ROTATIONAL AND ISOTOPIC STUDY OF THE ZnBr RADICAL $(^2\Sigma^+)$

MARK BURTON, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; LUCY M. ZIURYS, Department of Astronomy, University of Arizona, Tucson, AZ, USA.

The pure rotational spectrum of ZnBr ($^2\Sigma^+$) has been recorded using millimeter-wave direct absorption spectroscopy. This species was generated in the gas phase via the reaction of zinc vapor with CH₃Br in the presence of a DC discharge. Multiple rotational transitions were measured for 6 isotopologues (64 Zn⁷⁹Br, 64 Zn⁸¹Br, 66 Zn⁷⁹Br, 66 Zn⁸¹Br, 66 Zn⁸¹Br, 68 Zn⁷⁹Br, and 68 Zn⁸¹Br) in the frequency range of 270-300 GHz, each of which consisted of spin-rotation splittings. Furthermore, transitions originating in the v = 1 through 3 excited vibrational states for certain isotopologues were obtained. The equilibrium rotational constant for 64 Zn⁷⁹Br (B_e) was calculated to be near 2780 MHz, resulting in an equilibrium bond length (r_e) of 2.25 Å.