HIGH RESOLUTION SPECTROSCOPY OF THE [18.2]1.5 - $X^2\Delta_{3/2}$ TRANSITION OF THORIUM MONOCHLORIDE, ThCl^a.

<u>COLAN LINTON</u>, Department of Physics, University of New Brunswick, Fredericton, NB, Canada; DUCTRUNG NGUYEN, TIMOTHY STEIMLE, School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.

A systematic experimental and theoretical studies of simple Ac and Ln containing molecules is one avenue for garnering insight into element-specific ligation^b. Here we report on the high resolution (\sim 30 MHz) laser induced fluorescence (LIF) spectra of supersonic cooled molecular beam of ThCl produces in the reaction of laser ablated Th with an Ar/CCl₄ mixture. The present work builds on the recent LIF, dispersed fluorescence, and REMPI study of the Heaven and Peterson groups^c. Analysis of a band near 550 nm has been assigned as the [18.2]1.5-X² $\Pi_{3/2}$ transition. Observed doubling the lines has shown to be caused Ω -doubling in the upper state. No ³⁵Cl(I=3/2) hyperfine splitting was observed. Progress on recording the electric dipole moments and magnetic g-factors will be reported. Interpretation of the spectrum is based, in part, upon previously published electronic structure prediction and a simple molecular orbital correlation diagram.

^aSupported by the United States Department of Energy (DOE) under the Grant. No. DE-SC0018241.

^bHeaven, M. C.; Barker, B. J.; Antonov, I. O., Spectroscopy and Structure of the Simplest Actinide Bonds. J. Phys. Chem. A 2014, 118 (46), 10867-10881.

^cVan Gundy, R. A.; Bartlett, J. H.; Heaven, M. C.; Battey, S. R.; Peterson, K. A., Spectroscopic and theoretical studies of ThCl and ThCl⁺. J. Chem. Phys. 2017, 146 (5), 054307/1-054307/8.