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Abstract. Distinct from wireless ad hoc networks, wireless sensor networks are data-centric, application-
oriented, collaborative, and energy-constrained in nature. In this paper, formulate the problem of data transport
in sensor networks as an optimization problem whose objective function is to maximize the amount of infor-
mation (utility) collected at sinks (subscribers), subject to the ow, energy and channel bandwidth constraints.
Also, based on a Markov model extended from [3], we derive the link delay and the node capacity in both the
single and multi-hop environments, and �gure them in the problem formulation. We study three special cases
under the problem formulation. In particular, we consider the energy-aware ow control problem, derive an
energy aware ow control solution, and investigate via ns-2 simulation its performance. The simulation re-
sults show that the proposed energy-aware ow control solution can achieve high utility and low delay without
congesting the network.

1 Introduction

Recent technological advances have led to the emergence of small, low-power devices that integrate sensors and

actuators with limited on-board processing and wireless communication capabilities. Pervasive networks of such

sensors and actuators open new vistas for constructing complex monitoring and control systems. Unlike traditional

wired or wireless networks, sensor networks possess certain characteristics which warrant their treatment as a

special class of ad hoc networks:

1. Data-centric: Sensor networks are largely data-centric, with the objective of delivering collected data, in a

timely fashion, to destinations that require such data. Data that contains information of di�erent qualities

represents di�erent values to destinations. As a result, the overall system objective is no longer to maximize

the raw data throughput. Instead, maximizing the amount of useful information carried to destinations is an

important criterion.

2. Application-oriented: While traditional wired and wireless networks are expected to cater to a variety of appli-

cations, sensor networks are usually deployed to perform speci�c tasks. The speci�c algorithms/protocols and

performance metrics used in sensor networks thus depend on the characteristics and requirements of applica-

tions. For instance, for mission-critical applications, it is very important to ensure the end-to-end latency be

kept below certain threshold.

3. Collaborative: Because of the application-oriented nature of sensor networks, how nodes collaborates with each

other to realize the global system objective outweigh the objective of achieving fairness of individual connections.

This is in sharp contrast to conventional wired and wireless networks in which provisioning of fairness to users

is an important design criterion.

4. Energy-constrained: As most of the low-power devices in sensor networks have limited battery life and replacing

batteries on tens of thousands of these devices is infeasible, any protocol/algorithm that will be eventually

deployed in sensor networks has to be energy aware.

As a result of the unique characteristics of sensor networks, conventional routing and ow control protocols that

focus on maximizing raw data throughput and achieving fairness are no longer well suited for sensor networks.
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Instead, data-centric, utility based approaches that di�erentiate the treatments of packets with respect to their

di�erent values and at the same time, take into account of energy consumption are more adequate.

In this paper, we formulate the problem of data transport in sensor networks as an optimization problem whose

objective function is to maximize the amount of information (utility) collected at sinks (subscribers), subject to the

ow, energy and channel bandwidth constraints. In particular, we introduce energy constraints and the notion of

quality of data into the formulation. Also, based on a Markov model extended from [3], we derive the link delay and

the node capacity in both the single and multi-hop environments, and �gure them in the problem formulation. As a

result, the resulting solution approach will solve simultaneously the problems of maximizing utility and mitigating

congestion.

We show that the formulated optimization problem is general enough to encompass a wide variety of applications

in sensor networks, each with a di�erent objective function and subject to di�erent constraints. Speci�cally, we

consider six design dimensions and adapt the generic formulation to meet the various needs of di�erent applications.

Following that we either modify the objective function or relax one of the constraint functions to conduct three

special case studies under the generic problem formulation. In particular, we show in the �rst two case studies

that the issue of routing in an environment monitoring system (which was considered in [5]) and the bandwidth

allocation problem (which was considered in [14, 18]) can be treated as special cases under the generic problem

formulation. In the third case study, we derive an energy aware ow control solution, and investigate via ns-2

simulation its performance. The simulation results show that as compared with the Ad hoc On Demand Distance

Vector (AODV) routing and load balancing routing, the solution derived under the proposed approach achieves

higher utility and incurs lower latency. As will be elaborated on in Section 5, the simulation results also shed several

insights that will be used to facilitate further improvement of utility-based approaches.

Utility based approaches have been explored in conventional wired networks (e.g., [10, 12]), cellular wireless

networks (e.g., [15]), ad hoc networks (e.g., [14, 18]), and most recently sensor networks [4]. Kelly et al. [10] propose

a pricing scheme to achieve weight proportional fair rate allocation for users in the wireline environment. The same

problem considered in [10] is solved by Low et al. [12] di�erently such that the dual problem can be optimized in

a distributed manner. Both Xue et al. [18] and Qiu et al. [14] extended Kelly's work [10] and consider the rate

allocation problem in ad hoc networks. The major di�erences lie in that (i) the former [18] uses the link capacity

as the constraint of the channel capacity, while the latter [14] uses the node capacity as the constraint; and (ii)

while the formulations in both the work reported in [18] and [10] divide the system problem into the user and

network problems, the work reported in [14] incorporates the forwarding cost in the user optimization problem.

None of the work in [10, 12, 18, 14] consider the energy constraints which we believe is one of he most important

criteria in sensor networks. Saraydar et al. [15], on the other hand, take a utility based approach to control power

of transmission in a decentralized manner in a multicell wireless data system. Recently Byers et al. [4] consider the

optimization problem of maximizing the overall utility of sensor networks during the system lifetime, subject to

an energy constraint that is expressed as a high level cost. Chang et. al. [5] devise a routing solution to maximize

the system life time of sensor networks. As neither the link capacity nor the node capacity is considered in their

work, the solution thus derived may not be feasible. Also, none of the existing work di�erentiates the treatment

of packets with respect to their quality or information. In contrast, our proposed approach not only considers the

energy constraint but also di�erentiates treatment of packets with respect to their quality of information.

The rest of the paper is organized as follows. We present the generic problem formulation in Sec. 2 and the

three case studies in Sec. 3. Then, we derive in Sec. 4 the link delay and the node capacity that are necessary in

the problem formulation. Following that, we present the simulation results for the third case study | the energy

aware ow control problem | in Sec. 5. Finally we conclude the paper with a list of future research agendas in

Section 6.
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2 Problem Formulation

In this section we formulate a general utility-based optimization problem that can be tailored to ful�ll various goals

and requirements for di�erent applications in sensor networks. Before delving into the problem formulation, we

state the assumptions made in this paper:

(A1) Spatial redundancy is not considered: we assume that the sensing data collected from sensors at di�erent

locations contributes additive utilities. In reality, surplus sensors may be deployed in the sensing area and the

information collected by neighboring sensors may be redundant and correlated. Clustering techniques such as

GAF [17] or SPAN [6] have been proposed to group sensors into groups and coordinate activities among them,

such that only one sensor needs to be awake in each group to maintain network connectivity and to carry out

the sensing task. The data collected in di�erent groups is likely non-redundant.

(A2) The utility of data packets originated from the same node is represented by a single utility function, in spite

of the fact that they may be routed along di�erent paths to the sinks.

(A3) The communication cost between sinks is negligible. Once data packets arrives at any of the sinks, they may

be relayed to other sinks perhaps via a wireline network, and hence the communication cost is minimal.

The optimization problem is formulated to maximize the total utility of data collected at sinks throughout

the system lifetime, subject to the ow constraint, the energy constraint and the channel capacity constraint. For

notational convenience, we de�ne the following notions:

{ Us(�): the utility function that speci�es the commodity generated from a sensor s and sent to a sink (perhaps

through multiple routes);

{ Sn and Si: the set of sensors and sinks in the sensing �eld;

{ Nk: the set of one-hop neighbors of node k;

{ q
(s)
ij : the rate of the commodity s that passes from node i to node j;

{ xi: the source rate originated from node i;

{ x
(s)
i : the source rate of commodity s originated from node i; As the commodity s only originates from node s,

x
(s)
i = xi if i = s; otherwise, x

(s)
i = 0;

{ Ei: the amount of energy initially equipped with node i;

{ ei: the energy consumed in the idle state per unit time;

{ es and er: the additional energy consumed in transmitting and receiving one unit of data rate per unit time;

{ ds: the average end-to-end latency that a packet experiences from a sensor s to a sink;

{ T : the system lifetime de�ned as the time interval till the �rst failure of a node due to the depleted power;

{ Ci: the channel capacity of node i; we will derive this value in Section 4.

Given the above notations, the problem can be formulated as a nonlinear programming problem as follows:

max
x;q;T

[
P
s2Sn

Us(
P
i2Si

P
k:i2Nk

q
(s)
ki ; ds)] � T (1)

s:t:
P

k:i2Nk

q
(s)
ki + xi �

P
j:j2Ni

q
(s)
ij ; 8i 2 Sn; s 2 Sn (2)

fer �
P

k:i2Nk

P
s2Sn

q
(s)
ki + es �

P
j:j2Ni

P
s2Sn

q
(s)
ij + eig � T � Ei; 8i 2 Sn (3)

P
j:j2Ni

P
s2Sn

q
(s)
ij � Ci; 8i 2 Sn (4)

The objective is to maximize the utility of all received packets within the system lifetime over a vector of source

rates of commodities (x), a vector of link ow (q) and the system lifetime (T ). As such, the objective function

(Eq. (1)) is expressed as the product of the system lifetime and the utility of all commodities received at the sinks

per unit time. The utility function for the commodity s is a function of the total rate of the commodity s arriving
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at sinks and the average end-to-end latency it sustains. By assumptions (A2) and (A3), the rate of commodity s

arriving at sinks is the sum of all the incoming ows of commodity s to any of sinks. Since ows traveling through

di�erent routes to sinks endure di�erent latencies, we express the utility function as a function of the average

latency ds to account for the average loss of utility due to the delay. Moreover, with di�erent qualities of data, the

di�erent quantized utility functions (such as in [11]) can be used to evaluate the utility of a data packet.

The �rst constraint (Eq. (2)) is the ow conservation. The sum of both the incoming ows of commodity s

and the ow of commodity s originated from a node is greater than or equal to the sum of the outgoing ows

of commodity s, with the inequality implying that intermediate relay nodes may drop packets they forward. The

second constraint (Eq. (3)) is the energy constraint, while the third constraint (Eq. (4)) is the capacity constraint,

i.e., the sum of the outgoing ows of all the commodities from a node i should be less than its channel capacity Ci

(the value of which will be derived in Section 4).

The problem formulated above aims to maximize the total utility received at the sinks, by controlling the

parameter vectors x and q (which in turn are related to ow control and routing decisions). As a matter of fact, the

above problem formulation encompasses a wide variety of requirements and objectives for di�erent applications in

sensor networks. In what follows, we discuss six possible design dimensions and their corresponding amendments

to the above problem formulation:

1. Flow conservation: If intermediate relay nodes are not allowed to discard packets they forward, the inequality

in Eq. (2) is changed to an equality. With the ow conservation constraint, for each commodity s, the sum of

the incoming ows of commodity s at sinks is equal to the rate xs originated at node s, and hence the objective

function in Eq. (1) can be rewritten as:

max
x;q;T

[
P
s2Sn

Us(xs; ds)] � T (5)

2. Flow indivisibility constraint: If a commodity from a sensor node s cannot be routed through multiple paths,

an additional constraint has to be added in Eq. (2) such that for each commodity s, only one incoming and

one outgoing ow has positive rate and others are zero. This makes it more diÆcult to solve the optimization

problem because of its discrete constraint.

3. Flow control: In the problem formulation, both the routing and ow control problems are jointly considered.

An alternative approach is to solve the optimization problem in two steps. The routes are determined �rst by

a routing protocol and �gured into the optimization problem. The optimization problem then solves the ow

control problem, by optimizing the total utility over the vector of source rates, x.

4. Quality-driven utility function: If the quality of data is considered, the utility function of each sensor is de-

termined based on the quality of the data sensed; otherwise, the utility functions are the same for all the

sensors.

5. E�ect of latency on utility: Whether the latency a�ects the utility of the data sensed is application-dependent.

In general, the utility of data decays with the latency but the decay function (convex, linear, or concave) varies

with the application characteristics.

6. Energy awareness: If the energy constraint is not considered, the problem formulation can be simpli�ed as

follows: The system lifetime T can be removed from the objective function and the energy constraint (Eq. (3))

can be removed.

Whether or not a utility-based approach is e�ective is contingent upon the proper design of the utility function.

Several rules can be applied to determine appropriate utility functions in sensor networks: (i) More data generates

more utility, but the marginal utility decreases due to spatial and temporal redundancy; (ii) The utility of data

decreases with the latency; (iii) Better data quality results in higher utility. Based on the above rules, we characterize

the utility functions as follows:
Us(xs; ds) = as � U(xs); �Ds(ds) (6)

where as is a parameter that determines the importance of, and the quality of, data originated from sensor s.

The function U(�) is a non-decreasing, concave utility function of the source rate. The function Ds : R
+ ! [0; 1]
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is a non-increasing utility decay function of the average end-to-end latency, ds, of packets from sensor s. Ds(�) is

application-dependent, and can be convex, linear, concave functions or a combination thereof. For mission-critical

applications, the value of utility decays abruptly after the system tolerance period and is hence a convex function

in that region. On the other hand, for non-mission-critical applications, the utility is not signi�cantly a�ected by

the latency and can thus be expresses as a concave function. The average end-to-end latency of packets from sensor

i can be estimated as
ds =

X
j;k

q
(s)
jk � dlj=

X
j;k

q
(s)
jk ; (7)

where dlj is the link delay from node j to its next hop and will be derived in Sec. 4. For simplicity, we only consider

the accumulated link delay in Eq. (7), but ignores the queuing delay. With the capacity constraint in Eq. (4), we

expect the queuing delay should not be signi�cant.

3 Application Examples Under the Problem Formulation

In this section, we consider three representative problems that have been considered in the literature, and show

that they are special cases of the general problem formulation given in Section 2.

3.1 Case Study I: Routing in a Environment Monitoring System

Consider an environment monitoring system in which sensor nodes monitor environmental changes such as tem-

perature, moisture, habitat, chemical contaminant or construction safety. Sensors that are deployed in an area

periodically send their sensor readings back to the control center, so that data can be logged and/or further ana-

lyzed. The sending rate x is usually given, and the utility of data from all sensors is the same and does not decay

with the latency. As the objective of such a system is to maximize the system lifetime under the condition that

the sensors cover the entire area, the objective function (Eq. (1)) is modi�ed as fmax
q

Tg , with the constraints in

Eqs. (2){(4) remaining the same.

This formulation is similar to that in [5], with a major di�erence: the formulation in [5] only considers the

transmission power, but not the node capacity constraint. Without considering the node capacity constraint, the

problem was reduced to a linear programming problem (that may render an infeasible solution).

3.2 Case Study II: Flow Control

The problem formulated in Section 3.1 assumes that the source rate of commodities x has been given and considers

the routing problem by determining q to maximize the system lifetime. On the other extreme, one can assume

that the routes are given for each pair of source and destination and maximizes the utility of received packets at

sinks by controlling the vector of source rate x. This is termed as the ow control problem (a.k.a. the bandwidth

allocation problem). Several e�orts have been made along this research avenue: Kelly et al. [10] proposed a price-

based bandwidth allocation approach to maximize the total utility of all users in wireline environments. Xue et

al. [18] applied the same formulation to ad hoc networks. In both work only the constraint on the link capacity is

considered. Note that although considering the constraint on the link capacity is adequate in wireline environments,

it may not be suÆcient in ad hoc environments. Instead the constraint on the node capacity should be considered,

as all outgoing links from a node share the same channel. The constraint on the link capacity suÆces only when a

node is equipped with multiple transceivers operating at di�erent channels or with directional antennas. Qiu et al.

[14] considered the constraint on the node capacity and further relaxed the ow conservation rule.

All the above work does not consider the energy constraint and thus can only be applied to sensors that come

with tethered power supplies. Without the energy constraint, the system lifetime, T , is no longer a control variable

and the objective function becomes separable, rendering a separable nonlinear programming problem. Note that

the dual problem of a separable nonlinear programming problem can be readily evaluated [2], and a distributed

solution can also be derived [12].
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1. G Si

2. Q Sn /*sorted in the increasing order of distance to any one of sinks*/
3. while (Q 6= ;)
4. s Q:head(); s:cost 0
5. Run Dijkstra's algorithm to �nd the shortest path p from s to its closest sink using nodes 2 G
6. Backtrack the path p from the sink to s and 8 nodes v 2 pnSi, v:cost v:cost+ 1
7. G G

T
fsg

Fig. 1. The routing algorithm that balances loads based on geographical information.

3.3 Case Study III: Energy-Aware Flow Control

In sensor networks, energy saving is the top priority for system design. Hence, the problem formulation in Section 3.2

can be augmented by adding the energy constraint and �guring in the system lifetime in the objective function

(as in Eq. (5)). Recall that the optimization problem in Eq. (5) considers both routing and ow control decisions

together, and is a NP-hard problem as shown in [20]. A simple solution of the augmented problem can be derived

into two phases. In the �rst phase, based on the geographical information, a load balancing route is �rst determined

for each sensor using the algorithm given in Fig. 1. The algorithm rests on the assumption that a link li!j is in

G if the distance between i and j is less than the radio range and j is closer to the destination than i (greedy

geographical routing). It �nds routes for sensors, starting from the sensor that is closest to any of the sinks. The

cost associated with the node represents the number of ows it originates or forwards for other nodes. Since a route

is assigned for each sensor sequentially, when a node further away from a sink determines its route, it attempts not

to select nodes with high costs. Therefore, the objective of load balance can be achieved, and this routing algorithm

serves as a good basis for �nding a good solution for the optimization problem. The resulting routes derived in the

algorithm are expressed in the routing matrix A, with Asf = 1 if the node f is on the route of sensor s to its closest

sink; and Asf = 0 otherwise.

In the second phase, given the set of routes for all the sensors and under the assumption that the utility of

data does not decay with the latency, the optimization problem becomes (let I and e be identity matrix and entity

vector, respectively):

max
x;T

[
P
s2Sn

Us(xs)] � T

s:t: [es � A
T � x+ er � (A

T � I) � x+ ei � e] � T � E;

AT � x � C:

(8)

Recall that x, E, and C are the vectors of source rate, initial energy, and node capacity for sensors, respectively.

The vector x is the control variable, E is given by the system, and C is a topology-dependent parameter and will

be derived in Section 4.

Unfortunately, both the objective function and the �rst constraint are not convex functions. As a result, a

solution satisfying Karush-Kuhn-Tucker conditions may not be the global optimal solution. However, the above

solution gives a lower bound for the optimal solution, and can be used as an approximate solution. Several global

optimization methods without searching the global optimal solution exhaustively have been proposed. Vanderbei

et. al. [16] propose an eÆcient approach for non-convex nonlinear programming by slightly modifying the interior-

point approach for quadratic programming. The interested reader is referred to [7] for several global optimization

methods. In this paper, we use MATLAB r to �nd the solution by attempting on several random initial points.

The performance of the solution under this problem formulation will be evaluate in Section 5.

4 Derivation of Link Delay and Node Capacity in 802.11-like MAC Protocol

In the general optimization problem (Eqs. (1)-(4)), the average end-to-end latency is needed in Eq. (1) and the node

capacity is needed in Eq. (4). Recall that by Eq. (7), we have simpli�ed the end-to-end latency as the accumulated
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     i−1, 0

      i, 1       i, 2    i, W  −1i
Pn PnPn

      i, 0
Pn

p/Wi

1−Pn 1−Pn 1−Pn

1−p

1−p

p/W1

     m, 0
1−p Pn

     m, 1
Pn

     m, 2 m, Wm − 1
Pn

Pn
   i, W  −2i

1−Pn

m, Wm − 2
Pn

1−Pn 1−Pn 1−Pn 1−Pn

Pn
p/Wm

p/Wi+1

p/Wm

PnPn

1−Pn 1−Pn

     0, 1      0, 2
Pn

     0, 0
1−p Pn

1−Pn 1−Pn

 0, W  − 20  0, W  − 10

Pn

(1−p)/W0

Fig. 2. The Markov chain model for analyzing the link delay under an IEEE 802.11-like backo� mechanism.

link delay. In this section, we derive both parameters, assuming that an IEEE 802.11-like backo� mechanism has

been used as the underlying MAC protocol.

In the 802.11-like backo� mechanism, before a node �rst attempts to send a packet, it sets a backo� timer

uniformly distributed in [0;W0], where W0 = W is the initial maximum contention window. A node counts down

its backo� timer whenever the channel is sensed idle; otherwise, it freezes the timer. When the value of the backo�

timer becomes zero, the node transmits the packet. If the packet collides with other packets, i.e. the sender does

not receive an acknowledgment, the backo� timer is reset to be uniformly distributed in [0;Wi], where the index

i represents the number of retransmissions, and Wi = 2i �W0 = 2i �W if the exponential binary backo� policy is

adopted. The maximum backo� state is m, i.e., the maximum window size Wmax = 2m �W .

4.1 Derivation of Link Delay in the Single Hop Case

The derivation of the link delay within one hop is based on the model in [3]. Two major assumptions (approxima-

tions) are made in our model (and also in [3]). First, the network consists ofM backlogged nodes within the one-hop

transmission range of each other. That is, each node in the system can hear each other and always has packets to

send. Second, the time after detecting an idle channel is slotted, and in each transmission attempt the probability,

p, that a packet collides with some other(s) in a slot is a constant, regardless of the number of retransmissions the

packet has incurred. The probability p is referred to as conditional collision probability. The model can be described

with a Markov chain shown in Fig. 2, with the state being a 2-tuples (s(t); b(t)), where s(t) is the retransmission

times (ranging from 0 to m, the maximum backo� state) and b(t) is the value of the backo� timer of a node at time

t.

The major di�erence between our model and that in [3] lies in that the later does not consider the e�ect of

freezing the backo� timer when a node in its backo� period senses the channel busy. To account for this e�ect,

there are two state transitions from state (i; j) (j > 0) to other states in our model: (i) one is with the probability

of sensing the channel idle, pn, i.e., the other M � 1 nodes do not send packets, and the state becomes (i; j � 1)

as a result of the backo� timer being decremented by one; and (ii) the other one is with the probability of sensing

the channel busy, 1 � pn, i.e., at least one other node sends a packet in the slot, and the state remains at (i; j).

Note that pn is the conditional probability of sensing the channel idle given that the node itself does not send any

packet (note that j > 0) in the current time slot, and hence pn = (1 � �)M�1, where � is the probability that a

node transmits a packet in a slot time.
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By the operations of the backo� mechanism, the state transition probabilities can be expressed as follows:8>>>>><
>>>>>:

Pfi; kji; kg = 1� pn; k 2 (1;Wi � 1) i 2 (0;m);

Pfi; k � 1ji; kg = pn; k 2 (1;Wi � 1) i 2 (0;m);

Pf0; kji; 0g = (1� p)=W0; k 2 (0;W0 � 1) i 2 (0;m);

Pfi; kji� 1; 0g = p=Wi; k 2 (0;Wi � 1) i 2 (1;m);

Pfm; kjm; 0g = p=Wm; k 2 (0;Wm � 1):

(9)

Let bi;k = lim
t!1

Pfs(t) = i; b(t) = kg; i 2 (0;m); k 2 (0;Wi � 1) be the stationary distribution of state (i; k).

Given the Markov model in Fig. 2 and the state transition probabilities in Eq. (9), the equilibrium equations for

the states (i;Wi�1); (i; k); 0 < k < Wi�1, and (i; 0) in the case that the number of retransmissions is i; 0 < i < m

are:8><
>:
bi;Wi�1 =

p
Wi

� bi�1;0 + (1� pn) � bi;Wi�1 =) bi;Wi�1 =
p

Wi�pn
� bi�1;0;

bi;k = pn � bi;k+1 +
p
Wi

� bi�1;0 + (1� pn) � bi;k =) bi;k = bi;k+1 +
p

Wi�pn
� bi�1;0 =

(Wi�k)p
Wi�pn

� bi�1;0;

bi;0 =
p
Wi

� bi�1;0 + pn � bi;1 = p � bi�1;0 = pi � b0;0:

(10)

Similarly, the equilibrium equations for the states (m;Wm� 1); (m; k); 0 < k < Wm� 1, and (m; 0) in the case that

the number of retransmissions is equal to or more than the maximum backo� stage m become:8><
>:
bm;Wm�1 =

p
Wm

(bm�1;0 + bm;0) + (1� pn)bm;Wm�1 =) bm;Wm�1 =
p

Wm�pn
(bm�1;0 + bm;0);

bm;k =
p

Wm
(bm�1;0 + bm;0) + pn � bm;k+1 + (1� pn)bm;k =) bm;k =

(Wm�k)p
Wm�pn

(bm�1;0 + bm;0);

bm;0 =
p

Wm
(bm�1;0 + bm;0) + pn � bm;1 =) bm;0 =

p
1�p � bm�1;0 =

pm

1�p � b0;0:

(11)

Finally, the equilibrium equations for the states (0;W0 � 1); (0; k); 0 < k < W0 � 1, and (0; 0) in the case that the

packet being sent incurs no retransmission are:8><
>:
b0;W0�1 = (1� pn)b0;W0�1 +

1�p
W0

�
Pm

i=0 bi;0 =) b0;W0�1 =
1�p
W0�pn

�
Pm

i=0 bi;0;

b0;k = (1� pn) � b0;k + pn � b0;k+1 +
1�p
W0

�
Pm

i=0 bi;0 =) b0;k =
(1�p)�(W0�k)

W0�pn
�
Pm

i=0 bi;0;

b0;0 = pn � b0;1 +
1�p
W0

�
Pm

i=0 bi;0 =) b0;0 = (1� p) �
Pm

i=0 bi;0:

(12)

The stationary probabilities of state (i; 0) and (i; k) in Eqs. (10)-(12) can be expressed in terms of b0;0 as:

bi;0 = b0;0 �

(
pi; 0 < i < m;
pm

1�p ; i = m;
(13)

and

bi;k =
(Wi � k)

Wi � pn
� b0;0 �

8><
>:
1; i = 0; 0 < k < W0;

pi; 0 < i < m; 0 < k < Wi;
pm

1�p ; i = m; 0 < k < Wm:

(14)

b0;0 can be derived by equating the sum of the probabilities of all states to one, i.e.,

1 =

mX
i=0

Wi�1X
k=0

bi;k =) b0;0 =
2pn(1� p)(1� 2p)

(2pn � 1)(1� 2p) +W (1� p� 2mpm+1)
: (15)

Since a node only attempts to send a packet when its backo� timer is zero, we can express the probability � that

a node transmits a packet in a randomly chosen slot as the sum of state probabilities with b(t) = 0:

� =

mX
i=0

bi;0 =
b0;0
1� p

=
2pn(1� 2p)

(2pn � 1)(1� 2p) +W (1� p� 2mpm+1)
: (16)

Note that � is expressed in terms of the conditional collision probability, p. On the other hand, the conditional

collision probability p is the probability that a packet being sent collides with packets from other nodes. That is, p

can be expressed in terms of transmission probability � as follows:

p = 1� (1� �)M�1 = 1� pn: (17)

8



With Eqs. (16) and (17) we may numerically solve both � and p. The average number of attempts to transmit a

packet can be expressed in terms of p:

Ave. # of attempts =

1X
i=0

i(1� p)pi�1 =
1

1� p
: (18)

With all the state probabilities derived, we now derive the link delay | the expected latency to transmit a

packet to the next hop. Let di;k be the expected time1 to transmit a packet when a node is at the state (i; k). By

the Markov model given in Fig. 2, there are two state transitions from state (i; k); k 6= 0. Either the channel is idle

or busy in the next slot. In the latter case, the node remains at state (i; k) for a time interval, Tf , that is equal to

the conditional expected freeze time given that the channel is busy.

di;k = pn � (1+ di;k�1)+ (1� pn) � (Tf + di;k) =) di;k = k � [1+
(1� pn) � Tf

pn
] + di;0; 80 � i � m; 0 < k < Wi (19)

The conditional expected freeze time Tf can be expressed as

Tf =
(M � 1)�(1� �)M�2

1� pn
� Ts +

1� (1� �)M�1 � (M � 1)�(1� �)M�2

1� pn
� Tc; (20)

where the �rst term represents the case when only one node out of the otherM�1 nodes sends a packet, the packet

is successfully transmitted, and the channel is occupied for an interval of Ts, i.e., the expected time to successfully

transmit a packet; and the second term represents the case when more than one node attempt to send packets,

the packets collide with each other and the channel is busy for an interval of Tc, i.e., the expected collision period

sensed by a node.

The values of Ts and Tc vary depending on whether or not the RTS/CTS mechanism is used. In the basic mode

(denoted as bas), the RTS/CTS mechanism is not used, T bas
s includes the packet header (H), the expected packet

payload (E[P ]), short inter-frame space (SIFS), acknowledgment (ACK), distributed inter-frame space (DIFS)

and twice of the propagation delay (Æ); and T bas
c contains the packet header (H), the expected length of the longest

packet payload involved in a collision (E[P �]), DIFS, and Æ. In this paper we assume all packets have the same

payload size, and thus E[P ] = E[P �] = P . T bas
s and T bas

c are expressed as:�
T bas
s = H +E[P ] + SIFS + Æ +ACK +DIFS + Æ;

T bas
c = H +E[P �] +DIFS + Æ:

(21)

In the RTS/CTS mode (denoted as rts), the service time, T rts
s , contains several additional terms, i.e., request-to-

send packet, (RTS), clear-to-send packet (CTS), 2� SIFS, and 2� Æ, as compared with the basic mode. On the

other hand, T rts
c contains only RTS, DIFS, and Æ.�

T rts
s = RTS + SIFS + Æ + CTS + SIFS + Æ +H +E[P ] + SIFS + Æ +ACK +DIFS + Æ;

T rts
c = RTS +DIFS + Æ:

(22)

By the Markov model, state transitions of state (i; 0) are di�erent from those of state (i; k); k 6= 0. At state (i; 0),

a node attempts to send a packet, and incurs either a successful transmission (that takes time Ts), or a collision

(that causes the channel to be busy for an interval of Tc and the backo� stage to increase by one). The expected

time to transmit a packet for state (m; 0) and state (i; 0); 0 � i < m are respectively(
dm;0 = (1� p) � Ts +

p
Wm

PWm�1
k=0 (dm;k + Tc) =) dm;0 = Ts +

p
1�p � Tc +

p(2mW�1)
2(1�p) � [1 +

(1�pn)Tf
pn

];

di;0 = (1� p) � Ts +
p

Wi+1

PWi+1�1
k=0 (di+1;k + Tc) 8 0 � i � m� 1:

(23)

Combining Eq. (19) and (23) and using induction from m� 1 to 0, we can express di;0; 0 � i < m as follows:

di;0 = Ts +
p

1� p
� Tc +

p

2(1� p)
� [1 +

(1� pn)Tf
pn

] � [
2i+1pW (1� (2p)m�i�1)

1� 2p
+ 2i+1W � 1] ;80 � i < m: (24)

1 The unit of di;k is the slot time.
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Fig. 3. The link delay in the basic mode and in the RTS/CTS mode in the one-hop environment.

Since the initial state is among the state (0; 0) to (0;W � 1), the average link delay Dl is the average time to

transmit a packet with the average taken over state (0; 0) to state (0;W � 1). Thus,

Dl =
1

W
�

W�1X
k=0

d0;k = Ts +
p

1� p
� Tc +

1 +
(1�pn)Tf

pn

2(1� p)
� (
pW (1� (2p)m)

1� 2p
+W � 1): (25)

After several arithmetic operations, Dl can be expressed in terms of M and � as follows:

Dl =M(Ts � Tc) +
1� �

�
� f1 + [(1� �)�M � 1] � Tcg: (26)

Although � is also a function of M , it is not easy to express � in terms of M . Instead both � and p are numerically

solved through Eq. (16) and Eq. (17). The numerical values of Dl under both the basic and RTS/CTS modes are

given in Fig. 3. Surprisingly the curve of Dl is very close to a linear function of M . This is perhaps attributed in

part by the fact that the �rst term M(Ts � Tc) in Eq. (26) dominates the second term. The result is intuitively

correct since 802.11 is fair for all backlogged nodes, and each such node takes turns to transmit a packet. As a

result the one-hop link delay increases linearly withM . The numerical results of Dl in the single hop case will serve

a base for deriving the link delay under the multiple-hop environment.

4.2 Derivation of Link Delay in the Multiple Hop Case

The major hurdle in deriving the link delay in the multiple hop case is that the assumption that all nodes can hear

each one another no longer holds. The transmission of a node may interfere with that of another node outside its

radio range. This is know as the hidden terminal problem. In general, the number of backlogged nodes that compete

with a node depends on the locations and the traÆc loads of other nodes. The ow contention graph proposed in

[13, 18, 9] is commonly used to approximate the number of backlogged nodes with which a node may contend. In

the ow contention graph, a vertex and an edge represent, respectively, a ow and the potential contention between

two ows. For example, as shown in Fig. 4 ow F1 may interfere with ows F2, F3, F5, and F6 and thus the

vertex F1 is adjacent to those vertices in ow contention graph.

To infer the exact number of backlogged nodes that compete with a sender node s, node s needs to know the

bu�er status, the link traÆc and the scheduling algorithm at other nodes, which is essentially infeasible. Instead,

we observe that two ows contend with each other if either the sender or the receiver of one ow is within the

transmission range of either the sender or receiver of the other ow, and approximate the number of potentially

competing backlogged nodes as the number of neighbors that lie within the two-hop neighborhood of node s. That

is, we estimate the link delay incurred by a ow emanating from node s as Dl(jNsj), where jNsj is the number

of neighbors within node s's two hops neighborhood. Note that this approximation over-estimates the number of

potentially conicting backlogged nodes and we err on the pessimistic side.
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Fig. 4. An example that shows how the ow contention graph is derived from the original topology. This �gure is reprinted

from [13].

sensor sink

Fig. 5. The topology used in the simulation study. A total of 4 sinks and 32 sensors are deployed on a square grid. The

distance between neighboring sensors is 200 meters, and each sensor has at most 4 neighbors.

4.3 Derivation of Node Channel Capacity

After deriving the link delay, we now derive the node capacity. Since all the ows emanating from node s share a

single interface, the throughput attained by these ows should be less than node s's channel capacity Cs. Hence

we estimate node s's channel capacity Cs as the reciprocity of the link delay 1=Dls . The link delays Dl is used

to estimate the end-to-end delay in the utility function Eq. (1), while the node capacity C is used in Eq. (4) to

constrain the total commodity rate from a node.

5 Performance Evaluation of Energy Aware Flow Control Problem

In this section, we evaluate via ns-2 simulation the performance of the energy-aware ow control problem (case III)

formulated in Sec. 3. We use the topology depicted in Fig. 5 in the simulation: 4 sinks and 32 sensors are deployed

on a square grid. The distance between neighboring sensors is 200 meters. Since the default transmission range in

IEEE 802.11 is 250 meters, each sensor has at most 4 neighbors. The optimization problem to be solved is given

in Eq. (8) in which the routing matrix A is determined by the algorithm given in Fig. 1, and the utility function is

de�ned as Us(xs) = vs � log(xs + 1), where vs and xs are the utility value of a packet and the source rate (in units

of #packets/second) for sensor node s, respectively. Function Us is a non-decreasing and concave function of node

s's sending rate. The energy, Ei, each sensor is initially equipped with is 200 joules. The parameters for energy

consumption follows the setting in [6], i.e., the energy consumption incurred in the transmission, reception, and

idle state is 1.4, 1.0, and 0.83 W, respectively. Hence, ei is 0.83 W. es and er are the additional energy consumed

(in addition to ei) in sending and receiving a packet, and are equal to the product of Ts, the time to send a packet

and 0.57(=1.4-0.83) and 0.17(=1.0-0.83), respectively. (Note that the units of es and er are joules per packet.) The
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Fig. 6. Performance comparison of the energy-aware ow control solution against AODV routing and load balanced routing

with respect to (a) utility and (b) end-to-end packet delay under a wide range of source rates. The utility values of packets

are the same.

payload size of a packet is set to be 70 bytes (including 20 bytes of IP header but not MAC and PHY headers). With

the above parameter setting, the source rate, xi of each sensor i is obtain by solving Eq. (8) using MATLAB r.

Comparison with respect to accumulated utility and end-to-end delay: We carry out two sets of simu-

lations. In the �rst set of simulations, the utility values of packets from all the sensors are assumed to be equal to

1 while in the second set of simulations, the utility value of packets from node s, vs, is uniformly distributed in

[1; 100]. We compare the solution derived under the energy-aware ow control problem with two routing approaches,

AODV [1] and load balanced routing in Fig. 1 under a wide range of source rates. Fig. 6 gives the accumulated

utility and the end-to-end packet delay under the optimal energy-aware ow control, AODV routing, and load

balanced routing in the �rst set of simulations. The performance of load balanced routing is slightly better than

that of AODV with respect to both the accumulated utility and the end-to-end delay. This is in part due to the

fact that load balanced routing is based on static information and does not incur routing overhead. Both AODV

and balanced routing achieve the highest utility at the source rate of approximately 9 to 10 kbps. The utilities

decrease as the source rate deviates from the optimal point. Moreover, the best results achieved by both AODV and

balanced routing are almost the same as the derived solution in which the source rate of 8 sensors one hop away

from sinks is 8.57 kbps and the source rate of other sensors is roughly 7.95 kbps. (Note that because the utility

values of packets for all the sensors are the same, the optimal source rate is almost the same for all sensors.) The

end-to-end delay, on the other hand, increases dramatically under AODV and balanced routing when the source

rate exceeds 7 kbps (beyond which the network capacity has saturated, Fig. 6(b)).

Fig. 7 gives the accumulated utility and the end-to-end packet delay under the optimal energy-aware ow

control, AODV routing, and load balanced routing in the second set of simulations. The results exhibit similar

trends as those in the �rst set of simulation. The highest utility under AODV and load balanced routing occurs

when the source rate is approximately 9 kbps, and the end-to-end delay increases dramatically when the source rate

exceeds 7 kbps. The major notable di�erence is that the ow control solution achieves higher utility than balanced

routing by 4%, due to the use of di�erent utility values for packets that originate from di�erent sensors. Also, in the

energy-aware ow control solution the di�erence in the source rates for sensors with di�erent values is signi�cant.

The reason why the performance improvement is not signi�cant is two-fold: First, the choice of logarithmic utility

functions achieves high utility quickly but the gain beyond further increasing the source rate is marginal. As a

result, applying high enough source rates (but not so high as to severely congest the network) to all the sensors

(and hence necessarily to the sensors with high utility values) can thus achieve high utility. Second, the energy
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Fig. 7. Performance comparison of the energy-aware ow control solution against AODV routing and load balanced routing

with respect to (a) utility and (b) end-to-end packet delay under a wide range of source rates. The utility values of packets

are uniformly distributed in [1; 100].
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Fig. 8. Compensated results of optimal ow control and best results of AODV and load balanced routing. "Retrans" denotes

the results obtained with the retransmission e�ect compensated, and \Retrans + Overhearing" denotes the results obtained

with both the retransmission and overhearing e�ects compensated.

consumed in the idle state dominates the total energy consumed because ei is only slightly smaller than es and er
and the period of idle state is much longer than that of transmitting or receiving state. The insigni�cant energy

additionally incurred in transmitting or receiving packets justi�es for large source rates. In other words, the energy

constraint is not as stringent as compared to the node capacity constraint. We will later elaborate on this point by

comparing the energy-aware ow control solution obtained without the energy constraint.

There exists a gap between the solution obtained in the simulation and that obtained numerically through

the theoretical result with respect to both the utility and the end-to-end delay. This may be a result of inaccurate

modeling of the energy constraint in two aspects. First the values of es and er in Eq. (3) ignore the energy consumed

in packet retransmissions. Second, the energy incurred in receiving packets in Eq. (3) only takes into account of

received packets destined for itself but not overheard packets. To compensate for the �rst e�ect, we apply the

retransmission factor obtained from Eq. (18) to both es and er. Similarly to compensate for the second e�ect, we
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Routing AODV Balance Optimal(simulation) Optimal(theory)

Variations 9kbps 10kbps 9kbps 10kbps no retrans retrans overhearing no retrans retrans overhearing

Utility 928948 933702 943762 941475 981404 981605 981244 1111443 1083962 1070974

Avg. Delay(sec) 0.7383 0.8189 0.4590 0.5258 0.2421 0.2369 0.1322 0.0334 0.0333 0.0318

System lifetime (sec) 194.5 194.6 194.7 193.1 196.0 196.0 196.0 219.2 213.9 212.6

Received Pkt # 130146 137292 132674 139351 122956 122968 125424 141262 137685 137398

Table 1. Compensated results of optimal ow control and best results of AODV and load balanced routing. "Retrans"

denotes the results obtained with the retransmission e�ect compensated, and \Overhearing" denotes the results obtained

with both the retransmission and overhearing e�ects compensated.
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Fig. 9. Performance comparison between the energy aware ow control solution obtained by using the network capacity

derived in Section 4 to that obtained by using arbitrarily chosen values.

change the �rst term in Eq. (3) from
P

k:i2Nk

P
s2Sn

q
(s)
ki to

P
k:k2Ni

P
j:j2Nk

P
s2Sn

q
(s)
kj . Fig. 8 gives the compensated results

along with the best results achieved in AODV and balancing routing. Table 1 gives the corresponding numerical

values. With both e�ects compensated, the utility value remains roughly the same but the delay is much improved

and the gap between the simulation result and the theoretical value becomes smaller.

The necessity of deriving the node capacity: To investigate whether or not deriving the network capacity, Ci,

for each node i is truly necessary, we compare the energy-aware ow control solution obtained by using the network

capacity derived in Section 4 to that obtained by using arbitrary values of Ci. Fig. 9 gives the simulation results.

The scenario with the network capacity Ci = 53 kbps for all nodes achieves the maximum utility. The result in the

accumulated utility deteriorates if either a more or less stringent node capacity constraint is imposed. The solution

obtained by using the network capacity derived in Section 4 achieves slightly lower utility but also incurs a smaller

end-to-end latency. Without exhaustively testing all the possible values of the network capacity, the conservative

network capacity derived in Section 4 provides a reasonable setting to the problem.

The e�ect of more stringent constraints on the performance: As discussed above, given the above param-

eter setting for energy consumption, the energy constraint is not so stringent as compared to the node capacity

constraint. As a result, the energy-aware ow control solution usually lies at the \boundary" imposed by the node

capacity constraint, which in turns causes instability to the system. To further study the e�ect of these constraints

on the performance, we now impose more stringent constraints on the node capacity or the energy consumption.

Speci�cally, the node capacity in Eq. (4) is changed from Ci to �Ci, where � varies from 0 to 1, and the energy pa-
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Fig. 10. The accumulated utility and the end-to-end delay obtained from simulation and theoretical formulation with respect

to � ((a)) and � ((b)). The smaller the value of �, the more stringent the node capacity constraint. The larger the value of

�, the more stringent the energy constraint.

rameters in Eq. (3) are changed from er and es to � �er and � �es, where � > 1. Fig. 10 gives the accumulated utility

and end-to-end delay with respect to � (Fig. 10 (a)) and � (Fig. 10 (b)). Despite slight reduction in the accumulated

utility is observed for both the simulation and theoretical results, the end-to-end delay incurred in the simulation

decreases signi�cantly as the value of � decreases. Also, as shown in Fig. 10(b), although the accumulated utility

derived using the theoretical formulation decreases signi�cantly as the value of � increases, the accumulated utility

obtained in the simulation remains essentially at same value. Similar to the e�ect of constraining node capacity,

the end-to-end delay decreases dramatically as a more stringent energy constraint is imposed.

As the energy constraint is less stringent than the node capacity constraint, we investigate the e�ects of removing

the energy constraint in the second case introduced in Sec. 3. That is, the objective function does not include the

system lifetime and the energy constraint is removed. We again change the node capacity in Eq. (4) from Ci to �Ci,

with � = 0.95, 0.98 and 1.00. The last column of Fig. 8 gives the result. The accumulated utility is only slightly

smaller than that in the solution that considers the energy constraint. This again results from the choice of the

utility function and parameters of energy consumption.

6 Conclusion and Future Work

In this paper, we formulate the problem of data transport in sensor networks as an optimization problem whose

objective function is to maximize the amount of information (utility) collected at sinks (subscribers), subject to the

ow, energy and channel bandwidth constraints. Also, based on a Markov model extended from [3], we derive the

link delay and the node capacity in both the single and multi-hop environments, and �gure them in the problem

formulation. We study three special cases under the problem formulation. In particular, we consider the energy-

aware ow control problem, derive an energy aware ow control solution, and investigate via ns-2 simulation its

performance.

The simulation results indicate that the solution to the energy-aware ow control problem achieves highest

accumulated utility as compared to AODV and balanced routing with the use of various source rates. However, due

to the use of logarithmic utility functions and energy parameters given in [6], the performance improvement that

results from using the energy-aware ow control solution is not signi�cant. On the other hand, the optimal solution

does achieve both high utility and low end-to-end delay if more stringent node capacity and/or energy constrains

are imposed.
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We will continue our research along three thrusts. First, we would like to consider both the ow control and

routing problem simultaneously and solve the general formulation in Eqs. (1)-(4). One serious drawback of the

above optimization problem is that the search space is so broad and the control variables, q
(s)
ij , could be of the

order of O(N3) if no constraints are imposed. Several heuristic rules can facilitate to eliminate unlikely solutions

and reduce the search space. For instance, based on geographical information, q
(s)
ij is considered only when nodes

i and j are within the radio transmission range and node j is close to one of sinks than node i for the source s.

With use of this rule, the order of control variables is reduced to O(N2). Second, the applications considered in the

simulation study are monitoring applications in which the sending data is static. We would like to apply the utility

based approach to more dynamic applications such as the target tracking system. Finally, by approximating certain

aspects of the general formulation, we would like to develop a distributed version of the utility based approach.
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