regression models (Table 3.6). Age at 

menarche was not selected as a final predictor in any final follicular, periovulatory, or luteal 

phase models, with the exception of the early/mid luteal phase. At least one type of childhood 

farming experiences (helping on a farm or helping with farm animals) was selected as a final 

predictor in the final follicular, periovulatory, and early luteal models. ACE group (0, 1, or ³2 

reported experiences) was selected as a final predictor in all follicular phases, periovulatory, and 

early and early/mid luteal phases. Individual ACEs were selected as a final predictor in some 

models; specifically, physical abuse, mental illness in the household, substance abuse, emotional 

abuse, emotional neglect, and sexual abuse were selected in at least one model. Some final 

models also included contemporary variables such as current age, body fat percentage, and 

waist-to-height ratio. Waist-to-height ratio was selected as a final predictor in follicular, 
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periovulatory, and early luteal models. Current age was selected as a final predictor in late 

follicular, periovulatory and all luteal models.  

Discussion 

Reproductive function is sensitive to environmental conditions, and our results indicate 

that the environment experienced throughout development affects reproductive trait timing and 

adult steroid hormone concentrations. Childhood environments have been investigated in 

relationship to age at menarche, and age at menarche, in turn as a proxy for childhood 

environments, has been investigated in relationship to reproductive function. However, few 

studies investigate the relationships between childhood environments, age at menarche, and adult 

reproductive function, particularly in transitioning regions.  

We specifically investigated the following hypotheses: 1) Age at menarche has declined 

over time in the Beskid Wyspowy region of southern rural Poland, 2) Working on farms and 

with farm animals during childhood is associated with later ages at menarche, and a higher 

number of adverse childhood experiences is associated with earlier ages at menarche, 3) Earlier 

ages at menarche are associated with higher E1G concentrations, working on farms and with 

farm animals during childhood is associated with lower E1G concentrations, and a higher 

number of adverse childhood experiences is associated with lower E1G concentrations, and 4) 

Helping on a childhood farm, exposure to farm animals during childhood, number of adverse 

childhood experiences and age at menarche together affect E1G concentrations.  

Our primary findings are as follows: 1) Age at menarche has declined over time in the 

Beskid Wyspowy region of Poland, 2) energetic, immune, and psychosocial stressors during 

childhood affect age at menarche in this population, 3) childhood farming practices 
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independently predict adult E1G across the menstrual cycle, and 4) age at menarche, current age, 

ACEs, and childhood farming practices affect adult ovarian hormone concentrations. 

The Secular Trend of Age at Menarche  

Hypothesis 1: Age at menarche has declined over time in the Beskid Wyspowy region of southern 

rural Poland.  

Hypothesis one was supported. We found that age at menarche has declined over time in 

the Beskid Wyspowy region of southern rural Poland at a rate of -0.03 per year from 1923 to 

1998. The declining age at menarche matches the secular trend of declining ages at menarche 

globally, as well as other studies of age at menarche over time in Poland.  Comparatively, age at 

menarche in other Polish rural areas declined at a rate of -0.24 per decade from 1987 to 2001 

(Łaska-Mierzejewska and Olszewska, 2007). Age at menarche averaged from seven different 

Polish regions declined from 13.8 (SD 1.13) years in 1966 to 12.9 (SD 1.15) years in 2012 

(Gomula and Koziel, 2017). The secular trend towards earlier ages at menarche is often 

attributed to increased socioeconomic status, nutritional access, and positive energetic balance 

(Stearns and Koella, 1986; Okasha et al., 2001; Gluckman and Hanson, 2006). This is likely the 

case in the Beskid Wyspowy region as the voivodship in which they are located experienced one 

of Poland’s highest GDP growth rate following the Polish transformation (Büttner, 2005). 

Our study differs from other studies of age at menarche across Poland, which 

demonstrate an increase in age at menarche from 1978 to 1989, corresponding to a period of 

economic crisis and food rationing (Łaska-Mierzejewska and Olszewska, 2007; Gomula and 

Koziel, 2017). However, age at menarche for children of farmers remained stable during that 

decade, likely due to a lower dependence on rationed food (Łaska-Mierzejewska and Olszewska, 
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2007). This is also likely the case in the Beskid Wyspowy region where family farming was 

common.  

While age at menarche in this rural region is declining, the current average age at 

menarche in our sample was 13.41 years, later than the average age at menarche in Polish cities 

(12.53 years, (Szwed et al., 2013)) and in the United States (12.43 years (Committee of 

Adolescent Health Care, 2015)). While a difference of one year may not seem meaningful, it is 

biologically relevant: a lower age at menarche is associated with higher risk for breast cancer 

(Gronwald et al., 2006), higher adult estradiol concentrations (Clancy et al., 2013), lower 

baseline progesterone values (Windham et al., 2002), increased bone density (Chevalley et al 

2009, Chevalley et al 2011), and a shortened period of adolescent sub-fecundity (Vihko and 

Apter, 1984). The decline in age at menarche from women born from 1924 to 1998 in this region 

may be indicative of political and economic transformations, as well as increases in 

technological access like farming equipment that decreased the amount of farm work performed 

by hand. This decline in age at menarche in a population where reproductive traits have been 

traditionally studied from an energetic perspective (see Jasienska & Ellison, 1998; Jasienska & 

Ellison, 2004; Jasienska et al. 2006; Nenko & Jasienska, 2013) suggests that it is an interesting 

time to test new hypotheses about the influence of both energetic and psychosocial stressors on 

life history traits.  

The Environment Experienced during Childhood affects Age at Menarche 

Hypotheses 2: Working on farms and with farm animals during childhood is associated with 

later ages at menarche. A higher number of adverse childhood experiences is associated with 

earlier ages at menarche.  
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We found support for hypothesis two: we found that helping on a farm during childhood, 

helping care for animals during childhood, and helping care for farm animals during childhood 

all independently associated with age at menarche where farming activities and animal care were 

associated with older ages at menarche. Within the context of life history theory, age at 

menarche is expected to be later in energetically constrained situations (Ellison, 2001; Reiches et 

al., 2013). Investing in growth takes energy, and delaying age at menarche is one way to 

lengthen the growth investment period. However, it is difficult to separate potential energetic and 

immune exposures during childhood in this sample, and immune constraints also may delay age 

at menarche (McDade, 2003; Abrams and Miller, 2011). In our sample, participants reported 

helping with planting, harvesting, and haying, as well as helping with farm animals by feeding, 

milking, and cleaning animals, as well as leading animals out to graze. These traditional farming 

practices are associated with changes in immune responses in other populations (Stein et al., 

2016). Previous work in this Polish region has also demonstrated that energetic expenditure 

increases coinciding with seasonal farm work decrease ovarian function in women despite 

adequate energy intake (Jasienska and Ellison, 2004). Thus, we contend that growing up on a 

farm is energetically and immunologically stressful.  

Many environments are both energetically/immunologically constrained and 

psychologically stressful, or operate with energetic plenty and little psychological stress, which 

creates pushes and pulls on the timing of menarche. Merging the two viewpoints, Coall and 

Chisholm (2003) proposed that pubertal timing is first dependent on energetics. However, in the 

absence of energetic constraint, psychosocial stressors should have a stronger effect on age at 

menarche (Coall and Chisholm, 2003). This hypothesis has never been tested in transitioning 

environments like rural Poland where many women grew up on farms, but no longer live and 
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work on farms. While previous reproductive ecology studies in this region have focused on 

energetic constraints due to farming, none have focused on other types of stressors like 

psychosocial stress.  

In our elastic net regression model for age at menarche, the final selected predictors were 

childhood farm work and ACE groups zero and two or more reported experiences. According to 

the psychosocial acceleration hypothesis, which also draws on life history theory, age at 

menarche should be accelerated in risky or uncertain psychological or social environments where 

a long lifespan is not assured (Belsky et al., 1991; Ellis, 2004). Support for this hypothesis stems 

from evidence that physical and sexual abuse (Wise et al., 2009; Boynton-Jarrett and Harville, 

2012), conflict in the home (Jorm et al., 2004), and father absence (Ellis and Garber, 2000; 

Boothroyd et al., 2013; Webster et al., 2014) all predict earlier ages at menarche. In this case, no 

individual ACE was included in the final model predicting age at menarche. This may be due to 

the lower power of ACE or the high number of people who chose to skip, or forgot to complete, 

the ACE survey. However, our ACE survey response rate was 80%, which is similar to others 

(e.g. Felliti et al. (1998) report a response rate of 70.5%, Dong et al. (2004) report a response rate 

of 68%). Further, there is likely a dose-response where a higher number ACE exposures affect 

health outcomes (Felitti et al., 1998; Dube et al., 2003). Thus, it is likely that cumulative ACEs 

predict earlier ages at menarche as we found in our final regression model.  

While childhood farming experiences independently predicted age at menarche, both 

farming and ACE group were selected as predictors in the final regression model. Overall, our 

results match both the energetic and psychosocial acceleration predictions: greater energetic and 

immune stress (farming) predicted later ages at menarche, while greater psychosocial stress 

(ACEs) predicted earlier ages at menarche.  
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However, our study provided only partial support for Coall and Chisholm’s (2003) 

hypothesis. Average ages at menarche were lower for women with higher ACE scores, but this 

difference was not significant in our sample. However, both farming and cumulative ACE scores 

predicted age at menarche in the elastic net regression model, suggesting that ACEs and farming 

both affect age at menarche. It is possible that all types of stress push and pull on age at 

menarche, and in the context of this study, where women are experiencing energetic stress but 

are not nutritionally deprived, that energetic, immune, and psychosocial stress together affect age 

at menarche.  

Childhood Environment Affects Adult Reproductive Function 

The reproductive capacity hypothesis proposes that age at menarche is both a proxy of 

early environment and correlated with adult reproductive function (Ellison, 1990, 1996). 

Reproductive function can be measured in multiple ways, including by comparing average 

concentrations of reproductive hormones within and between populations (Ellison, 1990). The 

majority of studies to date focus on salivary progesterone, but more recent studies have included 

estradiol and estrogen metabolites (Núñez-De La Mora et al., 2008). Age at menarche is 

negatively correlated with adult estradiol concentrations (Windham et al., 2002; Clancy et al., 

2013) and adult progesterone values (Núñez-de la Mora et al., 2007). In this study, we 

investigate not only the relationship between age at menarche as a proxy for early environmental 

exposures, but also include some potential childhood exposures that may affect adult 

reproductive function.  

Hypothesis 3: Earlier ages at menarche are associated with higher E1G concentrations. 

Working on farms and with farm animals during childhood is associated with lower E1G 
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concentrations. A higher number of adverse childhood experiences is associated with lower E1G 

concentrations. 

Our results offer partial support of hypothesis 3. Specifically, we found that adult E1G 

was significantly lower across the menstrual cycle (follicular, periovulatory, and luteal phases) 

for women who worked on farms during childhood and women who helped with farm animals 

during childhood. However, adult E1G was not significantly lower across the menstrual cycle for 

women with later ages at menarche, nor for women with higher numbers of ACEs. This finding 

may have been a result of lower sample size for women who reported two or more ACEs.  

The frequency of reported adverse childhood experiences was slightly lower for some 

ACEs in this sample compared to other Polish studies. To the authors’ knowledge, no other study 

in Poland has used the ACE survey, and thus direct comparisons were not possible. However, in 

a sample of 2,582 women hospitalized for psychiatric disorders, 4% of women reported actual or 

attempted incest (Sobański et al., 2013), and in a sample of 508 Polish participants who 

answered an online survey, 4% of Polish female participants reported childhood sexual abuse 

(Hardt et al., 2010). In comparison, 1% of our samples reported childhood sexual abuse. 

Additionally, in the same sample of 508 Polish participants, 14% reported childhood physical 

abuse, 24% reported parental separation during their childhood, 24% violence in family during 

childhood, 6% reported maternal alcohol problems, and 27% paternal alcohol problems (Hardt et 

al., 2010; Dragan and Hardt, 2016). Our sample also had 27% of participants reporting adult 

substance abuse (although we did not distinguish between drugs and alcohol), but our samples 

had a lower reporting of physical abuse (5%) and parental separation (3%). The lower frequency 

of ACEs in this sample may be due to an under-reporting of ACEs (Hardt and Rutter, 2004), or 

an actual lower amount of ACEs experienced.  
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Previous research in this area of Poland have demonstrated a relationship between age at 

menarche and adult estradiol in the luteal phase (Clancy et al., 2013). In our sample, we did not 

find a significant relationship between age at menarche and E1G concentrations in any phase 

(p=0.22, 0.40, and p=0.22 for the follicular, periovulatory, and luteal phases respectively). Our 

finding is consistent with Núñez-de la Mora et al. (2008) who also did not find a relationship 

between age at menarche and adult estradiol in Bangladeshi, Bangladeshi-British, and white 

British women. Age at menarche classically has been used as proxy for early environment due to 

the relationship between energetic stress and age at menarche. However, current research 

highlighting the pushes and pulls on age at menarche by different types of stress challenge that 

viewpoint. Here, age at menarche did not predict adult E1G, but the same predictors of age at 

menarche (specifically farming practices) did predict E1G across the menstrual cycle. Perhaps in 

this transitioning context, age at menarche may not be the most appropriate proxy of early 

environments.  

Hypothesis 4: Helping on a childhood farm, exposure to farm animals during childhood, number 

of adverse childhood experiences and age at menarche together affect E1G concentrations.  

Finally, our results provided support for hypothesis 4. We used elastic net regression to 

identify predictors of average E1G in each phase of the menstrual cycle. ACE groups, physical 

abuse during childhood, childhood farming, childhood animal care, and current waist-to-height 

ratio predicted average follicular E1G. ACE groups, substance abuse in childhood household, 

physical abuse as a child, emotion neglect as a child, childhood farming, childhood animal care, 

current waist-to-height, and current age predicted average periovulatory E1G. Mental illness in 

childhood household, physical abuse in childhood household, current body fat percentage, and 
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current age predicted average luteal E1G. Our results suggest that energetic, immune, and 

psychosocial stressors during childhood affect adult E1G concentrations in this sample.  

The reproductive hypothesis more specifically predicts that a later age at menarche, 

indicative of childhood stress, is associated with decreased reproductive function and lower 

reproductive hormones (Ellison, 1996). Here, this hypothesis was supported in that that 

childhood farming in Poland affects both age at menarche and adult reproductive hormone 

concentrations in the expected direction. Specifically, childhood farming practices predict a later 

age at menarche and lower E1G concentrations.  

However, ACEs also affected both age at menarche and adult reproductive 

concentrations, but in ways contrary to the expectations of the reproductive capacity hypothesis. 

Specifically, this measure of psychosocial stress predicts earlier ages at menarche and lower E1G 

concentrations in the final regression models. By broadening the study to include different types 

of stressors, we see that multiple types of stress can lead to decreased adult reproductive 

function, even in the case where they affect age at menarche in opposite directions.  

Limitations: 

 This work was observational and retrospective, and thus our results should be interpreted 

in that context. We did not survey the frequency and timing of adverse childhood experiences, so 

we cannot conclusively say if these experiences occurred before or after age at menarche. 

Moreover, we did not include a measurement of contemporary adverse experiences, which likely 

also affects ovarian function (Allworth et al. 2007). Future work is needed to understand more 

about the relationship between all types of stress across the lifespan and reproductive health.  
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Conclusion 

This study is the first to investigate connections between energetic, immune, and 

psychosocial stress during childhood with age at menarche and adult ovarian function in a 

transitioning agrarian population. We demonstrate that age at menarche has declined over time in 

this region in accordance with the global secular trend, although average age at menarche is later 

in this rural region compared to Polish cities. Helping on farms and with farm animals 

independently associated with later ages at menarche, which supports the idea that energetic and 

immune stress during childhood delays age at menarche. Adverse childhood experiences tended 

to accelerate age at menarche, which supports the hypothesis that psychosocial stress accelerates 

age at menarche. Despite different effects on age at menarche, all types of childhood stress 

decreased adult urinary estrogen metabolite concentrations in adult menstrual cycles.  The results 

of this study support a model under which developmental conditions affect adult reproductive 

function, and we challenge the use of age at menarche alone as a proxy for childhood exposures.  
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Chapter 4 

The relationship between CYP19A1 promoter methylation and reproductive traits 
 
Abstract  

Reproductive ecology has long examined the adaptive flexibility of women’s 

reproduction in the face of variable environments (Wasser and Barash, 1983; Vitzthum, 2008). 

However, we have suffered as a field from not always being able to measure the mechanisms to 

empirically support assertions of developmental effects, “set points,” and other hypothesized 

links for which we do not yet have a physiological underpinning. Gene methylation can be 

responsive to environmental traits and can modify gene expression (Portela and Esteller, 2010). 

In normal tissue, gene promoter methylation patterns are typically unmethylated and intragenetic 

regions of DNA are methylated (Jones and Takai, 2001). The modifiable nature of DNA 

methylation makes it an informative method through which to study how environmental 

exposures may affect reproductive biology.  

Two populations were included in this study: a rural, agricultural Polish population and 

an urban Polish American population. We first compare differences in ages at menarche and 

adult reproductive hormone concentrations between these two populations. The rural Polish 

sample is living in a region transitioning away from subsistence farming (Colleran, 2014). In 

rural Poland, childhood environmental variables including energetic and psychosocial stressors 

predicted age at menarche and adult urinary estrone urinary estrone-3-glucuronide (E1G) 

concentrations (see Chapter 3). While studies have compared reproductive traits between Polish 

and American samples, no study to date investigates differences in reproductive traits between 

Polish and specifically Polish American samples. 
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In this chapter, we investigate the relationship between childhood environments, 

methylation at a promoter of a candidate gene (CYP19A1), and age at menarche. We further 

investigate the relationship between life history traits, gene methylation, and adult reproductive 

hormone variation. We identify a pathway by which cortisol may affect aromatase expression via 

methylation of CYP19A1 promoter I.4. 

Introduction 

Age at menarche is highly heritable (Towne et al., 2005; Wells and Stock, 2011), yet a 

large proportion of the genetic variation remains unexplained (Elks et al., 2010; Wells and Stock, 

2011; Almstrup et al., 2016). Epigenetics, the study of covalent modifications of DNA, is one 

way by which the environment interacts with the genome by altering gene expression without 

changing the primary DNA sequence (Russo et al., 1996). Gene methylation, one epigenetic 

process, changes in response to early life variables (Borghol et al., 2012; Tyrka et al., 2012). 

These include physical activity (Denham et al., 2013; White et al., 2013), psychosocial stress and 

support (Lam et al., 2012; Suderman et al., 2014), and nutrition (Brait et al., 2009; Zhang et al., 

2011). In fact, these early life variables are also identified as modifiers of age at menarche 

(Dunger et al., 2005; Wise et al., 2009; Kramer and Greaves, 2011). It is thus reasonable to 

hypothesize that epigenetic factors provide a link between childhood environment and pubertal 

timing. Here, we investigate the relationship between childhood environments, methylation at a 

promoter of a candidate gene (CYP19A1), and age at menarche. We further investigate the 

relationship between life history traits, gene methylation, and adult reproductive hormone 

variation. We identify a potential pathway by which cortisol may affect aromatase expression via 

methylation of CYP19A1 promoter I.4.  
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Reproductive ecology has long examined the adaptive flexibility of women’s 

reproduction in the face of variable environments (Wasser and Barash, 1983; Vitzthum, 2008). 

However, we have suffered as a field from not always being able to measure the mechanisms to 

empirically support assertions of developmental effects, “set points,” and other hypothesized 

links for which we do not yet have a physiological underpinning. Gene methylation can be 

responsive to environmental traits and can modify gene expression (Portela and Esteller, 2010). 

In normal tissue, gene promoter methylation patterns are typically unmethylated and intragenetic 

regions of DNA are methylated (Jones and Takai, 2001). The modifiable nature of DNA 

methylation makes it an informative method through which to study how environmental 

exposures may affect reproductive biology.  

Two populations were included in this study: a rural, agricultural Polish population and 

an urban Polish American population. We first compare differences in ages at menarche and 

adult reproductive hormone concentrations between these two populations. The rural Polish 

sample is living in a region transitioning away from subsistence farming (Colleran, 2014). In 

rural Poland, childhood environmental variables including energetic and psychosocial stressors 

predicted age at menarche and adult urinary estrone urinary estrone-3-glucuronide (E1G) 

concentrations (Chapter 3). While studies have compared reproductive traits between Polish and 

American samples, no study to date investigates differences in reproductive traits between Polish 

and specifically Polish American samples. Previous studies indicate that the Polish and 

American populations should have differences in life history traits including average age at 

menarche and progesterone and estradiol concentrations; these differences are typically 

attributed to higher energetic constraint in rural Poland compared to urban United States (Ellison, 

2001; Jasienska, 2001; Jasienska et al., 2006b; Clancy et al., 2009). First, we hypothesized that 
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Polish American women in the United States would have earlier ages at menarche compared to 

rural Polish women. Second, we hypothesized that Polish American women will have higher 

concentrations of urinary reproductive hormone metabolite concentrations across the menstrual 

cycle.  

We further investigated the relationship between reproductive traits and promoter 

methylation at the gene CYP19A1, which codes for the enzyme aromatase. Aromatase is critical 

for estrogen biosynthesis as aromatase metabolizes androgens into estrogens (Martinez-

Arguelles and Papadopoulos, 2010). Methylation of a promoter of the gene CYP19A1 was used 

in this analysis for multiple reasons. First, decreased methylation of CYP19A1 promoters 

increases gene activity, aromatase activity, and, likely, estrone and estradiol production (Demura 

& Bulun, 2008). Methylation at CYP19A1 promoters is also associated with adult polycystic 

ovarian syndrome (Yu et al., 2013) and endometriosis (Hosseini et al., 2016). Finally, Stueve et 

al. (2014) found an interactive effect between body mass and CYP19A1 promoter methylation 

on timing of breast development during puberty. We hypothesized that methylation at this gene 

interacts with childhood energetic stressors to predict pubertal timing. We additionally 

hypothesized that CYP19A1 promoter methylation will be associated with adult urinary estrone-

3-glucuronide (E1G) concentrations across the menstrual cycle. CYP19A1 promoter methylation 

might serve as a mechanistic link between childhood environments and adult reproductive 

hormone concentrations.  

In summary, we offer three main hypotheses:  

1. Average ages at menarche are earlier in Polish American women compared to Polish 

women. Reproductive hormone concentrations are higher in Polish American women 

compared to Polish women.  
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2. CYP19A1 promoter I.4 methylation is associated with age at menarche. Childhood 

environmental variables predict degree of methylation at CYP19A1 promoter I.4.  

3. CYP19A1 promoter I.4 methylation is associated with adult E1G concentrations.  

 

Methods 

Women (n=123) were recruited at the Mogielica Human Ecology Study Site in the 

Beskid Wyspowy region of southern rural Poland during the summers of 2014, 2015, and 2017. 

Women (n=47) were recruited in the United States from 2016 – 2017. Women were recruited 

who were between the ages of 18 and 46, in general good health, not pregnant within the past six 

months, not breastfeeding within the past three months, not on hormonal contraception, and non-

smoking. Polish American women were born in the United States and identified as 1st-3rd 

generation Polish American. Study protocols were approved by the University of Illinois, 

Urbana-Champaign Institutional Review Board (#13856). There were two study options in both 

locations, which are described below and displayed in Figure 4.1. This study is quite extensive, 

and some women did not complete all sub-sections. In order to ensure clarity for readers, we 

include the number of participants in our tables. The full study protocols are described in Chapter 

3 and updated here to reflect the addition of Polish American women.   

Participants were recruited in Poland in multiple ways: gynecologists, nurses, and a 

midwife at two local clinics helped recruit women, an announcement was published in the local 

church bulletin, fliers were left in local businesses including hair salons, book stores, and other 

types of shops, and students traveled door-to-door to invite women to participate in the study. 

Polish women from multiple villages in the region joined the study.  
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Participants were recruited in the United States in multiple ways: posted flyers, emails 

sent to listservs, announcements in local groups, libraries, and classes, and word of mouth. 

Participants in the United States first completed an online eligibility survey. Eligible participants 

were contacted, and in-person meetings were set up in order to introduce and begin the study.  

A subset of participants (n=53 from 2014-2015 and n=46 in 2017 in Poland and n=31 in 

the United States) collected first morning void urine samples for one full menstrual cycle, filled 

out daily physical activity and well-being questionnaires (Jasienska et al., 2006b), and recorded 

their diet five times over their cycle. Participants collected one urine sample per day in a 120 mL 

cup and used vacuum-sealed tubes (Vacumed® in Poland and BD Vacutainer™ in the United 

States) to create two 8-10 mL aliquots at home. Participants immediately froze urine aliquots in 

home freezers. Samples were collected at the end of the menstrual cycle, transported in coolers, 

and stored at -20 or -80°C until processing. Samples in Poland were shipped over dry ice back to 

the University of Illinois, Urbana-Champaign for processing.   

There were two study options, and some women (n=37 in Poland and n=13 in the United 

States) chose to join a week-long abbreviated version of the study. In the week-long abbreviated 

version, women completed daily physical activity and well-being questionnaires and recorded 

their diet three times over that week, but they did not collect any urine samples for hormonal 

analyses.  

Surveys and Measurements: All women completed health and demography surveys that included 

questions about reproductive trait timing and childhood environments. Women were asked about 

age at menarche via recall, and most women in the study (n=119/123 in Poland and n= 47/47 in 

the United States) reported age at menarche. Recall of age at menarche is good for women of 

ages included in this study (Koprowski et al., 2001; Must et al., 2002). If a woman reported an 
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age range (i.e. age 13 - 14), then an average of those ages was used for analyses. Women were 

further asked if they lived on a farm during childhood, if they helped on that farm, and what 

types of animals were present while they were growing up. Women were asked the same 

questions about their current living environment. Women in the United States were also asked 

about participation in childhood sports (i.e. years of participation and type of sport).  

Participants completed the Adverse Childhood Experiences (ACE) survey in the privacy 

of their homes (Felitti et al., 1998). Due to the sensitive nature of these questions, participants 

were reminded that all surveys and survey questions were optional. Some women (n=24/123 in 

Poland and n=8/47 in the United States) chose not to, or forgot to, complete the ACE survey. 

Some women (n=19/99 in Poland and n=1/39 in the United States) did not answer all ACE 

survey questions. The majority (n=15/19 in Poland and n=1/1 in the United States) of women 

who partially completed the survey skipped one question (range 1-6 questions skipped). To 

maximize the amount of data, ACE scores were only excluded if participants skipped one or 

more questions and had a total score of zero. We calculated the total number of reported ACEs 

and used the following categories: zero to one reported experience and two or more reported 

experiences. Grouping ACEs in such a cumulative manner is common in the literature (Felitti et 

al., 1998; Dube et al., 2003; Cluver et al., 2015).  

Anthropometric measurements were taken upon enrollment of all women according the 

to the Bones and Behavior Working Group protocol (Antón et al., 2009). Participant weight and 

body fat percentages were measured using the Tanita© BF-680W body fat monitor.  
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Figure 4.1: The study protocol included two study options: one week-long and one menstrual-
cycle length. This figure displays the surveys, measurements, and collected samples for each 
study option.  
 
 
Laboratory Protocol (hormone data): We measured multiple hormones over the course of each 

participant’s menstrual cycle using two types of Quansys multiplex enzyme linked 

immunosorbent assays (ELISA). The measured hormones included: the urinary estradiol 

metabolite (estrone-3-glucuronide, E1G), C-Peptide, tumor necrosis-factor alpha (TNFα), human 

chorionic gonadotropin (beta-hCG), interleukin 6 (IL-6), cortisol, interleukin 10 (IL-10), C-

reactive protein (CRP), follicle-stimulating hormone (FSH), and urinary progesterone metabolite 

(pregnanediol glucuronide, PdG). All hormones except PdG were run on a custom Quansys 9-

Plex ELISA, and PdG was run individually on a 1-plex Quansys ELISA. Hormone data was 
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generated for samples collected in Poland in 2014 and 2015 (n=53) and some samples collected 

in the United States in 2016-2017 (n=30 assays for PdG and n=9 assays for the 9-Plex). There is 

less data generated for the 9-Plex due to an unfortunate freezer failure resulting in the loss of 

aliquots of samples from Polish American women.  

Sixty-nine total full or half ELISA plates were run for the PdG assay, and seventy-five 

full or half ELISA plates were run for the 9-Plex. The intra- and inter- assay variation for each 

measured hormone was as follows: E1G (8.54%, 32.84%), C-Peptide (5.66%, 25.12%), TNFα 

(17.97%, 0%), beta-hCG (8.08, 0%), IL-6 (6.70%, 0%), cortisol (10.27%, 20.00%), IL-10 

(26.12%, 0%), CRP (4.75%, 17.55%), FSH (5.06%, 34.78%), and PdG (9.46%, 32.19%). While 

the inter-assay variation is high, it is well within the range typically seen in multiplex assays 

(Chowdhury et al., 2009; Bastarache et al., 2011). All samples were run in duplicate; if the 

coefficient of variation (CV) between duplicates was ≥ 15%, then the samples were rerun. E1G, 

PdG, and cortisol concentrations were used in this analysis. The final concentration for all 

urinary hormones was corrected by specific gravity using the protocol described in Miller et al. 

(2004). Some cycles were missing one or more days of urinary collections. When concentrations 

were available for the previous and following day, then a missing value was estimated by 

averaging the surrounding concentrations.  

Cycles were aligned by mid-cycle drop date according to Lipson and Ellison (1996). 

Using this method, day of ovulation is determined as the maximum decrease in E1G over two 

consecutive days. Day of ovulation is marked as day zero, and the follicular and luteal phases are 

aligned going backwards and forwards, respectively. In the event where two potential drop dates 

were identified, we chose the drop date occurring immediately before a rise in PdG. E1G was not 

available for all cycles, so some ovulation days for Polish American cycles were estimating 
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using home luteinizing hormone (LH) test strips. Participants collected an additional urine 

sample between 10 AM and 8 PM on days 10-18 of their cycle. If multiple days were positive for 

LH, the first day was used as the best estimate. If no days were positive for LH, we assumed we 

missed the LH peak, and we did not align that cycle by ovulation day.  

Cycles were assessed for anovulation using the cycles method from Kassam et al. (1996). 

A baseline level of PdG is defined as average PdG concentration for days 6-10, which represents 

PdG after the clearance of PDG from the previous luteal phase and before the rise of PdG during 

the current cycle (Kassam et al., 1996). Cycles are considered anovulatory if the ratio of PdG to 

baseline PdG is greater than or equal to three for at least three consecutive days (Kassam et al., 

1996).  

Cycles from Polish American participants (n=5) were excluded for anovulation. This left 

a total of 25 cycles for assessment of variation in PdG. Two of the five anovulatory cycles had 9-

plex data available, leaving only seven cycles from Polish American participants available for 

assessment of E1G and cortisol. Cycles from Polish sample (n=4) were excluded for missing 

data, pregnancy, or anovulation. This left a total of 49 cycles from Polish sample included in 

analyses.  

Averages of E1G and cortisol concentrations were calculated by cycle phase as follows: 

follicular phase (days -10 to -1), periovulatory phase (days -3 to 3), and luteal phase (days 1 to 

10). Averages of PdG were calculated by cycle phase as follows: luteal (days -1 to -14), early 

luteal (-10 to -5), and late luteal (-4 to -1). These phase partitions are consistent with the 

literature (Lipson and Ellison, 1996; Barrett et al., 2013; Clancy et al., 2013). If a participant was 

missing three or more consecutive days for the follicular or luteal phases, then an average value 

was not calculated for that phase for that participant.  



 102 

Laboratory Protocol (epigenetic data): Methylation has high tissue-specificity, and buccal swabs 

are an informative general tissue collected non-invasively (Lowe et al., 2013). Buccal swabs 

(n=2-4 Whatman© Omniswabs per participant) were collected for gene methylation analysis. 

Methylation data from Poland study years 2014 and 2015 was included in this analysis. The 

CYP19A1 gene is >123 kb long, and there are multiple tissue-specific promoters of this gene 

(Bulun et al., 2003). Two CpG sites in promoter 1.4 were analyzed via pyrosequencing, and we 

used additional data from the Illumina Infinium Methylation EPIC array to analyze methylation 

at CpG sites in promoter II/I.3, promoter I.4, and promoter I.1.  

DNA from buccal swabs was extracted using the Qiagen© Mini DNA Kit using the 

standard procedure. Extracted DNA was then bisulfite converted with the Zymo EZ DNA 

Methylation-GoldTM Kit using the standard protocol; the bisulfite conversion process deaminates 

all unmethylated cytosines to uracil. When a bisulfite converted DNA strand undergoes 

amplification via polymerase chain reaction (PCR), all uracil nucleotides (the unmethylated 

cytosines) will bind to guanine and thus be later sequenced as thymine. PCR followed by 

pyrosequencing was used to quantify methylation at CYP19A1 promoter regions. Primers were 

designed using the Qiagen PyroMark® CpG Assay design software using the sequence for 

aromatase promoter I.4 (GenBank accession: L21982). The PCR forward primer was 

AGATTTTTGATTTATGTGGGGTTA, reverse biotinylated primer was 

TACTCAAACTCCAAAAACTTACCTAAT, and sequencing primer was 

TGATTTATGTGGGGTTAT. Pyrosequencing was completed using the QIAGEN PyroMark 

Q24 Advanced System. This method provided the proportion of methylated cytosines at the 8th 

and 9th CpG sites in CYP19A1 promoter I.4.  
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 Methylation of additional CpG sites for 62 of the Polish samples was assayed using the 

Illumina Infinium Methylation EPIC array, which provided information on single-base 

methylation for 865,918 CpG sites across the genome. We specifically used this data to look at 

CpG sites in additional CYP19A1 promoters. There was no overlap in the promoters included in 

the Illumina Infinium Methylation EPIC array and the pyrosequenced regions. Quality control of 

methylation data was performed as outlined in Ratanatharathorn et al. (2017). Dr. Angela 

Bustamante (UIUC) and I modified the pipeline outlined in Ratanatharathorn et al. (2017) for 

this study. The Illumina GenomeStudio software, R studio version 1.0.143 (RStudio Team, 

2015), and the R packages CpGassoc (Barfield et al., 2012) and WateRmelon (Pidsley et al., 

2013) were used to pre-process the data. Specifically, background correction of the data was run 

in GenomeStudio in order to remove nonspecific signals and technical variation (Wilhelm-

Benartzi et al., 2013). Sites with low signal intensity (detection p-value >0.001) or with more 

than 10% of missing data (n=12,430 in this dataset) were removed from the analysis. 

Additionally, 44,210 probes characterized as not specific and potentially cross-hybridizing were 

removed (McCartney et al., 2016). After removing these probes, 809,685 sites were left in 

analyses. Methylation at these probes was than normalized using the Beta Mixture Quantile 

normalization (BMIQ). Finally, we extracted only CpG sites located in or near CYP19A1 using 

the UCSC gene name in the Illumina annotation file. This selection method was used in Clukay 

et al. (2018) in order to focus analyses on specific candidate genes. This method resulted in 

methylation data for 60 CpG sites in or around CYP19A1. Some of these sites were located in 

promoter regions, and promoter methylation was averaged for promoter II/I.3, promoter I.4, and 

promoter I.1.  
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Analyses for each hypothesis:  

Hypothesis 1: Average ages at menarche are earlier in Polish American women compared to 

Polish women. Hormone concentrations are higher in Polish American women compared to 

Polish women.  

Test: We tested for differences in ages at menarche between the Polish and Polish American 

samples by created a standard linear regression model including project location, participant 

current age, and the interaction between current age and project location. Age was included in 

the model as there were significant differences in participant ages between the two study 

locations.  

Repeated measures ANOVA were used to test for differences in E1G, PdG, and cortisol 

concentrations across the menstrual cycle between Polish and Polish American participants. 

Follicular (days -10 to -1), periovulatory (days -3 to 3), luteal (0 to 10) phases were analyzed for 

each hormone. Repeated measures ANOVA were used to test for differences in PdG 

concentrations between Polish and Polish American participants was also assessed using the 

standard alignment counting backwards from menses. Differences were tested for the luteal 

phase (days -1 to -14).  

Hypothesis 2: CYP19A1 promoter I.4 methylation is associated with age at menarche. Childhood 

environmental variables predict degree of methylation at CYP19A1 promoter I.4. 

Tests: We created a best fit regression model to select predictors of age at menarche in the Polish 

American sample using a penalized regression technique (elastic net) that both minimizes the 

effect of multicollinearity and performs feature selection to create a best fit model (Zou and 

Hastie, 2005). Predictors included in the model were: generation Polish American, helped on a 

childhood farm, had animals as a child, number of farm animal types during childhood, 
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participation in childhood sports, ACE group, and physical activity, height and weight at age at 

menarche in comparison to peers (more, less, similar).  

We created multiple linear regression models to test for a relationship between childhood 

farming variables, adverse childhood experiences, CYP19A1 promoter methylation, and age at 

menarche in the Polish sample.  

Hypotheses 3: CYP19A1 promoter I.4 methylation is associated with adult E1G concentrations.  

Tests: We first created examined correlations between methylation at CYP19A1 and average 

E1G, PdG, and cortisol concentrations. We created a general linear mixed model with cortisol 

concentration as the dependent variable, CYP19A1 promoter I.4 percent methylation and 

menstrual cycle phase as the independent variables and individual as a random factor. We 

created a general linear mixed model with E1G concentration as the dependent variable, 

CYP19A1 promoter I.4 percent methylation and menstrual cycle phase as the independent 

variables and individual as a random factor. Finally, structural equation modeling was used to 

test a pathway where cortisol interacts with CYP19A1 promoter I.4 to predict average E1G 

concentrations.  

Analyses were run using JMP® PRO 13, and alpha was set at 0.05. Structural equation modeling 

was conducted using the R packages lavaan, semPlot, and OpenMx.  

 

Results 

Demographic information for each sample is displayed in Table 4.1.  
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Table 4.1 
Measure Sample Mean Std Dev n 
Age Poland 32.30 8.00 123  

USA 24.02 7.12 47 
Age at menarche Poland 13.42 1.65 119  

USA 12.77 1.28 47 
Body Fat Percentage Poland 29.40 8.49 123  

USA 29.00 7.24 42 
Waist/Height Ratio Poland 0.49 0.09 123  

USA 0.45 0.06 44 
Birth Weight Poland 3319.72 539.84 72  

USA 3388.39 592.88 23 
Number of adverse childhood experiences Poland 0.94 1.29 90  

USA 1.03 1.68 39 
Luteal Phase Length (Days) Poland 11.27 1.90 49  

USA 13.31 3.81 16 
Follicular E1G Poland 111.19 6I.37 42  

USA 133.75 99.53 5 
Periovulatory E1G Poland 116.84 69.19 49  

USA 152.30 119.58 6 
Luteal E1G Poland 76.62 43.01 47  

USA 86.59 75.35 6 
Luteal PdG  
(aligned by menses, days -1 to -10) 

Poland 27578.27 15413.77 46 
 

USA 29879.13 21142.00 21 
Periovulatory PdG  
(aligned by ovulation day, days -3 to 3) 

Poland 14203.48 10773.83 49 
 

USA 12545.02 13324.65 15 
Luteal PdG  
(aligned by ovulation day, days +1 to +10) 

Poland 28279.10 16200.23 48 
 

USA 32008.95 24150.97 15 
Follicular Cortisol Poland 346.78 190.24 42  

USA 270.88 53.79 6 
Periovulatory Cortisol Poland 310.45 183.22 47  

USA 243.23 62.51 5 
Luteal Cortisol Poland 307.79 145.40 49  

USA 216.66 17.47 5 
Ever Smoked Poland 

  
52/123  

USA 
  

5/47 
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Table 4.1 (cont.) 
Measure Sample Mean Std Dev n 
Helped on a childhood farm Poland 

  
84 

N 
   

39 
Y USA 

  
2 

N 
   

45 
Had animals as a child Poland 

  
110 

N 
   

13 
Y USA 

  
42 

N 
   

5 
Currently help on a farm Poland 

  
31 

N 
   

92 
Y USA 

  
3 

N 
   

44 
Currently have animals Poland 

  
95 

N 
   

28 
Y USA 

  
25 

N 
   

22 
Played Sports USA 

  
36 

N 
   

12 
Played Sports:  

years played, before age at menarche 
 3.48 3.56 45 

Played Sports: years played, total 
 

7.40 6.19 45 
 
Table 4.1: Demographic information for the Polish and Polish American participants.  
 
 

Hypothesis 1: Average ages at menarche are earlier in Polish American women compared to 

Polish women. Hormone concentrations are higher in Polish American women compared to 

Polish women.  

We first investigated potential differences in ages at menarche and hormone 

concentrations across the menstrual cycle between the Polish and Polish American samples. 

Polish participants were significantly older than Polish American participants (p<0.0001). Polish 

participants (n=123) had a mean age of 32.30 (SE 0.70), and Polish American participants 
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(n=48) had a mean age of 24.02 (SE 1.05). Thus, we included age in each of the following 

results.  

Age at menarche: There were significant differences in average ages at menarche 

between the Polish and Polish American samples (Table 1, p=0.0271). Polish Americans 

participants had an earlier average age at menarche compared to the Polish participants. Polish 

participants had an average age at menarche of 13.42 (SD 1.65) years, and Polish American 

participants had an average age at menarche of 12.77 (SD 1.28) years.  

Adult Hormone and Reproductive Variation: There were significant differences in the 

length of the luteal phase for these two populations (Fig. 4.2, p=0.0251). The Polish sample had 

an average of 11.27 (SD 1.90) days in the luteal phase, and the Polish American sample had an 

average of 13.31 (SD 3.81) days in the luteal phase. Additionally, some participants (n=11/49 

Polish and n=2/16 Polish American women) had a short luteal phase length (<10 days), an 

indication of luteal phase deficiency.  
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Figure 4.2: There are significant differences in average luteal phase lengths between the Polish 
(n=49) and Polish American (n=16) samples (p=0.0251). Mean luteal phase length was 11.27 
(SD 1.90) days for the Polish sample and 13.31 (SD 3.81) days for the Polish American sample.  
 
 
 

We used repeated measures ANOVA to test for differences in sex steroids E1G and PdG 

concentrations and glucocorticoid cortisol concentrations between Polish and Polish American 

samples across phases of the menstrual cycle (Fig. 4.3). There were not significant differences in 

E1G concentrations between Polish and Polish American samples for any phase. Specifically, 

there were no differences between E1G concentrations during the follicular phase (aligned by 

day of ovulation, days -10 to -1, p=0.6852), early follicular phase (days -10 to -6, p=0.6799), late 

follicular phase (days -5 to -1, p=0.7568), and periovulatory phase (days -3 to 3, p = 0.7357). 

There were not significant differences in the luteal phase (days 1 to 10, p=0.0935, early luteal 

phase (days 0 to 2, p=0.9433), early/mid luteal phase (days 3 to 5, p=0.9822), or late luteal phase 

(days 6 to 10, p=0.1198).  

Polish Polish American

Lu
te

al
 P

ha
se

 L
en

gt
h 

(d
ay

s)

6

8

10

12

14

16

18

20

22
LutealPhaseLength_EllisonLipson_LH400s



 110 

When investigating variation in PdG between populations, it is typically most appropriate 

and logical to align cycles by counting backwards from the start of the following menstrual cycle 

(Jasienska and Ellison, 1998; Clancy et al., 2009). When analyzing cycles in this manner, there 

were not significant differences in PdG concentrations between Polish and Polish American 

samples for the luteal phase (aligned by menses, days -14 to -1, p=0.7894), mid-luteal phase 

(days -10 to -5, p=0.4486), and late luteal phase (days -4 to -1, p=0.0976). Due to significant 

differences in luteal phase length between the two samples, we also aligned PdG by ovulation 

day and investigated differences in PdG between the Polish and Polish American samples (Fig. 

4.3). There were not significant differences in PdG concentrations for the periovulatory phase 

(days -3 to 3, p=0.7441), luteal phase (days 1 to 10, p=0.6594), early luteal phase (days 0 to 2, 

p=0.4505), early/mid luteal phase (days 3 to 5, p=0.8367), or late luteal phase (days 6 to 10, 

p=0.7763).  

Finally, there were not significant differences in cortisol concentration between Polish 

and Polish American samples for any phase (Fig. 4.3). Specifically, there were no differences 

between E1G concentrations during the follicular phase (aligned by day of ovulation, days -10 to 

-1, p=0.2464), periovulatory phase (days -3 to 3, p = 0.3334), or luteal phase (days 1 to 10, 

p=0.5046).  
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Figure 4.3 
3A.  

 
 

3B. 
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Figure 4.3 (cont.) 

3C. 

 
 
Figure 4.3: There are no significant differences in average E1G concentrations (Fig. 3A), average 
PdG concentrations (Fig. 3B), or average cortisol concentrations (Fig. 3C) between the Polish 
and Polish American samples for any phase of the menstrual cycle.  
 

In the last chapter, we found that childhood farming and adverse childhood experiences 

best predicted age at menarche in the Polish sample (AICc = 297.06, R2=0.09). Here, we first 

investigate which childhood variables predict age at menarche in the Polish American sample. I 

investigated the relationship between age at menarche and early childhood exposures (farming, 

own animals, played sports during childhood, number of years participate in sports before age at 

menarche, adverse childhood experiences, generation Polish American, and physical activity, 

height and weight at age at menarche compared to peers). I found that ACEs did not 

independently predict age at menarche (p=0.8082), nor did childhood sport participation 
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(p=0.8105). Using the same elastic net regression technique, none of the variables included in the 

model significantly predicted age at menarche.  

Girls whose parents were born in Poland (n=26) had an average age at menarche of 13.12 

(SD 1.29, n=29). Girls whose grandparents were born in Poland and parent(s) born in the United 

States had a slightly earlier average age at menarche of 12.33 (SD 1.22, n=15). This difference 

was not significant (p=0.0620). However, Polish American women whose parents were born in 

Poland did not have a significantly different average age at menarche compared to Polish 

participants (p=0.3888), while Polish American women whose grandparents were born in Poland 

did have a significantly earlier average ages at menarche compared to Polish participants 

(p=0.0126). 

Hypothesis 2: Methylation at CYP19A1 promoter I.4 is associated with age at menarche. 

Childhood environmental variables predict percent methylation at CYP19A1 promoter I.4. 

We next examined the relationship between age at menarche and percent methylation at 

CpG 8 and CpG 9 in CYP19A1 in the Polish sample. We found that women with later (³ 14.5 

years) ages at menarche had slightly, but not significantly, lower percent methylation at CpGs 8 

and 9 of the CYP19A1 promoter I.4 compared to women wither earlier (£ 12 years) ages at 

menarche (Figure 4.4, p=0.1403).  
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Age at 
menarche  

n Mean Std 
Dev 

Later (³ 
14.5 years) 

21 79.43 3.42 

Earlier (£ 
12 years) 

20 81.06 3.50 

    

 
Figure 4.4: Women with earlier ages at menarche have slightly, but not significantly, increased 
promoter methylation at CpG sites 8 and 9 of the CYP19A1 promoter (p=0.1403).  
 
 
 

In the previous chapter, we found that childhood farming and adverse childhood 

experiences affect age at menarche in the Polish sample. Here, we investigate combined effects 

between percent methylation at CYP19A1 promoter I.4 CpG sites 8 and 9 with these variables on 

age at menarche. We find that childhood farming and percent methylation together significantly 

predict age at menarche (Figure 5A, p=0.0336, R2=0.08, n=81). Lower percent methylation at 

CYP19A1 promoter I.4 and farming during childhood both associated with increased ages at 

menarche.  

Number of adverse childhood experiences and percent methylation at CYP19A1 

promoter I.4 CpG sites 8 and 9 did not significantly predict age at menarche in this sample 

(Figure 5B, p=0.2767, R2=0.06, n=62). Including methylation at promoter I.1 and promoter II/I.3 
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did not improve either model, and methylation at these promoters did not significantly predict 

age at menarche.   

 
5A 

 

5B 

 
 
 
Dependent Variable: age at menarche  
R2 0.08     
Model p-value 0. 0336*     
Parameter estimates       
Term Estimate Std Error t Ratio Prob>|t|  
Intercept 18.2293 3.9084 4.66 <0.0001 * 
Childhood farming (No)  -0.4339 0.1836  -2.36 0.0206 * 
Average % methylation at CpG 8&9  -0.0613 0.0488  -1.26 0.2127  

 
Figure 4.5: Helping on a farm during childhood and average percent methylation at CYP19A1 
promoter I.4 together significantly predicted age at menarche in the Polish sample (Fig. 5A, 
p=0.0336, R2=0.08, n=81). Comparatively, number of adverse childhood experiences and 
percent methylation at CYP19A1 promoter I.4 CpG sites 8 and 9 did not significantly predict 
age at menarche in this sample (Fig. 5B, p=0.2767, R2=0.06, n=62). 
 
 

Hypotheses 3: Methylation at CYP19A1 promoter I.4 is associated with adult E1G 

concentrations.  

We created a multivariate correlation matrix to display the relationship between 

measured average hormone concentrations and methylation at all CYP19A1 CpG cites, 
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CYP19A1 promoter II/I.3, CYP19A1 promoter I.4 (Illumina M-values and percent methylation 

from pyrosequencing at CpGs 8&9), and CYP19A1 promoter I.1/CpG Island shelf (Table 4.2). 

Some interesting patterns emerged. First, average methylation was significantly correlated with 

luteal phase length. Secondly, average cortisol concentrations were significantly positively 

correlated with average methylation at CYP19A1 promoter I.4 CpG sites 8&9. Finally, follicular 

and luteal phase cortisol correlated with average E1G concentrations.  

We further investigated the relationship between cortisol and CYP19A1 promoter I.4 

methylation using a general linear mixed model. Individual was included as a random factor. 

CYP19A1 promoter I.4 percent methylation was significantly associated with cortisol 

concentration (Fig. 4.6, p=0.0125). 
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Dependent Variable:  Cortisol Concentration  
AICc 15230.09  
Log likelihood  15218.01  
Term Estimate Std Error df t Ratio Pr (>|t|)  
Intercept  -783.0580 499.8236 39.4  -1.57 0.1252  
CYP19A1 pI.4 CpG sites 8&9, 
% methylation  14.8028 5.6561 39.4 2.62 0.0125 * 

Phase (Follicular) 30.6989 7.8026 1060.5 3.93 <0.0001 * 
Age  -1.8775 3.0809 39.5  -0.61 0.5457  

 
Figure 4.6: Percent methylation at CYP19A1 promoter I.4 significantly predicated cortisol 
concentrations. Individual was included as a random factor in the general linear mixed model. 
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We then investigated the hypothesis that CYP19A1 promoter I.4 methylation is 

associated with E1G concentrations. We created general linear mixed models for luteal and 

follicular phase E1G concentrations and included interaction terms between CYP19A1 promoter 

I.4 methylation and cortisol concentrations. Additional variables that influence adult E1G 

concentrations were included in the model, and individual was included as a random factor. We 

found that CYP19A1 promoter I.4 methylation was not a significant predictor of follicular phase 

E1G (p=0.3129, Table 4.3). Comparatively, CYP19A1 promoter I.4 methylation was a 

significant predictor of luteal phase E1G (p=0.0033, Table 4.4). The interaction between 

CYP19A1 promoter I.4 methylation and cortisol concentrations was not a significant predictor of 

either follicular phase E1G (p=0.1504, Table 4.3) or luteal phase E1G (p=0.2413, Table 4.4). 

 
 
Dependent Variable  Follicular Phase E1G Concentration 
AICc 5596.27 
Log likelihood  5573.69 
Term Estimate Std Error DF t Ratio Prob>|t|  
Intercept 239.3782 206.8841 22.5 1.16 0.2594  
CYP19A1 promoter I.4 CpG sites 
8&9 methylation 

 -2.4982 2.4213 23.0  -1.03 0.3129  

Cortisol  0.0977 0.0172 410.2 5.69 <0.0001 * 
(CYP19A1 promoter I.4 CpG sites 
8&9 methylation) * (Cortisol) 

 -0.0054 0.0038 454.8  -I.44 0.1504  

Waist to Height Ratio 68.4016 123.8022 22.6 0.55 0.5860  
Helped on a childhood farm (N) 26.4677 9.7890 23.0 2.70 0.0127 * 
Current Age  -0.3997 1.6797 21.5  -0.24 0.8142  
Adverse Childhood Experiences 
(group: 0 or 1)  

18.0278 10.6400 22.6 1.69 0.1040  

Ever Pregnant (N) 4.2046 13.0424 22.3 0.32 0.7502  
 
Table 4.3: CYP19A1 promoter I.4 methylation was not associated with follicular phase E1G. 
Only cortisol concentration and childhood farm work were significant predictors of follicular 
phase E1G. Individual was included as a random factor in the general linear mixed model.  
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Dependent Variable  Luteal Phase E1G concentration  
AICc 3951.23 
Log likelihood  3928.47 
Term Estimate Std Error DF t Ratio Prob>|t|  
Intercept 582.7140 152.5588 26.4 3.82 0.0007 * 
CYP19A1 promoter I.4 CpG sites 
8&9 methylation 

 -5.7110 1.7689 26.5  -3.23 0.0033 * 

Cortisol  0.1426 0.0154 331.9 9.28 <0.0001 * 
(CYP19A1 promoter I.4 CpG sites 
8&9 methylation) * (Cortisol) 

 -0.0040 0.0034 341.0  -1.17 0.2413  

Waist to Height Ratio 26.8345 91.0147 26.2 0.29 0.7704  
Helped on a childhood farm (N) 6.5906 7.0953 25.6 0.93 0.3616  
Current Age  -2.6024 1.2509 27.2  -2.08 0.0470 * 
Adverse Childhood Experiences 
(group: 0 or 1) 

 -0.5150 7.8979 27.2  -0.07 0.9485  

Ever Pregnant (N) 22.5537 9.4179 25.7 2.39 0.0242 * 
 
Table 4.4: CYP19A1 promoter I.4 methylation, cortisol concentrations, age, and former 
pregnancies were significant predictors of luteal phase E1G concentrations. Individual was 
included as a random factor in the general linear mixed model. 
 
 
 

We used structural equation modeling to visualize the relationships among cortisol, 

CYP19A1 promoter I.4 methylation, and luteal phase E1G. CYP19A1 promoter I.4 methylation 

negatively correlated with luteal phase E1G concentrations, and cortisol positively correlated 

with CYP19A1 promoter I.4 methylation (Figure 4.7).  
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Fig. 7A 
 

 
 

 Fig. 7B 

 
Figure 4.7: A structural equation model displaying the hypothesized relationships between 
cortisol, CYP19A1 promoter I.4 methylation, and luteal phase E1G. Age, body fat percentage, 
number of ACEs, childhood farming, past pregnancy, former use of hormonal birth control, and 
previous smoking were all included in the model. Fig 7A displays the full model and 
standardized parameter estimates for each relationship. Fig 7B displays a simplified version of 
the same model in order to visualize CYP19A1 as a mediator of the relationship between cortisol 
and luteal phase E1G.   
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Discussion  

Reproductive ecology has long examined the adaptive flexibility of women’s 

reproduction in the face of variable environments (Wasser and Barash, 1983; Vitzthum, 2008). 

Differences in reproductive hormone concentrations between populations has been thought to 

reflect these flexible reproductive strategies in the face of varying levels of energetic, 

immunological, and psychosocial stressors. Here we find that while average ages at menarche 

are significantly different between Polish and Polish American women, there are not significant 

differences in reproductive hormone concentrations (E1G and PdG) or glucocorticoid 

concentrations (cortisol). In the Polish American sample, participants whose parents were born in 

Poland had slightly, though not significantly, later ages at menarche compared with participants 

whose grandparents were born in Poland. The same variables that predict age at menarche in 

Poland did not significantly predict age at menarche in the United States.  

In addition to comparing reproductive traits between Polish and Polish American women, 

we also investigated gene methylation as a potential mechanism connecting early life 

environments and E1G concentrations. Gene methylation, one epigenetic mechanism, is the 

addition of a methyl group to cytosine at CpG dinucleotides; gene methylation can be responsive 

to environmental traits and can modify gene expression (Portela and Esteller, 2010). We 

specifically investigated promoter methylation at CYP19A1, a gene that codes for aromatase. 

Aromatase is an enzyme that is critical for estrogen biosynthesis. We found that methylation at 

CYP19A1 promoter I.4 along with farming during childhood significantly predicted age at 

menarche. We further found that CYP19A1 promoter I.4 methylation significantly positively 

correlated with cortisol concentrations. We created a path analysis model that presented a 

hypothetical pathway by which cortisol concentrations affect CYP19A1 promoter I.4 
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methylation, and CYP19A1 promoter I.4 affects luteal phase E1G concentrations. In this model 

cortisol positively correlated with promoter I.4 methylation, and promoter I.4 negatively 

correlated with luteal phase E1G concentrations.   

Comparisons between Poland and USA:  

  We first report that average ages at menarche are significantly later in the Polish sample 

compared to the Polish American sample. In the Polish American sample, participants whose 

parents were born in Poland had slightly, though not significantly, later ages at menarche 

compared with participants whose grandparents were born in Poland. The same variables that 

predict age at menarche in Poland (see Chapter 3) did not significantly predict age at menarche 

in the United States. Finally, we report no significant differences in reproductive hormone 

concentrations (E1G and PdG) or glucocorticoid concentrations (cortisol) between the Polish and 

Polish American samples. However, women in the United States had significantly later average 

luteal phases compared to women in Poland.  

 Previous studies demonstrate differences in progesterone concentrations between rural 

Polish women and women living in the United States (Ellison, 1994; Jasienska et al., 2000; 

Jasienska, 2001). Population differences in hormone concentrations typically reflect differences 

in environment, and, more specifically, differences in energetic and immune stressors (Ellison et 

al., 1993; Jasienska et al., 2006a; Núñez-De La Mora and Bentley, 2007). The lack of difference 

we see in each hormone across the menstrual cycle may reflect changes in rural Poland. In 

previous studies, this region is discussed as a moderately energetically constrained environment 

where women typically have access to adequate nutrition, and have moderate levels of physical 

activity during the harvest season (Jasienska and Ellison, 1998, 2004). Typical activities include 

farming, working with farm animals, and extensive gardening (Jasienska and Ellison, 1998, 
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2004; Clancy et al., 2013), and women walk significantly more in this region compared to urban 

women in the United States (Lee et al., 2015). However, this region of rural Poland is 

undergoing a transition, as evidenced by the increase of wage-labor jobs and decrease of 

subsistence farming practices (Colleran, 2014), as well as a secular trend in declining ages at 

menarche (see Chapter 3). These changes may offer one explanation for the lack of difference 

between Polish and Polish American hormonal profiles.  

An alternative explanation is that Polish American women have similarities in genes 

underlying variation in reproductive hormone variation. Most comparisons in reproductive traits 

between populations have not specifically focused on immigrant and source populations (for 

exceptions, see: Núñez-de la Mora et al., 2007; Houghton et al., 2014). In our study, Polish 

American women whose grandparents were born in Poland had slightly earlier ages at menarche 

compared to Polish American women whose parents were born in Poland. Interestingly, average 

age at menarche for Polish American women whose parents were born in Poland was not 

significantly different from the women born in rural Poland. This finding matches other studies 

of migrants where Japanese and Chinese Americans have earlier ages at menarche and high rates 

of breast cancer compared to women in Japan and China (Eaton et al., 1994; Kolonel et al., 

2004). Similarly, breast cancer incidence in Polish immigrants to the United States tripled within 

one generation (Nelson, 2006). Follow-up studies including a larger number of hormonal profiles 

of Polish American women will help validate the lack of difference in hormone concentrations 

between populations.  

While there were no differences between reproductive hormone concentrations between 

the two populations, women in Poland had shorter luteal phase lengths compared to women in 

the United States. Some participants (n=11/49 Polish and n=2/16 Polish American women) had a 
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short luteal phase length (<10 days), an indication of luteal phase deficiency. Luteal suppression 

is one of the earliest ovarian responses to ecological, behavioral or constitutional stress (Ellison, 

1990; Ellison et al., 1993). Luteal phase suppression may reflect a response to stress resulting in 

short-term lowered fecundity (Crawford et al., 2017). The shorter luteal lengths of Polish 

participants may indicate that, while this area is transitioning, there are still environmental 

stressors affecting reproductive function.  

Epigenetics and pubertal timing:  

The relationship between methylation at promoters of CYP19A1 and age at menarche 

was investigated in the Polish sample. We found that women with earlier ages at menarche has 

slightly, but not significantly, increased promoter methylation at CpG sites 8 and 9 of the 

CYP19A1 promoter (p=0.1403). Helping on a farm during childhood and average percent 

methylation at CYP19A1 promoter I.4 together significantly predicted age at menarche in the 

Polish sample (Fig. 5A, p=0.0336, R2=0.08, n=81). Comparatively, number of adverse childhood 

experiences and percent methylation at CYP19A1 promoter I.4 CpG sites 8 and 9 did not 

significantly predict age at menarche in this sample (Fig. 5B, p=0.2767, R2=0.06, n=62). 

Including methylation at promoter I.1 and promoter II/I.3 did not improve either model, and 

methylation at these additional promoters did not significantly predict age at menarche. This 

finding indicates that gene methylation may affect pubertal timing, and specifically age at 

menarche.   

Age at menarche is highly heritable, and heritability estimates ranging from to 0.44 – 

0.95 (Towne et al., 2005). However, a recent meta-analysis of GWAS studies identified thirty 

new loci associated with menarcheal timing, which together only explained approximately 7.2-

12.2% of the heritability in age at menarche (Elks et al., 2010). Additionally, the secular trend of 
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declining average ages at menarche globally over time alongside health and nutritional 

improvements is occurring more quickly than expected under a natural selection (Almstrup et al., 

2016). Age at menarche is also quite responsive to the environment (Wells and Stock, 2011). 

Epigenetic modifications may be one mechanism by which both early life energetic and 

psychosocial stress affect timing of menarche. Gene methylation at specific loci changes in 

response to both energetic stress (Zhang et al., 2011; Rönn et al., 2013; White et al., 2013) and 

psychosocial stress and support (Lam et al., 2012; Mulligan et al., 2012; Non et al., 2016). 

Additionally, epigenetic modifications resulting from environmental stress can remain stable 

over the lifetime (Heijmans et al., 2008). It is thus reasonable to hypothesize that epigenetic 

factors provide a link between childhood environment and pubertal timing. 

Few studies to date have investigated the relationship between environmental variables, 

gene methylation, and timing of menarche. In one study, a higher degree of CYP19A1 promoter 

II/I.3 methylation was associated with earlier breast development for urban American girls who 

were overweight (Stueve et al. 2014). Their results were similar to ours in that higher 

methylation of a CYP19A1 promoter associated with earlier timing of a pubertal marker. Women 

with later ages at menarche had higher global DNA methylation as adults in one study (Terry et 

al., 2008), but the opposite relationship was found with age at menarche in another study 

(Demetriou et al., 2013). This difference may be due to tissue specificity of methylation patterns 

or differences in methods. Another recent study identified changes in DNA methylation that 

coincide with pubertal development (Almstrup et al., 2016). Prepubertal children had lower gene 

methylation in open sea and in CpG island shores and selves (Almstrup et al., 2016). There was 

significant overlap in CpG sites associated with pubertal timing and hormone concentrations in 

boys (Almstrup et al., 2016). Broadly speaking, these studies provide evidence that gene 
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methylation may affect, or be affected by, pubertal timing. They further indicate that there may 

be interactions between variables such as body weight with gene methylation and pubertal timing 

and indicate that gene methylation can be associated with both pubertal timing and hormone 

concentrations.  

In this study, we investigated promoter methylation of a candidate gene, chosen based on 

evidence from published epigenome-wide association studies, gene function, and relevance to 

reproductive traits (Demetriou et al., 2013; van Veldhoven, 2014). We investigated gene 

promoter methylation at CYP19A1, which has been associated with energetic traits and pubertal 

timing (Stueve et al., 2014). The gene CYP19A1 codes for the enzyme aromatase. Aromatase is 

critical for estrogen biosynthesis in that aromatase metabolizes androgens into estrogens 

(Martinez-Arguelles and Papadopoulos, 2010). Decreased methylation of CYP19A1 promoters 

increases gene activity, aromatase activity, and estrone and estradiol production (Demura & 

Bulun, 2008). The CYP19A1 gene is >123 kb long, and there are multiple tissue-specific 

promoters of this gene (Bulun et al., 2003). Promoter I.4, promoter I.3, and promoter PII are 

specific promoters for adipose tissue, including breast adipose tissue. Promoter I.4 is also a 

specific promoter in skin and fetal tissue (Bulun et al., 2003). Promoter I.4 is located about 73 kb 

upstream of the aromatase coding region (Bulun et al., 2003). In addition to investigating the 

relationship between CYP19A1 promoter methylation and age at menarche, we also examined 

the relationship between CYP19A1 promoter methylation and adult reproductive hormones.  

 

Epigenetics and adult E1G: 

We first found that average methylation was significantly positively correlated with luteal 

phase length. Average cortisol concentrations were significantly positively associated with 
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average methylation at methylation at CYP19A1 promoter I.4 CpG sites 8&9. Additionally, 

follicular and luteal phase cortisol positively correlated with average E1G concentrations. In our 

generalized linear model, CYP19A1 promoter I.4 percent methylation was significantly 

associated with cortisol concentration (p=0.0125). This finding prompted us to investigate the 

relationship between cortisol, CYP19A1 promoter I.4 methylation, and E1G concentrations. We 

used structural equation modeling to demonstrate a hypothetical pathway by which cortisol may 

affect luteal phase E1G concentrations via changes in methylation of CYP19A1 promoter I.4.  

Methylation of CpG dinucleotide sites in CYP19A1 promoters likely regulates CYP19A1 

transcription (Knower et al. 2010). Lower methylation and increased activity of the CYP19A1 

promoter increases aromatase activity and estrone and estradiol production (Demura and Bulun, 

2008). We thus anticipated finding a relationship between CYP19A1 promoter methylation and 

E1G concentrations and were surprised to find a correlation between cortisol concentrations and 

CYP19A1 promoter I.4 CpG sites 8&9. The relationship between CYP19A1 promoter I.4 and 

cortisol concentration is plausible as promoter I.4 contains a glucocorticoid response element 

(GRE); glucocorticoids activate the CYP19A1 promoter I.4 (Demura and Bulun, 2008; Chen et 

al., 2009). As previously mentioned, there are multiple promoters for CYP19A1, and these 

promoters are tissue specific. In human placental syncytiotrophoblasts, cortisol treatment 

increased aromatase expression, and cortisol treatment was associated with changes in 

methylation and histone acetylation of a CYP19A1 promoter (Wang et al., 2012). In a study of 

human subcutaneous abdominal adipose tissue, cortisol treatment increased aromatase activity; 

however, no epigenetic data was assessed in this study (McTernan et al., 2000). It is therefore 

feasible that cortisol can stimulate aromatase activity via epigenetic interactions, and we suggest 

further studies are necessary to confirm our finding.  
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Moreover, we found that CYP19A1 promoter I.4 methylation, cortisol concentrations, 

age, and former pregnancy were significant predictors of luteal phase E1G concentrations. We 

used structural equation modeling to demonstrate a hypothetical pathway by which cortisol may 

affect luteal phase E1G concentrations via changes in methylation of CYP19A1 promoter I.4. 

We anticipated that methylation of CYP19A1 may influence estradiol concentrations CYP19A1 

methylation is associated with aromatase activity and aromatase is important for estradiol 

biosynthesis. We found a positive relationship between cortisol concentration and methylation of 

CYP19A1 promoter I.4, and a negative relationship between methylation of CYP19A1 promoter 

I.4 and luteal phase E1G. This finding is consistent with the literature relating CYP19A1 

promoter methylation and aromatase expression. For example, Yu et al. (2013) found that 

women with PCOS had higher CYP19A1 promoter methylation and lower aromatase expression 

in ovarian tissue. Similarly, Hosseini et al. (2016) found that women with endometriosis had 

higher methylation CYP19A1 promoters II/I.3 and I.4 and lower gene expression in cumulus 

cells. Treating endometrial cells with a demethylating agent enhanced aromatase mRNA (Izawa 

et al., 2011). Finally, Demura and Bulun (2008) demonstrated that higher methylation at 

CYP19A1 promoter II/I.3 decreased promoter activity. These studies are consistent with the 

findings in our study: lower methylation at CYP19A1 promoters is associated with higher 

aromatase activity in these studies and is associated with increased E1G concentrations in our 

study.  

Study limitations:  

 This is a retrospective study, and thus results should be interpreted with caution. We 

ensured that our hypotheses and predicted causal pathways are evidence-based, but we suggest 

further studies are necessary to confirm our findings. We also do not have data for additional 
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potential sources of variation. For example, we did not measure exposure to endocrine 

disruptors, which may affect reproductive traits like age at menarche (Buttke et al., 2012; Wolff 

et al., 2017) and/or aromatase regulation (Zhao et al., 2017). Finally, DNA methylation can have 

tissue specificity, and we used a generally informative tissue (buccal cells) to assess methylation 

at CYP19A1 promoters. That being said, buccal swabs are an informative general tissue 

collected non-invasively that may be more informative than blood  (Lowe et al., 2013).  

Conclusion 

Reproductive ecology has long examined the adaptive flexibility of women’s 

reproduction in the face of variable environments (Wasser and Barash, 1983; Vitzthum, 2008). 

While many studies reference the possibility of genetic and epigenetic effects on reproductive 

traits, few have actually tested the physiological mechanisms by which epigenetic traits may 

actually produce variation in menarcheal timing and adult outcomes. This study builds on early 

models to integrate new knowledge and test potential mechanistic links between environments 

and adult reproductive hormones. We found that methylation at CYP19A1 promoter I.4 (CpG 

sites 8 & 9) along with farming during childhood significantly predicted age at menarche in a 

rural Polish population. We further identify a potential pathway by which increased cortisol 

concentrations increases CYP19A1 promoter I.4 methylation, which likely decreases aromatase 

activity and downstream estrogen and estrone concentrations. This pathway may help explain 

differences in estrogen concentrations between individuals.  
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Chapter 5 

Conclusion 

 Environmental stressors and social support affect timing of puberty. Pubertal timing, in 

turn, is associated with adult reproductive function in many studies. In addition to a relationship 

between pubertal timing and reproductive outcomes, pediatricians also use timing and tempo of 

puberty as a signal for adolescent environment and adult disease risk (Hillard, 2014). The timing 

of puberty is typically understood within a life history framework which seeks to understand how 

organisms optimize their survival and reproductive strategies in different environments. Life 

history trade-offs occur when there are competing somatic needs for growth, maintenance, 

reproduction, and survival. Age at first menses, or menarche, is one of the major, visible points 

at which a girl begins the transition from somatic investment in growth to reproduction 

(Gluckman and Hanson, 2006b). Childhood environmental variables, like energetic and 

psychosocial stressors, affect age at menarche in different ways, creating pushes and pulls on 

pubertal timing. In this research, I investigated multiple aspects of pubertal timing, including 

how social support measures affect age at menarche (Chapter 2), psychosocial and energetic 

stressors experienced during childhood correlate with pubertal timing and adult reproductive 

function (Chapter 3), timing of menarche varies, and reproductive hormones do not vary, 

between Polish and Polish American women (Chapter 4), and that gene methylation is a potential 

mechanism mediating the relationship between stress and reproductive function (Chapter 4). The 

results of this study have implications for reproductive health, and contextualizing age at 

menarche creates a better understanding of when age at menarche actually might be predictive of 

adult disease risk. 
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Energetic and psychosocial stressors tend to respectively delay and accelerate age at 

menarche (Ellison, 2001; Ellis, 2004). These two types of stress are typically investigated 

separately. In this project, we both expand research on pubertal timing to include measures of 

social support from family and friends may affect age at menarche (Chapter 2) and investigate 

how different types of stress may work together to affect pubertal timing and future reproductive 

function (Chapter 3). First, I contend that our understanding of the variation in pubertal timing 

would benefit from a greater understanding of social support from family and friends may affect 

age at menarche by either buffering psychosocial or energetic stressors or directly affecting age 

at menarche. Social support is associated with many physiological outcomes and can buffer 

physiological responses to stress (Uchino et al., 1996; Gunnar, 2017). Parental social support, for 

example, decreases stress reactivity in children (Hostinar et al., 2015). I found that open 

communication with parents, as a measure of kin social support, predicted age at menarche in a 

sample of adolescent girls in the United States. Mother-adolescent and father-adolescent open 

communication scores had opposing directional effects on age at menarche. Kin social support 

may provide a signal of surrounding developmental and reproductive environment. I contend that 

positive psychosocial factors, rather than only negative psychosocial factors, may be associated 

with earlier menarcheal development in some contexts.  

Second, I found that age at menarche has declined over time in the Beskid Wyspowy of 

rural Poland. Helping on farms and with farm animals as a child were associated with later ages 

at menarche. Women with a higher number of adverse childhood experiences tended to have 

earlier age at menarche, although this difference was not statistically significant. Despite 

different effects on age at menarche, all types of childhood stressors were associated with lower 

adult E1G concentrations. Chisholm et al. (2005) proposed merging the energetics and 
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psychosocial stress hypotheses by hypothesizing that age at menarche is first dependent on 

energetics. In the absence of extreme energetic constraint, then psychosocial stress may play a 

larger role (Chisholm et al., 2005). The results of my study indicate that it is instead possible for 

multiple types of stress to push and pull on age at menarche. This rural Poland region is an area 

of semi-energetic constraint, meaning that women are experiencing energetic stress but are not 

necessarily nutritionally deprived. In this context, energetic, immune, and psychosocial stressor 

together all affect age at menarche and further affect adult reproductive function.  

Including related populations in different environments is a common anthropological 

technique harkening to Boas’ craniometrics studies (Boas, 1912). Comparing immigrant and 

county-of-origin populations has been an effective anthropological technique to research 

environmental effects on phenotypic traits. While Boas particularly challenged the naturalistic 

viewpoint of his time, the nature verses nurture discussion continues today (see Fox Keller, 

2010). Age at first menstruation, menarche, is a reproductive trait with high heritability (Towne 

et al., 2005). Yet, age at menarche in immigrant populations to the U.S. is often decreased 

compared country of origin (Kolonel et al., 2004). There are clear genetic and environmental 

effects on pubertal timing, making age at menarche an interesting test case to explore ideas of 

evolved environmental responsivity. In this project, I compared differences in reproductive traits 

between women in rural Poland and Polish American women in urban areas of the United States. 

While studies have compared reproductive traits between Polish and American samples, no study 

to date investigates differences in reproductive traits between Polish and specifically Polish 

American samples. We find that ages at menarche are earlier in Polish American women. 

Further, there is a generational affect where Polish American women whose parents were born in 

Poland did not have significant difference in average ages at menarche compared to women in 
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Poland, but Polish American women whose grandparents were born in Poland. There were no 

differences in reproductive hormones, nor cortisol concentrations between the two populations. 

Physiological mechanisms by which childhood environments affect reproductive traits 

are often alluded to, but not tested for, in studies connecting stress and reproduction. I 

investigated gene methylation as a potential mechanism mediating the relationship between 

stress and reproductive function. Epigenetics can be thought of as above and beyond the genome 

and, more specifically, is defined as “stable and heritable changes in gene expression that are not 

caused by changes in underlying DNA sequence” (Russo et al., 1996). One epigenetic 

mechanism is DNA methylation, the addition of a methyl group to cytosine at CpG dinucleotides 

(Portela and Esteller, 2010). The amount of DNA methylation at certain CpG sites affects gene 

transcription and expression (Jones and Takai, 2001). DNA methylation is both heritable and 

modifiable, and methylation changes in response to environmental cues and experiences 

(Feinberg and Irizarry, 2010b; Borghol et al., 2012). The modifiable nature of DNA methylation 

makes epigenetic changes an informative method through which to study the dynamics of 

genetic and environmental interactions. Changes in DNA methylation are one method of evolved 

response to environmental stimuli in a manner that directly affects genetic expression. I found 

that methylation at a promoter of the gene coding for aromatase (CYP19A1) along with farming 

during childhood significantly predicted age at menarche in a rural Polish population. We further 

identify a potential pathway by which increased cortisol concentrations increases CYP19A1 

promoter I.4 methylation, which likely decreases aromatase activity and downstream estrogen 

and estrone concentrations. This pathway may help explain differences in estrogen 

concentrations between individuals. Overall, the results of this research underscore that 

epigenetic factors like gene methylation may play a role in reproductive ecology and may 
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provide a piece of the lacking intermediate structure between early environmental experiences 

and reproductive traits. 

Future Directions 

The results of this study lead to additional questions. If age at menarche does not 

associate with adult reproductive hormone concentrations in Polish and Polish American adults, 

is age at menarche still a good proxy for childhood environments? Why do we find differences in 

ages at menarche between Polish and Polish American women, but we do not find differences in 

reproductive hormone concentrations? Third, how do contemporary stressors affect reproductive 

function? Does reproductive function as indicated by hormone concentrations and luteal phase 

length affect fertility or fecundity? Does social support or other types of community networks 

mediate relationships between stressor and reproductive outcomes in these two populations?  

Age at menarche is associated with adolescent reproductive function (Apter and Vihko, 

1983; Vihko and Apter, 1984). Our results make us question if age at menarche still would be 

associated with adolescent probability of ovulation and/or menstrual cycle regularity. If not, what 

better predicts reproductive function in adolescents? Further, we see differences in ages at 

menarche between girls of different race/ethnic backgrounds. Are there differences in 

reproductive hormone concentrations, and, if so, are said differences related to 1) social support, 

2) energetic or nutritional stress, or 3) psychosocial stress including, but not limited to, adverse 

childhood experiences (Felitti et al., 1998) and different types of stress and coping (Rowley et 

al., 2005)?  

Overall in this work, I describe results stemming from two larger projects: a combined 

research and education multi-disciplinary study investigating variation in reproductive traits in 

adolescent girls and an international study on ecological determinants of reproductive traits in 
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Polish and Polish American women. During my time at UIUC, I played an integral part in 

establishing both collaborative projects which have been and will be used for multiple other 

research questions (e.g. Rodrigues et al., 2018, Lee et al., 2015, 2017, 2018; Ogden et al., 2015; 

Sanford et al., 2016). I plan to continue to use these collected samples to address new questions. 

For example, I am currently conducting an epigenome-wide association study to identify novel 

differentially methylated sites and differentially methylated regions correlated with age at 

menarche in the Polish sample. I will test for interactions between childhood stressors and 

methylation at these identified sites. This study will identify novel methylation sites that could 

connect childhood energetic and psychosocial stress with reproductive physiology. The CpG 

sites identified in association with age at menarche will also be measured in the Polish American 

sample in order to compare between these samples. Additionally, I conduct work investigating 

variation in reproductive hormone concentrations in study of adolescent girls in the United 

States. Next steps of this project including investigating potential relationships between stress, 

parent-adolescent communication, and estradiol and progesterone concentrations. In my personal 

research trajectory, I am interested in how different types of stress affect reproductive health 

outcomes, and if the effect of stress can be buffered by social support. The results of my 

dissertation provide evidence that childhood developmental environments, including stressors 

and social support, can affect reproductive traits. Future work is needed to help elucidate the 

contextual variation of reproductive traits within and between populations.  
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