PROBING SPIN-ORBIT COUPLING OF ORGANOCERIUM RADICALS FORMED IN Ce ATOM REACTIONS WITH ALKYLAMINES.

<u>SILVER NYAMBO</u>, YUCHEN ZHANG, DONG-SHENG YANG, Department of Chemistry, University of Kentucky, Lexington, KY, USA.

Ce atom reactions with alkyamines are carried out in a pulsed-laser ablation molecular beam source and characterized by mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of CeNR (R = CH₃, C₂H₅, and C₃H₇) formed by Ce reactions with H₂NR exhibit two band systems, separated by 78, 74, and 72 cm⁻¹, respectively. In contrast, the MATI spectrum of CeNC₂H₅ formed in the Ce + HN(CH₃)₂ reaction show two band systems with a much larger separation, 130 cm⁻¹. These separations are attributed to the spin-orbit (SO) splitting from the Ce 4f¹ electron. The different splittings between CeNR from the reactions of primary amines and CeNC₂H₅ from the reaction of secondary amine are due to their different structures. The CeNR complexes from the primary amines have acyclic structures with Ce double bonding to the N atom, whereas CeNC₂H₅ from the dimethylamine has a cyclic structure with Ce bonding to the N atom and one of the C atoms. The considerably smaller SO splittings in the CeNR species suggests that N coordination has a stronger quenching effect on the SO coupling of the Ce 4f electron than the C coordination.